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Predictive Ability of a Model: De�nition and Estimation

I We aim at achieving a balance between parsimony (model
complexity) and goodness of �t.

I When we increase model complexity (e.g. by including further
regressors) we improve the �t within the training sample, but the
improvement is not necessarily generalisable outside the sample (for
predictive purposes).

I The least squares (LS) estimates have high variability when the
number of inputs is large. This results in inaccurate predictions.

I A parsimonious model (adhering to Occam's Razor: Entia non sunt

multiplicanda praeter necessitatem) is estimated precisely and is
easily interpretable, but is potentially biased.



Hypothesis testing is one approach to model selection. The problem is to
control the size of the test procedure when a sequence of correlated tests
is carried out.
A more fruitful approach is to estimate the predictive ability of a model
and select the one that maximises it.

Learning objectives of this unit:

I De�ne and understand the relation between model complexity and
predictive ability.

I Validation of a model in terms of predictive ability.

I De�ne operational criteria for model selection.

I Illustrate alternative model selection strategies (subset selection,
regularization).



Training sample

Assume that the true data generating process is Y = f(X) + ε.
The training sample of size N , y, is generated as above, that is

y = f + ε,Var(ε) = σ2I.

The true regression function f(X) is unknown. We estimate it as a linear
function of a set of measurable characteristics in X.
From the training sample we estimate f as

f̂ = Xβ̂, β̂ = (X′X)−1X′y

The �tted values are ŷ = f̂ = Hy, where H = X(X′X)−1X′ and the
residuals are e = y − ŷ = My, M = I−H.



The estimation of the regression function f using f̂ faces a fundamental
bias-variance trade-o�.

I The statistical accuracy of f̂i as an estimator of fi, for i = 1, . . . , N,
is measured by MSE(f̂i) = E[(f̂i − fi)2].

I The MSE has two components: MSE(f̂i) = Bias2(f̂i) + Var(f̂i)

I We can reduce the bias by increasing the complexity of the model,
which in turn determines an increase of the variance.

I It can be shown that Var(fi) = σ2hi (it is more di�cult to predict
accurately observations that are remote in the input space).

I The bias term depends on f(X) being nonlinear and on the
omission of relevant inputs.

I We denote the bias bi = E(f̂i)− fi.



Figure : The true regression function is f(x) = 4 + 1.5x+ 3.2x2 − 4x3. The
�tted model contains the intercept and x (misspeci�cation). Plot of Bias(f̂i)
and Var(f̂i) = σ2hi
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Figure : The true regression function is f(x) = 4 + 1.5x+ 3.2x2 − 4x3. The
�tted model contains the intercept, x, x2, and x3 (Correctly speci�ed model).
Plot of Bias(f̂i) and Var(f̂i) = σ2hi
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Training sample and training error

The LS residuals e are used to assess the goodness of the training sample
�t. Recall their de�nition:

e = y − ŷ = y −Hy = (I−H)y = My

We de�ne the training error

err =
1

N
e′e =

1

N

∑
i

e2i =
1

N
(y −Xβ̂)′(y −Xβ̂) =

RSS

N

The model that maximises the �t for the training sample is the one for
which the training error is a minimum. However, what is best for
in-sample �t is not best for out-of-sample prediction (it does not
generalize to a di�erent test sample), as we shall see shortly.



The expected training error

E(err|X) = E
(

1
N

∑
i e

2
i

)
= 1

N

∑
i E(e2i )

= 1
N

∑
i(b

2
i + Var(ei))

= 1
N

∑
i b

2
i + σ2 − σ2 p+1

N

is a downward biased (i.e. an optimistic) estimate of the expected test
error. It appears as if only accuracy gains accrue from increasing the
complexity of the model.



Test sample and test error

Consider drawing, for every training sample (y,X), a test sample y∗ of
size N from the same population, independently of y and matching the
same X's (again this is quite unrealistic, but it simpli�es the analysis
considerably), so that the systematic part is f , and y∗ = f + ε∗.

