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Principal Components Analysis

Objective: given a set of p measurements on N individuals, we aim at
determining r ≤ p orthogonal (uncorrelated) variables, called principal
components, de�ned as linear combinations of the original ones.
The PCs are uncorrelated and have decreasing variance.

I Synthesis: information dimensionality reduction.

I Interpretation: express the original data in terms of a reduced
number of underlying variables (factors).

I Score the individual pro�les, with a summary score.

I Obtain multivariate displays (scatterplot) of the units in two or three
dimensions.

The �rst component is designed to capture as much of the variability in
the data as possible, and the succeeding components in turn extract as
much of residual variability as possible.



Let xi be a vector containing p measurements for unit i, i = 1, . . . , N .
We assume that the measurements are centred. The mean vector and the
covariance matrix are

x̄ =
1

N

N∑
i=1

xi = 0, S =
1

N

n∑
i=1

xix
′
i.

Given a vector a, ||a|| = 1, we denote by x∗i the orthogonal projection of
xi along a, obtained by a contraction or an expansion of a,

x∗i = zia.

By the parallelogram rule we can �nd a vector ri, orthogonal to x∗i
(r′ix

∗
i = 0) such that:

xi = x∗i + ri, (1)

which implies (Pythagora's thm)

||xi||2 = ||x∗i ||2 + ||ri||2 = zi
2 + ||ri||2.
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The scalar zi is the coordinate of unit i in the subspace generated by a.
It is obtained by the scalar product:

zi =
x′ia

||a||2
= x′ia, i = 1, . . . , N.

The new variable z is centred around zero:

z̄ =
1

N

∑
zi =

(
1

N

∑
x′i

)
a = 0

and has variance

1

N

N∑
i=1

zi
2 =

1

N

N∑
i=1

a′xix
′
ia = a′Sa.



We now aim at choosing a (the subspace of dimension 1) such that the
information loss from considering the projection x∗i (and thus zi), en lieu
of the original xi, is a minimum:

min
{∑n

i=1 ||ri||
2
}

= min
{∑n

i=1 ||xi||2 −
∑n

i=1 ||x
∗
i ||2
}

≡ max
{∑N

i=1 zi
2
}
= max {a′Sa} .

Solving the constrained optimization problem

max{a′Sa} s.v. a′a = 1, (2)

amounts to maximising the Lagrangian

φ(a, λ) = a′Sa− λ(a′a− 1).

Di�erentiating w.r.t a leads to the system Sa = λa, with a′a = 1.
The solution is to choose a as the eigenvector of the covariance matrix S
corresponding to the largest eigenvalue, λ1. Denote this by a1,a

′
1a1 = 1.



The vector z1 = Xa1 is know as the �rst principal component. It has
zero mean and variance λ1.
We can imagine extracting a second component, de�ned by the linear
combination with weights (aka loadings) a2, z2 = Xa2, orthogonal to
(uncorrelated with ) the �rst, with maximal variance. The solution is
provided by the eigenvector corresponding to the second eigenvalue, λ2.
The latter is also the variance of the second principal component.
The remaining p.c.'s are determined sequentially according to the same
logic. Letting Z = [z1, z2, · · · , zp], and S = AΛA′, where
Λ = diag(λ1, λ2, . . . , λp), PCA yields p orthogonal variables from p linear
combinations

Z = XA

The covariance matrix of the new variables is

1

N
Z′Z = Λ.



Geometrically, we aim at representing the matrix X in an orthogonal
subspace (an hyperplane) with r ≤ p dimensions. The coordinates of the
points along the projection subspace are given by the N × r matrix Z:
Z = XAr, and are obtained as linear combinations of the original
measurements (zk = Xak, k = 1, 2, . . . , r).
The coe�cients of the linear combinations are contained in the p× r
matrix Ar,

Ar = [a1 a2 · · · ar], A′rAr = Ir

and are called loadings, as they provide the weight assigned to the
original variables used for constructing the PCs.



