
Business Statistics

Tommaso Proietti

DEF - Università di Roma 'Tor Vergata'

Linear Regression



Speci�cation

Let Y be a univariate quantitative response variable. We model Y as
follows:

Y = f(X) + ε

where f(X) is the systematic part (that can be predicted using the
inputs X) and ε is a disturbance (error) term, accounting for the all the
variation sources di�erent from X.
Assumptions:

I Linearity. The regression function is linear in the inputs:

f(X) = β0 +

p∑
j=1

βjXj

I Weak exogeneity: E(ε|X) = 0, i.e. X and ε are independent in the
mean.

I Homoscedasticity: E(ε2|X) = Var(ε|X) = σ2.



The inputs set X includes quantititative variables, nonlinear
transformations and basis expansions (to be de�ned later), as well as
dummy variables coding the levels of qualitative inputs.
Under these assumptions the regression function is interpreted as the
conditional mean of Y given X

f(X) = E(Y |X).

This is the optimal predictor of Y under square loss (minimum mean
square estimator of Y ).



Estimation
Set of training data {(yi,xi), i = 1, . . . , N}, with x′i = (xi1, xi2, . . . , xip).
We assume that the training sample is a sample of size N , drawn
independently (with replacement) from the underlying population, so that
for the i-th individual we can write

yi = β0 +

p∑
j=1

βjxij + εi, i = 1, . . . , N

Writing the N equations in matrix form:

y = Xβ + ε

with E(ε|X) = 0 and Var(ε|X) = σ2I.

y =



y1
y2
...
yi
...
yN


,X =



1 x11 x12 . . . x1k . . . x1p
1 x21 x22 . . . x2k . . . x2p
...

...
... . . . . . . . . .

...
1 xi1 xi2 . . . xik . . . xip
...

...
... . . . . . . . . .

...
1 xN1 xN2 . . . xNk . . . xNp


, ε =



ε1
ε2
...
εi
...
εN


β′ = [β0, β1, . . . , βp]



We aim at estimating the unknown parameters β0, . . . , βp, and σ
2.

An important estimation method is Ordinary Least Squares (OLS).

OLS obtains an estimate of β denoted β̂, as the minimizers of the
residual sum of squares

RSS(β) = (y −Xβ)′(y −Xβ).

There is a closed form solution to the above problem.
Computing the partial derivatives of RSS(β) w.r.t. each βj and equating
to zero yields a p+ 1 linear system of equations in p+ 1 unknowns,

X′Xβ = X′y

which is solved w.r.t. β. The solution is unique provided that the X's are
not collinear.
In matrix notation the solution is

β̂ = (X′X)−1X′y



Example: p = 1 (simple linear regression)

Nβ0 + β1
∑
i xi =

∑
i yi

β0
∑
i xi + β1

∑
i x

2
i =

∑
i xiyi

We solve this system by substitution: solving wrt β0 the 1st eqn. yields

β̂0 = ȳ − β̂1x̄

Replacing into the 2nd and solving wrt β̂1 gives:

β̂1 =
1
N

∑
i xiyi − x̄ȳ

1
N

∑
x2i − x̄2

=
Cov(x, y)

Var(x)
=

∑
i(xi − x̄)(yi − ȳ)∑

i(xi − x̄)2



Predicted values and residuals

Predicted (�tted) values

ŷ = Xβ̂ = X(X′X)−1X′y = Hy

H = X(X′X)−1X′ is the �hat� matrix, projecting y orthogonally onto
the vector space generated by X.
Residuals
The OLS residuals are

e = y − ŷ = (I−H)y = My

where M = I−H.



Properties of ŷ and e

The �tted values and the LS residuals have properties that are simple to
show and are good to know.

I Orthogonality. X′e = 0. The residuals are uncorrelated with each of
the variable in X. In the model includes the intercept, the residuals
have zero mean.

I ŷ′e = 0

I RSS(β̂) = e′e =
∑
i e

2
i (henceforth RSS)

I From y = ŷ + e and the previous properties, ||y||2 = ||ŷ||2 + ||e||2

I ȳ = N−1i′y = ¯̂y (average of predicted values)



Estimation of σ2

For estimating σ2 (the variance of the error term) we could use the
variance of the residuals corrected for the number of degrees of freedom:

σ̂2 =

∑
i e

2
i

N − p− 1

N − p− 1 is known as the number of degrees of freedom.
σ̂ is the standard error of regression (SER).