Using X we aim at predicting f and y∗ for the new units. The optimal
predictor based on the linear model is ŷ∗ = Xβ̂ (β̂ = (X′X)−1Xy has
already been estimated from the training sample, whereas y∗ is not used
for �tting).
The test sample prediction error is

e∗ = y∗ − ŷ∗



The test error (average prediction error over the test sample)

Errin =
1

N
e∗

′
e∗ =

1

N

∑
i

e2∗i ,

has expected value

E(Errin|X) = 1
N

∑
i b

2
i + σ2 + σ2 p+1

N = E(err|X) + 2p+1
N σ2

In fact, there are two independent sources of error: the error that accrues
from estimating the true f(X) using the training sample, and the
intrinsic variation induced by ε∗.
We wish to select the model which yields the minimum expected test
error E(Errin|X). The main issue deals with the estimation of
E(Errin|X). We wish to use the training sample for this purpose.



Figure : The true regression function is f(x) = 4 + 1.5x+ 3.2x2 − 4x3. The
�tted model contains the intercept and x (misspeci�cation). Mean and variance
of the training sample residuals ei and of the test sample prediction errors e∗i .
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I We have shown that the expected training error

E(err|X) = E(Errin|X)− 2σ2 p+1
N

is a downward biased (i.e. an optimistic) estimate of the expected
test error.

I We de�ne the �Optimism" as: op = Errin − err
I The expected optimism is E(op) = 2p+1

N σ2.

I Notice that p+1
N = 1

N trace(H).

I The trace is the sum of the values on the diagonal of a matrix.

I Number of degrees of freedom used for �tting (model complexity):
trace(H).



I It also can be shown that

E(op) =
2

N
trace (Cov(y, ŷ|X))

In fact, Cov(y, ŷ|X) = σ2H
Interesting interpretation: Cov(y, ŷ|X) measures over�tting.
The larger the covariance between the �tted and the observed
values, the more the model is likely to over�t.

I Notice that Errin measures the bias-variance trade-o�: increasing
the complexity reduces the bias component, but it in�ates the
variance via the term depending on p.



Criteria for Model Selection
A model selection procedure should focus on the expected prediction
error.
In practice we have to estimate σ2. We can use
σ̃2 = RSSpmax

/(N − pmax − 1) where pmax is the largest p considered
Popular criteria are:

I Mallows' Cp = err + 2p+1
N σ̃2 = RSS

N + 2p+1
N σ̃2

(this is obtained from E(Errin|X) by replacing σ̃2 for σ2).
I Akaike information criterion: same as Mallow's Cp statistic,

AIC = ln σ̂2 + 2
p+ 1

N

(Taking logs of Cp and by 1st order Taylor approximation).
I Bayesian information criterion:

BIC = ln σ̂2 +
p+ 1

N
lnN

The factor 2 is replaced by lnN , so that for N > 8, BIC penalises
complex models more heavily.

I Cross validation

These criteria penalize model complexity.



Cross-validation

Method that estimates the average generalization prediction error.
Useful when we are unable to evaluate the expected optimism.
Let us consider leave-one-out CV.
The CV criterion is

CV =

N∑
i=1

(
yi − ŷ(i)

)2
where ŷ(i) is the prediction of yi obtained using all the remaining
observations. Indeed, we saw that the problem with RSS is that the same
y is used for �tting and assessing the gof.



In a linear regression framework,

CV =
∑
i

(
yi − ŷ(i)

)2
=
∑
i

e2i
(1− hi)2

Recall that
1

N
≤ hi ≤ 1,

1

N

∑
i

hi =
p+ 1

N

Replacing hi by their average, we get the generalized CV criterion:

GCV =
RSS

(1−N−1trace(H))
2

Considering the �rst order Taylor approximation,

GCV ≈ RSS
(

1 + 2
p+ 1

N

)
and thus GCV/N is approximately equal to Cp.



In a more general setting CV works as follows:

I The sample is divided into K segments of equal size

I For k = 1, . . . ,K, we �t the model using the other K − 1 segments,
construct the predictor ŷ(k), and calculate the prediction error

e(k) = yk − ŷ(k).

