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Additive Models

Let us consider the regression model with multiple inputs X

Y = f(X1, X2, . . . , Xp) + ε,

where f(X1, X2, . . . , Xp) = E(Y |X1, X2, . . . , Xp) and

E(Y |X1, X2, . . . , Xp) = α+ f1(X1) + f2(X2) + · · ·+ fp(Xp).

The functions fj(Xj) are smooth nonparametric functions, e.g. cubic
smoothing splines, of a single input.
This approach stands somewhat between linear (and additive) regression
and the non-linear non-additive regression approach, which is too general
and prone to the curse of dimensionality.



A training sample is available {(yi,xi), i = 1, . . . , N},
xi = (xi1, . . . , xip)

′.
Estimation of the intercept and the functions fj is carried out by the
following back�tting algorithm:

I Initialisation: set α̂ = 1
N

∑
i yi and f̂j ≡ 0

I Compute the partial residuals from the �t excluding the j-th
function:

ei\j = yi − α̂−
∑
k 6=j

f̂k(xik)

I Apply a smoother Sj to ei\j to obtain f̂j

I Reset f̂j equal to f̂j −
∑N
i=1 f̂j(xij)

The last step ensures that
∑N
i=1 f̂j(xij) = 0,∀j.



I The smoother Sj can be a cubic smoothing spline with smoothness
parameter λj or a local polynomial smoother with bandwidth hj .

I The selection of the parameters governing the complexity of the �t
is done by minimizing the test error (e.g. evaluated by
cross-validation).



Figure : Additive model using smoothing splines: gam(y ∼ s(x1)+s(x2),

data = clothing).
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Figure : Additive model using splines: gam(y ∼ s(x1)+s(x2)).
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Additive Logistic Regression

The generalized additive logistic regression is additive in the log-odds:

ln
P (G = 1|X)

P (G = 0|X)
= α+ f1(X1) + f2(X2) + · · ·+ fp(Xp).

where fj(Xj) is a smooth nonparametric function.
Estimation is carried out by the back�tting algorithm.



Figure : Additive logistic regression. gam(Group ∼
s(Duration)+s(CreditAmount) + s(Age)+factor(...),

family=binomial(link="logit")
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Tree-based Methods

Tree-based methods partition the input space into rectangles, using rules
to identify regions characterized by a homogeneous response to the
inputs.

The idea is to sub-divide, or partition, the space into smaller rectangular
regions and to �t a simple model, such as a constant, to the observations
falling in the region.

Basic model selection problems, like variable selection, monotonic
transformations and interactions are handled by deciding which variables
to use in the partitioning and how.



Regression Trees

Suppose we have p input variables X1, . . . , Xp and a quantitative

response variable Y .

Denote the training sample by {(yi,xi), i = 1, . . . , N}.

Let {Rm,m = 1, . . . ,M} denote a set of disjoint rectangles that
partition the input space (X1, . . . , Xp).

A regression tree is an additive model of the form

f(x) =

M∑
m=1

cmI(x ∈ Rm).

Conditional on the splits, the least squares estimate of cm is
ĉm = Average [yi|xi ∈ Rm].
The main issue is how to determine the rectangular regions
{Rm,m = 1, . . . ,M}.



A greedy top-down recursive partitioning algorithm is used. The model is
�tted sequentially by performing a binary split involving a single input
and can be represented as a tree.

I For any splitting variable j and a split point s we de�ne the
rectangles

R1 = {x : xj ≤ s}, R2 = {x : xj > s}.

We select the variable Xj and the split point s which minimise the
residual sum of squares∑

xi∈R1

(yi − c1)2 +
∑

xi∈R2

(yi − c2)2.

I Repeat the splitting process in each rectangle. Each node is split in
two groups.

The subsets created by the splits are called nodes. The subsets which are
not split are called terminal nodes. Terminal nodes are also known as
leaves of the tree. To each leave there correspond a partition.



We aim at determining the optimal size of the tree.

Suppose there are T terminal nodes and denote by Nm the number of
observations belonging to each leaf, and by

Dm(T ) =
∑

xi∈Rm

(yi − ĉm)2

the deviance of the residuals associated to the leaf.

