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Local polynomial regression

I Consider the regression model Y = f(X) + ε, where f(X) is an
unknown deterministic function of the input X, so that
E(Y |X) = f(X).

I A training sample of observations (yi, xi), i = 1, . . . , N , is available.
Suppose that we are interested in estimating the value of the
function at a point x0, f(x0).

I If f(X) is �smooth" (i.e. continuous and di�erentiable), it can be
locally approximated around x0 by a polynomial of degree p, using a
Taylor expansion:

f̃(x) = β0 + β1(x− x0) + · · ·+ βp(x− x0)p.

It is clear from setting x = x0, that β0 = f(x0), β1 = f ′(x0), and in
general βj = f (j)(x0)/j! (the scaled j-th derivative of the function).



I As f̃(x) is valid only as a local approximation, the p+ 1 unknown
coe�cients βk, k = 0, . . . , p, are estimated by weighted least squares
(WLS), giving more weight to the observations with values of x that
are close to x0.

I The WLS objective function to be minimized is:

N∑
i=1

K

(
xi − x0
h

)(
yi − β̂0 − β̂1(xi − x0)− . . .− β̂p(xi − x0)p

)2
.

where K
(
x−x0

h

)
is a kernel function, depending on a bandwidth

parameter, h > 0, providing a set of weights declining with the
distance of x from x0.



Denoting

X0 =



1 (x1 − x0) · · · (x1 − x0)p
1 (x2 − x0) · · · (x2 − x0)p
...

... · · ·
...

1 (xi − x0) · · · (xi − x0)p
...

... · · ·
...

1 (xN − x0) · · · (xN − x0)p


,β =


β0
β1
...
βp

 .

K0 = diag(K

(
x1 − x0

h

)
,K

(
x2 − x0

h

)
, . . . ,K

(
xN − x0

h

)
),

the WLS estimator is

β̂ = (X′0K0X0)
−1X′0K0y.

The �tted value is then ŷ0 = β̂0.



The �t is determined by 3 quantities:

I The polynomial order, p.

I The kernel function.

I The bandwidth parameter, h. The bandwidth determines the width
of the local neighbourhood.



Kernels

A kernel is a symmetric and non negative function with a maximum at
zero. There is a large literature on kernels and their properties.

I The uniform kernel is K(u) = I(|u| ≤ 1);

I The Epanechnikov kernel has certain optimality properties and is
de�ned as follows:

K(u) =

{
3
4 (1− u

2) if |u| ≤ 1
0 otherwise

I The tricube kernel (used by Loess, a k-nearest-neighbour local
polynomial method) is de�ned as follows:

K(u) =

{
(1− |u|3)3 if |u| ≤ 1
0 otherwise

I The Gaussian kernel is such that h is the standard deviation of X
and K(u) is the standard Normal density function.

I In the k-nearest-neighbour approach h is set equal to the distance
from the k-th closest xi to x0. Hence, it varies with x0.



Figure: Kernel functions.
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Bias-Variance Trade-o�

I The degree p of the polynomial and the bandwidth h are crucial
quantities.
They regulate the complexity of the �t, which increases with p and
decreases with h.

I The mean square estimation error is

MSE[f̂(x0)] = Bias2[f̂(x0)] + Var[f̂(x0)]

Both p and h a�ect the MSE.

I For a given h, by increasing p we reduce the bias (we improve the
Taylor approximation by including higher order terms), but we
increase the variance (there are more parameters to be estimated).

I For a given p, a large h will capture more observations and the �t
tends to be the same as the global polynomial �t (with p+ 1 df).
The variance is small, but the bias is high.



I Usually, f̂(x0) is biased for f(x0), unless the true regression function
is a polynomial of order p.
The bias arises from neglecting higher order terms in the Taylor
expansion.

I The bias is inversely related to p and is positively related to the
bandwidth h.

I As far as the variance is concerned, for a given p, Var[f̂(x0)]
decreases as h increases.