Standardisation of the variables and Mahalanobis distance

When the variables are standardized,

X→ U, xik −→ uik =
xik − x̄k

sk

PCA is obtained from the spectral decomposition of the correlation
matrix R = 1

N U′U.
An important result is the following: the Mahalanobis distance is
equivalent to the Euclidean distance computed on the standardised PCs.

Mdij =

√√√√ p∑
k=1

(zik − zjk)2

λk



Example: Hatco dataset

The dataset consists of N = 100 observations on p = 7 variables relating
to the the perception of HATCO on seven attributes identi�ed as the
most in�uential in the choice of suppliers.
A survey of purchasing managers of �rms buying from HATCO, a
�ctional industrial supplier, was conducted.
Each of these variables was measured on a graphic rating scale, ranging
from zero to ten.

1. X1 Delivery speed

2. X2 Price level

3. X3 Price �exibility

4. X4 Manufacturer's image

5. X5 Service

6. X6 Salesforce's image

7. X7 Product quality



Correlation matrix

> R = cor(X)

X1 X2 X3 X4 X5 X6 X7

X1 1.00 0.93 0.88 0.57 0.71 0.67 0.93

X2 0.93 1.00 0.84 0.54 0.75 0.47 0.94

X3 0.88 0.84 1.00 0.70 0.64 0.64 0.85

X4 0.57 0.54 0.70 1.00 0.59 0.15 0.41

X5 0.71 0.75 0.64 0.59 1.00 0.39 0.57

X6 0.67 0.47 0.64 0.15 0.39 1.00 0.57

X7 0.93 0.94 0.85 0.41 0.57 0.57 1.00



Eigenvalues and eigenvectors

> eigen(R, symmetric=TRUE)

$values

[1] 5.035 0.934 0.498 0.421 0.081 0.020 0.011

$vectors

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] -0.43 0.1118 0.0755 -0.042 0.63249 0.34 0.528

[2,] -0.42 -0.0293 0.4425 0.011 -0.00012 -0.79 0.099

[3,] -0.42 -0.0092 -0.2042 -0.325 -0.70103 0.16 0.399

[4,] -0.29 -0.6684 -0.4515 -0.303 0.26101 -0.11 -0.300

[5,] -0.35 -0.2949 -0.0059 0.847 -0.17426 0.20 -0.072

[6,] -0.29 0.6424 -0.6038 0.154 0.08696 -0.24 -0.228

[7,] -0.41 0.2004 0.4340 -0.246 -0.04958 0.37 -0.636



The best rank 1 approximation to R is provided by
R1 = λ1a1a

′
1 =

print(R1, digits = 2)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.95 0.92 0.92 0.64 0.76 0.63 0.89

[2,] 0.92 0.89 0.89 0.62 0.74 0.61 0.86

[3,] 0.92 0.89 0.89 0.62 0.74 0.61 0.86

[4,] 0.64 0.62 0.62 0.44 0.52 0.43 0.60

[5,] 0.76 0.74 0.74 0.52 0.61 0.51 0.72

[6,] 0.63 0.61 0.61 0.43 0.51 0.42 0.59

[7,] 0.89 0.86 0.86 0.60 0.72 0.59 0.84



The best rank 2 approximation is R2 = λ1a1a
′
1 + λ2a2a2,

print(R2, digits = 2)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.96 0.91 0.92 0.573 0.73 0.698 0.91

[2,] 0.91 0.89 0.89 0.641 0.75 0.594 0.86

[3,] 0.92 0.89 0.89 0.630 0.74 0.607 0.86

[4,] 0.57 0.64 0.63 0.853 0.70 0.028 0.48

[5,] 0.73 0.75 0.74 0.701 0.69 0.331 0.66

[6,] 0.70 0.59 0.61 0.028 0.33 0.806 0.71

[7,] 0.91 0.86 0.86 0.479 0.66 0.713 0.87



Principal components analysis

> pca = princomp(Z)