Goodness of �t

De�ne
TSS =

∑
i(yi − ȳ)2 (Total sum of squares - Deviance of yi)

ESS =
∑
i(ŷi − ȳ)2 (Explained sum of squares - Deviance of ŷi)

RSS =
∑
i e

2
i (Residual sum of squares - Deviance of ei)

It is easy to prove that

TSS = ESS +RSS

A relative measure of g.o.f. is

R2 =
ESS

TSS
= 1− RSS

TSS



This measures su�ers from a serious drawback when used for model
selection: the inclusion of (possibly irrelevant) additional regressors
always produces an increase in R2.
Adjusted R2

R̄2 = 1− RSS/(N − p− 1)

TSS/(N − 1)
= 1− N − 1

N − p− 1
(1−R2)



Properties of the OLS estimators

We are going to look at the statistical properties of the OLS estimators
(and other related quantities, such as the �tted values and the residuals),
hypothesizing that we can draw repeated training samples from the same
population, keeping the X's �xed and drawing di�erent Y 's. A
distribution of outcomes will arise.
Under the stated assumptions,

E(β̂|X) = β,Var(β̂) = σ2(X′X)−1

Also, E(σ̂2) = σ2.
Moreover, the OLS estimators are Best Linear Unbiased (Gauss Markov

theorem): E(β̂j) = βj ,∀j and Var(β̂j) = MSE(β̂j) is the smallest among
the class of all linear unbiased estimators.
Example: p = 1 (simple regression model)

Var(β̂0) = σ2

[
1

N
+

x̄2∑
i(xi − x̄)2

]
, Var(β̂1) =

σ2∑
i(xi − x̄)2

,



If we further assume

εi|xi ∼ NID(0, σ2),

I yi|xi ∼ N(β0 + β1xi, σ
2)

I The OLS estimators have a normal distribution:
β̂ ∼ N(β, σ2(X′X)−1).

I β̂ is the maximum likelihood estimator of the coe�cients (we will
say more about it).

I Letting s.e.(β̂j) denote the estimated standard error of the OLS

estimator, i.e. the j-th element of V̂ar(β̂) = σ̂2(X′X)−1,

tj =
β̂j − βj
s.e.(β̂j)

∼ tN−p−1,

a Student's t r.v. with N − p− 1 d.o.f.
This result is used to test hypotheses on a single coe�cient and to
produce interval estimates.



I Suppose we wish to test for the signi�cance of subset of the
coe�cients. The relevant statistic for the null that J coe�cients are
all equal to zero is

F =
(RSS0 −RSS)/J

RSS/(N − p− 1)
∼ FJ,N−p−1

where RSS0 is the residual sum of squares of the restricted model
(i.e. it has J less explanatory variables), and FJ,N−K is Fisher's
distribution with J and N − p− 1 d.o.f.
As a special case, the test for H0 : β1 = β2 = · · · = βp = 0 (all the
regression coe�cients are zero, except for the intercept) is:

F =
ESS/p

RSS/(N − p− 1)
=

R2/p

(1−R2)/(N − p− 1)



Example: clothing data. Regression of total sales (logs) on hours worked
and store size (logs).

Call:

lm(formula = y ~ x1 + x2, data = clothing)

Residuals:

Min 1Q Median 3Q Max

-1.89464 -0.21835 0.01462 0.29581 1.63896

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.73152 0.21850 35.385 < 2e-16 ***

x1 0.88949 0.05791 15.359 < 2e-16 ***

x2 0.31488 0.04308 7.309 1.49e-12 ***

---

Residual standard error: 0.4311 on 397 degrees of freedom

Multiple R-squared: 0.6342, Adjusted R-squared: 0.6324

F-statistic: 344.2 on 2 and 397 DF, p-value: < 2.2e-16



Figure : Fitted values
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Example: house price regression in R

lm(formula = price ~ sqft + Age + Pool + Bedrooms + Pool + Fireplace +

Waterfront + DOM)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4336.851 12084.856 0.359 0.720

sqft 97.862 3.485 28.082 < 2e-16 ***

Age -694.671 141.292 -4.917 1.02e-06 ***

Pool 815.028 8926.466 0.091 0.927

Bedrooms -20923.878 4567.168 -4.581 5.16e-06 ***

Fireplace -97.130 5152.184 -0.019 0.985

Waterfront 63376.186 9389.874 6.749 2.43e-11 ***

DOM -20.988 24.841 -0.845 0.398

---

Residual standard error: 76390 on 1072 degrees of freedom

Multiple R-squared: 0.6162, Adjusted R-squared: 0.6137

F-statistic: 245.9 on 7 and 1072 DF, p-value: < 2.2e-16



Figure : Histogram of residuals
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Properties of the OLS residuals