I The shape of the kernel has much less impact on the bias-variance
trade-o�.

I The optimal choice of (p, h) should minimise MSE[f̂(x0)], which can
be estimated using a variety of methods (see e.g. Fan and Gijbels,
1994).

I It is usually most e�ective to choose a low degree polynomial (e.g.
p = 1) and concentrate the e�orts on the selection of the bandwidth.

I The optimal h can be obtained by cross-validation.



Figure: Clothing dataset: Nearest-neighbour local-polynomial regression by
loess
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Figure: Clothing dataset: Nearest-neighbour local-polynomial regression by
loess. Generalized CV criterion
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Figure: Clothing dataset: Nearest-neighbour local-polynomial regression by
loess
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Special case: local averaging (p = 0) and kernel smoothing

The local constant �t (p = 0) is an important special case.
The local weighted average of Y ,

f̂(x0) =

∑N
i=1K

(
xi−x0

h

)
yi∑N

i=1K
(
xi−x0

h

)
is known as the Nadaraya-Watson average.
Denoting by Nk(x) the set of k points nearest to x, the
k-nearest-neighbour average is

f̂(x0) =
1

k

∑
xi∈Nk(x0)

yi.

This corresponds to the use of a uniform kernel.



Local regression in high-dimensional spaces

I The locally weighted regression methodology extends to the vector
case, x0 ∈ Rq. The kernel is a function of the Euclidean distance of
the observed xi from x0 (or other distances, like Mahalanobis').

I However, we face the curse of dimensionality: as the dimension of
the input space q increases, the number of observations N has to
increase at an exponential rate with q, in order to achieve a mean
square estimation error of comparable size.

I The estimation problems at the boundary get compounded.

I Visualising the �t is also di�cult for q > 2.

I These considerations pave the way for the class of additive models
and varying parameter models that will be considered later.



Figure: Clothing dataset: bivariate local polynomial regression of log(tsales)
on log(hoursw) and log(ssize)
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Figure: Clothing dataset: bivariate local polynomial regression of log(tsales)
on log(hoursw) and log(ssize), contour plot
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Density Estimation

Our aim is to estimate the distribution of a continuous variable Y from a
random sample {yi, i = 1, . . . , N}, without making a parametric
assumption.
A familiar estimator is the histogram:

I Divide the support into non-overlapping classes: select a starting
point, y0, and divide the range of values into contiguous
non-overlapping intervals of size l

C1h = [y0, y0+l), C2l = [y0+l, y0+2l), . . . , Cjl = [y0+(j−1)h, y0+jl), . . . .

The partition depends on l (which may also vary with the classes).



I Count the number Nj or frequency of cases that fall in each interval
Cjl, j = 1, 2, . . . , and divide by the size of the interval:

f̂j(y) =
1

lN

N∑
i=1

I(yi ∈ Cjl) =
Nj
lN

.

I Draw rectangles with basis equal to the class size and height equal
to the density of cases, which is the ratio of the frequency and the
width or size of the class.

I The area of each rectangle is equal to the frequency of cases in the
class, and the total area is either N or 1.



The histogram has several limitations as an estimator of the density:

1. It is a discontinuous function of y (jumps at the extremes of the
intervals).

2. It is constant within each class.

3. It depends on y0

Other properties:

1. It depends on the number and sizes of the classes.

2. The bias in estimating the true density (pdf) increases with l, but
the variance decreases with l.

3. It is nonnegative and the total area is 1.



The limitations can be overridden by considering, for each value y, a
symmetric interval centred at y, with size 2h, Ch(y) = [y − h, y + h) and
estimating the density by

f̂h(y) =
1

2hN

N∑
i=1

I(yi ∈ Ch(y))

(the frequency of observations that belong to the interval divided by the
size of the interval).