I The CV score is computed as

CV =
1

N

∑
k

e′(k)e(k)



Model selection

Model selection refers to choice of y (transformation of the response
variable), X (selection of the inputs and tranformation of the inputs),

choice of an estimation method and of a prediction rule f̂(X).

I Subset selection methods deal with the choice of the X's.

I Shrinkage methods deal with the choice of the prediction rule.

I Methods using derived input directions deal with deriving linear or
nonlinear combinations of the inputs that summarise their
information.



I. Subset selection

In principle we could �t all the possible models and select the one that
has minimum Cp or AIC.
However, if there are p regressors, there are 2p competitor models (all of
them including the intercept). If p = 10, 2p = 1024. With 50 explanatory
variables, there are 1125899907 million models.
We focus on a situation in which the investigator has available a number
of potential inputs that is too large, either because p ≥ N or 2p is
unfeasible.



I1. Best subset selection

I For each k ∈ {0, 1, . . . , p}, BSS selects the subset of size k among
the possible candidates that minimise the RSS, exploring all the
possibilities.

I Select k that minimises the expected prediction error (Cp, AIC, etc)



I2. Stepwise selection

1. Forward stepwise Selection

1.1 Start with a model containing only the intercept
1.2 Add the input which improves the �t (max t-statistic, or F-stat from

addition, or R2).
This is also the variable with largest squared correlation with the
residuals of the previous step regression.

1.3 select the model with minimum AIC or Cp

2. Backward stepwise selection.

2.1 Start with the full model (requires p < N).
2.2 Drop the variable with smallest t-statistic.
2.3 Select model with smallest Cp, AIC, etc.

3. An hybrid strategy can be implemented (add or delete according to
AIC - step function in R).



II. Shrinkage Methods

I We do not select a subset of the inputs.

I These methods yield an estimate of f(X) depending on a
regularization parameter which regulates the amount of shrinkage of
the regression coe�cients to zero.

I These methods trade-o� some increased bias for a reduction in the
variance.



II.1. Ridge Regression

The ridge regression estimator is the minimizer of the penalised LS
criterion

(y −Xβ)′(y −Xβ) + λ

p∑
j=1

β2
j

λ ≥ 0 is a penalty parameter which regulates the tradeo�.
λ = 0 yields the usual LS criterion, as a particular case.
The second addend penalises the departure from zero of the regression
parameter and shrinks them toward zero.
Now, zero is a sensible target if the the variables have the same scale.
Thus we assume that both the response and the inputs are standardized
(the regression model does not include the intercept and X′X is N times
the correlation matrix of the inputs).



Rede�ning β = (β1, . . . , βp)
′,

RSSλ(β) = (y −Xβ)′(y −Xβ) + λβ′β,

the minimiser of RSSλ(β) wrt β is

β̂r = (X′X + λI)−1X′y

Assume that f = Xβ (the model is correctly speci�ed: the systematic
part is linear in the available X's).

I β̂r is biased: E(βr) = [I + λ(X′X)]−1β

I The variance is smaller than that of the LS estimator



Choice of λ

λ regulates model complexity. λ = 0 corresponds to the greatest
complexity (bias is a minimum, but variance is high). As λ increases we
increase the bias at the advantage of precision.

We choose λ so as to minimise the (estimated) expected test error:

RSS

N
+ 2σ2 trace(Hλ)

N
.

The �tted values are

ŷr = Xβ̂r = X(X′X + λI)−1X′y = Hλy.



Denoting by d2i the eigenvalues of X′X, we de�ne the e�ective degrees
of freedom as

df(λ) = trace(Hλ) =

p∑
j=1

d2j
d2j + λ

The eigenvalues of X′X are positive p scalars that are relevant for
characterizing a matrix. Usually, they are ordered s.t.
d21 ≥ d22 ≥ · · · ≥ d2p.
They have several important properties.

I The number of non zero eigenvalues is equal to the rank.

I The trace of a matrix is equal to the sum of the eigenvalues:
trace(X′X) =

∑
j d

2
j .

I For each eigenvalue, there exists a vector vj , called eigenvector, s.t.
(X′X)vj = d2jvj .