The i-th residual ei has zero expectation (under the model's
assumptions) and

Var(ei) = σ2(1− hi),

where
hi = x′i(X

′X)−1xi

is the leverage of observation i (the i-th diagonal element of H).
hi is an important diagnostic quantity. It is a measure of remoteness of
the inputs for the i-th individual in the space of the inputs.
The barplot of hi versus i illustrates the in�uence of the i-th observation
on the �t.
It is possible to show that

∑
i hi = p+ 1 and the average is (p+ 1)/N .

The standardized residual is de�ned as

ri =
ei

σ̂
√

1− hi

and is used in regression diagnostics (normal probability plot, check for
homoscedasticity).



Figure : Anscombe Quartet: 4 datasets giving the same set �tted values



Figure : Anscombe Quartet: Leverage plot (hi vs i)



Speci�cation issues: omitted variable bias, collinearity, etc.

Consider the regression model y = Xβ + γw + ε, where w is a vector of
N measurements on an added variable W . We can show that the OLS
estimator of γ is

γ̂ =
w′My

w′Mw
, M = I−X(X′X)−1X′,

and

Var(γ̂) =
σ2

w′Mw
.

These expressions have a nice interpretation: γ̂ results from

I Regress Y on X and obtain the residuals eY |X = My;

I Regress W on X and obtain the residuals eW |X = Mw;

I Regress eY |X on eW |X to obtain the LS estimate γ̂ (partial regr.
coe�.).



Multicollinearity

I Mw are the residuals of the regression of W on X.

I w′Mw is the residual sum of squares from that regression.

I If X explains most of the variation in W , this is very small, and
Var(γ̂) will be very high.

I We can conclude that the e�ect that W exerts on Y is poorly (i.e.
very imprecisely) estimated.



Omission of relevant variables

If W is omitted from the regression, the OLS estimator β̂ is biased,

E(β̂) = β + (X′X)−1X′wγ,

but also more precise:

Var(β̂) = σ2(X′X)−1 ≤ σ2(X′MWX)−1; MW = I−w(w′w)−1w′,

where σ2(X′MWX)−1 is the variance of the estimator of β when W is
included in the model.
If W is irrelevant (true γ = 0) there is only a cost associated to including
it in the model.
In any case, if W is orthogonal to X the distribution of β̂ is not a�ected
by W .



Prediction of a new sample observation

We are interested in predicting Y for a new unit with values of X in the
vector xo = (1, xo1, . . . , xop)

′. The optimal predictor under square loss is

ŷo = f̂(xo) = β̂0 + β̂1xo1 + · · ·+ β̂pxop = x′oβ̂

Under the stated assumptions, the predictor is unbiased, i.e. the
prediction error has zero mean, E(Yo − ŷo) = 0, and

Var(Yo − ŷo) = σ2(1 + x′o(X
′X)−1xo)

Note: the stated assumptions concern the selection of the set of
predictors in X and the properties of ε.



Predictive accuracy depends on

1. Ability to select all the relevant variable. Failure to do so will result
in an in�ated σ2 and E(ε|X) 6= 0, so that β̂ is no longer optimal.

2. How removed is the unit pro�le xo from the rest: x′o(X
′X)−1xo

measures the (Mahalanobis) distance of the values of the
X1, . . . , Xp for the o-th unit in the space of the X's.



If the true model is

y = Xβ + γw + ε,E(ε|X,w) = 0,Var(ε|X,w) = σ2
ε I,

the above predictor is biased and its mean square error is

E[(Y0 − f̂(xo))
2|X,w,xo, wo] = σ2

ε (1 + x′o(X
′X)−1xo) + Bias2,

with

Bias = (β − E(β̂))′xo + γwo = (wo −w′X(X′X)−1xo)γ

The term in parenthesis is the error of prediction of wo using the
information in xo.


	 Specification 
	Estimation
	Predicted values and residuals
	Properties of  and e
	Estimation of 2

	Goodness of fit
	Properties of the OLS estimators
	Properties of the OLS residuals
	Specification issues: omitted variable bias, collinearity, and the like …
	Prediction of a new sample observation