Qm(T ) = Dm(T )/Nm is often referred to as squared-error node impurity
measure.

D(T ) =
∑T
m=1Dm(T ) is the deviance for a tree with T leaves.

Usually a large tree is grown, stopping the splitting process when a
threshold value for Dm(T ) is reached, or Nm becomes very small. Let T0
be the size of this tree.



For selecting a tree with size T ≤ T0, we minimize the cost complexity,
de�ned as

D(T ) + αT,

where the complexity parameter, α ≥ 0, regulates the trade-o� between
goodness of �t (as measured by the deviance) and the tree size.

For α = 0 the solution is the full tree T0. On the other hand, if α→∞
the �t tends to the global mean ȳ (no partition).

Estimation of α is done by (5 or 10-fold) crossvalidation. Given α̂, the
corresponding Tα is obtained by weakest link pruning, i.e. we prune the
leaves that produce the smallest increase in the deviance, when collapsed.



Figure : Regression tree, clothing dataset.
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Figure : Regression tree, clothing dataset.
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Classi�cation Trees

Let Y denote a nominal variable and let Yk denote the dummy variables
for the k-th response category.

Given a set {Rm,m = 1, . . . ,M} of disjoint rectangles that partition the
input space, we compute the mean of Yk, k = 1, . . . ,K, over the Nm
units belonging to the partition; this is an estimate of
P (G = k|x ∈ Rm) = pmk.

The units falling in this region will be classi�ed according to the usual
majority rule. Let κ be the modal class and let p̂mκ be the associated
fraction of cases.

The tree is grown using di�erent measures of the value of a split.



Let p̂mk denote the fraction of the observations in the region Rm
belonging to class k.
Three measures of node impurity are popular:

I The missclassi�cation error: 1− p̂mκ, i.e. the fraction of units
missclassi�ed in node m.

I The Gini index: 1−
∑K
k=1 p̂

2
mk.

I Cross-entropy or deviance: −
∑K
k=1 p̂mk ln p̂mk

Both Gini and cross-entropy are measures of the heterogeneity of the
probability distribution {p̂mk, k = 1, . . . ,K}.



We look for the split that yields minimum heterogeneity.

Maximum heterogeneity corresponds to the case when p̂mk = 1/K (the
posterior probability are uniformly distributed - no majority vote), and the
Gini index is equal to 1− 1/K whereas cross-entropy equals lnK.

On the contrary, heterogeneity is a minimum when p̂mκ = 1 and
p̂mk = 0,∀k 6= κ, in which case both indices are equal to 0.



Figure : Classi�cation tree, German Credit dataset.

|
StatusCAccount=cd

Duration< 22.5

CreditHistory=cde

Purpose=bcegij

CreditAmount>=1238

OtherPlans=bcTelephone=b

Telephone=b

SAccBonds=de

StatusCAccount=b Duration< 47.5

Employment=acde

Purpose=bdegj

Age>=26.5

Purpose=bg

CreditHistory=cde

PStatusSex=cd

0
551/249

0
301/55

0
250/194

0
168/82

0
162/66

0
83/19

0
79/47

0
64/25

0
62/20

1
2/5

1
15/22

0
8/2

1
7/20

1
6/16

0
5/2

1
1/14

1
82/112

0
23/10

0
18/1

1
5/9

1
59/102

1
55/77

1
48/52

0
41/32

0
33/19

0
12/1

0
21/18

0
19/11

0
16/4

1
3/7

1
2/7

1
8/13

1
7/20

1
7/25

1
4/25 ●

●

●

●

●

●
● ●

cp

X
−

va
l R

el
at

iv
e 

E
rr

or

0.
8

0.
9

1.
0

1.
1

1.
2

Inf 0.046 0.015 0.011

1 3 4 5 6 9 15

size of tree



Figure : Pruned tree, Credit dataset.
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Bagging

One serious limitation of trees is their volatility, which is related to the
hierarchical structure of the splitting process. Small changes in the
training sample produce a di�erent sequence of splits. Bagging, which
averages predictions over trees drawn from the same population, provides
a solution, reducing the variance of the predictions.

A bootstrap sample is a sample of size N drawn with replacement from
the training data (yi,xi).