The value yi contributes to f̂h(yi) if yi ∈ Ch(y), which occurs if

ui =
y − yi
h

is such that |ui| < 1.
Thus, I(yi ∈ Ch(y)) = I(|ui| ≤ 1).
De�ning the uniform kernel

K(u) = I(|u| ≤ 1),

we can rewrite

f̂h(y) =
1

2hN

N∑
i=1

K

(
y − yi
h

)
,

We can replace the uniform kernel with other kernels, like the Gaussian
kernel or Epanechnikov's.



The MSE, E[f̂h(y)− f(y)]2 depends crucially on the bandwidth h with
the usual Bias-Variance trade-o� occurring: the bias is directly related to
h; the variance is inversely related.
The optimal value of h depends on the unknown true density and its
derivatives.
It can be estimated by crossvalidation.
If we assume that the underlying true density is Gaussian the optimal h is
approximated by the following plug-in or rule of thumb bandwidth:

ĥ = 1.06min

{
σ̂,

R̂

1.34

}
N−1/5,

dove σ̂ is the standard deviation of the sample yi's, and R̂ is the
interquartile range (Q3 −Q1).
[R's default uses 0.9 instead of 1.06].



Figure: Density estimation for tsales data.
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Classi�cation and Kernel Density Estimation

Suppose that the data are p-dimensional and we aim at estimating the
joint pdf of (X1, . . . , Xp) using N independently drawn samples
xi = (xi1, . . . , xip)

′.
If we assume that the rv's Xj are independent, so that

f(x1, . . . , xp) = f(x1)f(x2) · · · f(xp),

then we can estimate the joint pdf by multiplying the univariate pdf
estimates:

f̂(x) = f̂(x1)f̂(x2) · · · f̂(xp),

where each marginal density estimator takes the form:

f̂(xj) =
1

2hjN

N∑
i=1

K

(
xj − xij
hj

)



The naive Bayes classi�er uses the above estimator for the density of X
in group k, fk(x). The posterior probability is estimated as

P̂ (G = k|X = x) ∝ πkf̂k(x).
If there are only two groups, G = {0, 1}, the classi�er is

Ĝ(x) =

{
1, if f̂1(x)

f̂0(x)
> π0

π1

0, otherwise

Each marginal univariate density is estimated separately.



Classi�cation with Nearest Neighbours

The k-NN (nearest neighbour) method estimates the posterior probability
P (G = g|x) as the fraction of points in the neighbourhood belonging to
group g.
Let (xi, yi) denote our training sample, with Y being a binary variable.
The inputs are standardised.
Suppose we aim at classifying a unit with input signature x0.
We denote by Nk(x0) the neighborhood of x0, de�ned by k-closest
points xi in the training sample.



k-NN algorithm

1. Locate the k nearest neigbouring points (i.e. with smallest distance
||xi − x0||)

2. Compute the weighted average of yi for the k units.

P̂ (G = 1|x) =
∑
i∈Nk(x0)

K(ui)yi∑
i∈Nk(x0)

K(ui)
.

The weights are provided by a Kernel function K(ui), where
ui = ||xi − x0||/maxj∈Nk(x0){||xj − x0||}.
Most often the uniform kernel is used so that
P̂ (G = 1|x) = Average [yi|xi ∈ Nk(x0)] .
The classi�er is Ĝ(x) = 1 if P̂ (G = 1|x) > 0.5 and Ĝ(x) = 0 otherwise
(classify using a majority vote). If there is a tie (no majority), it is broken
at random.



Main advantage is that the decision boundary is �exible.
The crucial parameter is the 'bandwidth' k.
Also, the choice of the distance measure is often critical.
For k = 1 we locate the closest point and Ĝ(x0) = yi∈N1(x0). The bias is
low, but the variance is high.
As k increases the bias increases, but the variance reduces.
When the input space is highly multidimensional, the NN method is very
ine�cient.



Figure: k-NN decision boundary in the petal length - petal width space for
k = 1.
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Figure: k-NN decision boundary in principal components space and k = 11
(selected by crossvalidation.
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Figure: k-NN decision boundary in principal components space and k = 31 for
the German credit data.
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