I They are orthogonal and with unit norm: v′jvj = 1,v′jvh = 0, h 6= j.

I If we collect the eigenvectors vj in the matrix V = [v1, . . . ,vp],
V′V = I and de�ne D = diag(d21, d

2
2, . . . , d

2
p), then we can

decompose X′X = VDV′ (spectral decomposition).



Figure : Housing dataset: p = 20. Coe�cient pro�les as a function of λ.
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Figure : Housing dataset: p = 20. Degrees of freedom df(λ) = trace(Hλ) as a
function of λ.

0 500 1000 1500

5
10

15
20

lambda

df



II.2 Lasso

The lasso (least absolute shrinkage and selection operator) estimator is
the minimizer of the penalised LS criterion

(y −Xβ)′(y −Xβ) + λ

p∑
j=1

|βj |,

where λ is a penalty parameter, or, equivalently, it is obtained as the
solution to the constrained minimization problem:

argminβ {(y −Xβ)′(y −Xβ)} , s.t.
p∑
j=1

|βj | < t,

where t is a tuning parameter.



I No closed form solution for β̂l (solve a quadratic programming
problem).

I Lasso performs variable selection and shrinkage. Coe�cients are
forced to zero as t decreases (e�ectively a subset selection).

I We assume that both the response and the inputs are standardized
(the regression model does not include the intercept).



The single predictor case: soft-thresholding

Let us consider a training sample {xi, yi} on two standardized variables
(x̄ = ȳ = 0 and

∑
x2i /N =

∑
i y

2
i /N = 1).

We aim at estimating the model yi = βxi + εi, subject to the constraint
|β| < t. This is equivalent to

min
β

{
N∑
i=1

(yi − βxi)2 + λ|β|

}
.

If β̂ =
∑
i xiyi/N denotes the least square estimate (i.e. the value that

is obtained if λ = 0), then the lasso estimate is

β̂L =


β̂ − λ, if β̂ > λ

0, if − λ ≤ β̂ ≤ λ
β̂ + λ, if β̂ < −λ

which can compactly be written β̂L = sign(β̂) max{|β̂| − λ, 0}.



Figure : Soft-Thresholding operator for λ = 0.5



In the multiple predictor case, the lasso solution can be computed using
the Cyclic Coordinate Descent algorithm.
This repeatedly cycles through the predictors in some �xed (but
arbitrary) order (say j = 1, 2, . . . , p). At the j-th step, the coe�cient βj
is updated by minimising with respect to βj the objective function

N∑
i=1

(yi −
∑
k 6=j

βkxik − βjxij)2 + λ
∑
k 6=j

|βk|+ λ|βj |

 ,

holding �xed all other coe�cients at their current values.
Letting δ̂j = N−1

∑
i xij(yi −

∑
k 6=j β̂kLxik), the generic coe�cient is

updated as β̂j,L = sign(δ̂j) max{|δ̂j | − λ, 0}.



II.3 Incremental Forward-Stagewise Regression

This stands half way from subset selection and shrinkage.

1. All the variables are standardized.

2. Set the residuals r = y and β̂1 = . . . = β̂p = 0

3. Find the input xj for which x′jr is maximum (max correlation)

4. Update the j-th regression coe�cient
β̂j ← β̂j + δj , δj = ε sign(x′jr). Update the residuals: r← r− δjxj .

5. Repeat until max(x′jr) = 0

The last step provides the OLS estimate of β. If δj = x′jr we get the
Forward-Stagewise Regression (FSR). FSR converges to the LS solution
after a number of steps larger than p.



II.4. Least Angle Regression (LAR)

Special case of Stagewise. Rather than using a predictor all at once, it
gradually blends predictors.

1. All the variables are standardized.

2. Set the residuals r = y and β̂1 = . . . = β̂p = 0

3. Find the input xj for which x′jr is maximum (max correlation)

4. Move β̂j from zero towards x′jr, until another variable xk has the
same correlation with the residuals as does xj . Update r.

5. Move β̂j and β̂k in the direction de�ned by the LS coe�cients
obtained by regressing r on [xj ,xk], until some other variable xl has
as much correlation with the current residual.