> print(loadings(pca),digits=2)

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7

X1 -0.43 0.11 0.63 0.34 0.53

X2 -0.42 0.44 -0.79

X3 -0.42 -0.20 -0.32 -0.70 0.16 0.40

X4 -0.29 -0.67 -0.45 -0.30 0.26 -0.11 -0.30

X5 -0.35 -0.29 0.85 -0.17 0.20

X6 -0.29 0.64 -0.60 0.15 -0.24 -0.23

X7 -0.41 0.20 0.43 -0.25 0.37 -0.64



> summary(pca)

Importance of components:

Comp.1 Comp.2 Comp.3

Standard deviation 2.2212397 0.9564757 0.69854231

Proportion of Variance 0.7192283 0.1333594 0.07113139

Cumulative Proportion 0.7192283 0.8525877 0.92371910

Comp.4 Comp.5 Comp.6

Standard deviation 0.64251115 0.28181487 0.141187184

Proportion of Variance 0.06017793 0.01157720 0.002905805

Cumulative Proportion 0.98389702 0.99547423 0.998380033

Comp.7

Standard deviation 0.105418078

Proportion of Variance 0.001619967

Cumulative Proportion 1.000000000



Selection of the number of components

I Consider the share of the total variance absorbed by the �rst r
components, Qr,

Qr =

∑r
h=1 λh∑p
h=1 λh

Select r so that Qr ≥ q, where q is a large number.

I Kaiser criterion: compute the average eigenvalue

λ̄ =
1

p

p∑
h=1

λh.

Select the �rst r components for which λh > λ̄. Note: if the
variables are standardised, λ̄ = 1.

I Locate the elbow in the screeplot (plot of the λr vs r).
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Appendix I: Spectral (eigen-) decomposition

Let S be a p× p symmetric matrix, i.e. S = S′.
Consider the problem of determining a scalar λ and a vector a that
satisfy the linear equations system

Sa = λa

under the normalization constraint: a′a = 1 (a has unit norm).
The homogenous system (S− λI)a = 0 has nontrivial solutions if
|S− λI| = 0. This condition yields an homogeneous equation of order p
in λ with p solutions, denoted λh, h = 1, . . . , p, which are known as
eigenvalues. We order them in non-increasing order λ1 ≥ λ2 ≥ · · · ≥ λp
(≥ 0 if S is s.p.d.).



For each eigenvalue we can determine p corresponding eigenvectors,
ah, h = 1, . . . , p, so that Sah = λah.
A key property is that eigenvectors corresponding to distinct eigenvectors
are orthogonal: a′hak = 0 for h 6= k.
Concatenating the eigenvectors into the matrix

A = [a1, . . . ,ap]

we have A′A = I e AA′ = I, i.e. A is an orthogonal matrix
(A−1 = A′).
Letting Λ = diag(λ1, . . . , λp), we have the following decomposition
(spectral decomposition of S):

S = AΛA′ =

p∑
h=1

λhaha′h



Some uses of this decomposition:

tr(S) =

p∑
h=1

λh

Sp = AΛpA′

for p real (e.g. the square root of a matrix is AΛ1/2A′ where

Λ1/2 = diag(
√
λ1, . . . ,

√
λp).

Note: these results hold only for symmetric matrices. In general λh need
not be real and ah are not orthogonal so that the decomposition is
S = AΛA−1.



Example

S =

[
1.0 0.8
0.8 1.0

]
.

Eigenvalues: λ1 = 1.8 e λ2 = 0.2. The eigenvector corresponding to λ1 is

a1 =
1√
2

[
1
1

]
=

[
0.71
0.71

]
The second eigenvector, corresponding to λ2 = .2 is:

a2 =
1√
2

[
1
−1

] [
0.71
−0.71

]
The spectral decomposition of S is

S = 1.8
1

2
ii′ + 0.2

1

2

[
1
−1

]
[1 − 1];

The �rst addend is an approximation of rank 1 of S.
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