6. Repeat until all p predictors have been entered. The LS solution is
obtained after min(N − 1, p) steps.

Interestingly, a modi�ed LAR gives the entire path of lasso solutions: if a
non-zero coe�cient hits zero, the corresponding predictor is removed
from the active set of predictors and the joint direction of the remaining
coe�cients is recomputed.



III. Methods Using Derived Input Directions

Principal components Regression

Suppose that X denotes a matrix of p standardized variables.
Principal components regression is based on the regression of y on new
variables, called principal components, obtained from the linear
combination of the original ones:

Z = [z1, z2, . . . , zp] = XA, zk = Xak

The loadings matrix A is obtained from the spectral decomposition of
the matrix S = N−1X′X (correlation matrix), S = AΛA′, where A is
the eigenvector matrix, A′A = I and Λ = diag(λ1, . . . , λp) is the
diagonal matrix collecting the eigenvalues of the covariance matrix
λ1 ≥ λ2 ≥ · · · ≥ λp.



I The p.c.'s are orthogonal (uncorrelated) and have variance equal to
λk:

1
NZ′Z = Λ.

I The �rst component is designed to capture as much of the
variability in the data as possible, and the succeeding components in
turn extract as much of residual variability as possible.

I If we consider only the �rst M ≤ p variables, then PCR is similar to
ridge regression.



Partial Least Squares
1. All the variables are standardized. Set x

(0)
k = xk, the k-th input,

and ŷ(0) = 0.
2. For k = 1, 2, . . . , p, and m = 1, 2, . . .,

2.1 Compute ϕ̂mk = x
(m−1)′

k y and form the derived input variable

zm =

p∑
k=1

ϕ̂mkx
(m−1)
k

2.2 Regress y on zm to obtain:

θ̂m =
z′my

z′mzm

2.3 Update the �tted values

ŷ(m) = ŷ(m−1) + θ̂mzm

2.4 Obtain a new set of x
(m)
k by orthogonalizing each of the predictors

x
(m−1)
k with respect to zm:

x
(m)
k = [I− zm(z′mzm)−1z′m]x

(m−1)
k

3. Output the sequence of �tted vectors ŷ(m). Since zm is linear in the
inputs, we can express ŷ(m) = Xβpls(m). The coe�cients βpls(m)
can be recovered from the sequence of PLS transformations.



Example: eigenvalues and eigenvectors of a correlation matrix

X = scale(data.frame(sqft,sqft^2,Age,Age^2,sqft*Age,Baths,Bedrooms));

S = cor(X) # correlation matrix

sqft sqft.2 Age Age.2 sqft...Age Baths Bedrooms

sqft 1.00 0.952 -0.138 -0.100 0.332 0.716 0.68

sqft.2 0.95 1.000 -0.091 -0.068 0.338 0.668 0.60

Age -0.14 -0.091 1.000 0.927 0.813 -0.293 -0.17

Age.2 -0.10 -0.068 0.927 1.000 0.755 -0.228 -0.12

sqft...Age 0.33 0.338 0.813 0.755 1.000 0.071 0.16

Baths 0.72 0.668 -0.293 -0.228 0.071 1.000 0.58

Bedrooms 0.68 0.603 -0.168 -0.120 0.159 0.579 1.00



eigen(S)

$values

[1] 3.258 2.687 0.459 0.364 0.145 0.055 0.031

$vectors

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] -0.52 -0.122 0.213 -0.268 -0.0858 0.377 0.6670

[2,] -0.50 -0.140 0.362 -0.346 -0.2912 -0.404 -0.4814

[3,] 0.18 -0.566 -0.042 0.069 -0.0054 -0.660 0.4521

[4,] 0.16 -0.556 -0.100 0.197 -0.6349 0.422 -0.1886

[5,] -0.08 -0.577 0.086 -0.071 0.7076 0.261 -0.2812

[6,] -0.47 0.025 0.142 0.866 0.0617 -0.075 -0.0093

[7,] -0.44 -0.050 -0.886 -0.099 0.0108 -0.077 -0.0650
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