Suppose B such samples are drawn independently. They can be used to
assess the uncertainty of a method or model (parameter uncertainty,
prediction uncertainty) by looking at the variability of the results.

In our case, however, interest lies in the prediction f̂(x) for a unit with
input feature x.



For each boostrap sample we estimate the model or apply the model and
compute f̂b(x), b = 1, . . . , B.

The bagging estimate of f(x) is

f̂bag(x) =
1

B

B∑
b=1

f̂b(x)

For linear methods (such as linear regression) bagging tends to the linear

�t f̂(x) as B increases. Hence, it is of little use in those frameworks.

For regression trees, the bagged estimate is the average prediction from
B trees.



For classi�cation trees, we use bagging to estimate the probability that a
unit with feature x belongs to group k, p̂k(x), as the proportion of the B
trees predicting class k.

Alternatively, we can average across the values p̂b,k(x) computed on the
bootstrap samples:

p̂bag,k(x) =
1

B

B∑
b=1

p̂b,k(x).

See HTF, section 8.7 for more information and illustrations of this idea.



Boosting

Boosting originates as a method starting with a base classi�ers and
gradually improving its performance by re�tting the data assigning higher
weight to misclassi�ed observations.

It is a learning algorithm that improves (boosts) the performance of a
weak classi�er Ĝ(x) (i.e. an unsophisticated method that would
otherwise perform similarly to a random guess, like a tree with a single
split). The classi�er is applied sequentially to a modi�ed data set which
weighs more the missclassi�ed units.

We start from the original AdaBoost algorithm.

Assume that there are two classes, labelled by Y = {−1, 1} so that the
output of the classi�er is either -1 or 1 (rather than {0, 1}).



1. Initialization: set the observation weights wi = 1
N , i = 1, . . . , N.

2. For m = 1, . . . ,M :

2.1 Fit the classi�er Ĝm(x) to the weighted training data.
2.2 Compute the weighted missclassi�cation rate

errm =

∑
i wiI(yi 6= Ĝm(xi))∑

i wi

2.3 Compute the weight

αm = ln
1− errm
errm

2.4 Update the observation weights for the missclassi�ed units:

wi = wi exp
[
αmI(yi 6= Ĝm(xi))

]
3. Combine the predictions from the M classi�ers through a weighed

majority vote:

Ĝ(x) = sign

(∑
m

αmĜm(x)

)



Notice that as errm decreases αm increases and the wi become more
concentrated.

Boosting can be thought of �tting an additive model using a greedy
forward stagewise approach.

At each iteration a new classi�er Ĝm(x) enters additively, so that a
particular loss function, the exponential loss function, is minimised. See
HTF, ch. 10 for more details.

While bagging is a variance reduction technique, boosting can be thought
of as a bias reduction technique.

The algorithm has been generalized by Friedman, who proposes a class of
gradient boosting algorithms.



Gradient Boosting (GB)

More generally, boosting can be viewed as an additive (linear)
combination of simple predictors (e.g. decision trees, or linear regression);
an �ensemble" method for obtaining predictors with an additive structure.

Typically, a base procedure (e.g. a tree) is �t to the residuals of the
previous prediction. The residual is de�ned in terms of the derivative of a
loss function.

Let L(y, f(x)) be a loss function, e.g. if the output is quantitative,
L(y, f(x)) = (y − f(x))2.

Given a training sample, our aim is to obtain f̂(x) as the minimiser of
the empirical risk function

C(f) =

N∑
i=1

L(yi, f(xi)).

GB provides a solution to this optimisation problem.



Gradient Boosting Algorithm

1. Initialise f̂0(x) as the minimiser of C(f) when f is constant (e.g.

set f̂0(x) = ȳ).

2. For m = 1, . . . ,M , compute the negative gradient

gi = −∂L(yi, f(xi))

∂f(xi)

∣∣∣f(xi)=f̂m−1(xi)
, i = 1, . . . , N.

3. Predict the negative gradient gi from xi, using the base procedure.
Let ĝm(xi) denote the �tted value. This is an approximation to
E(gi|xi).

4. Update
f̂m(x) = f̂m−1(x) + νĝm(xi),

where 0 < ν ≤ 1 is a step-length factor, e.g. ν = 0.1, a small
number.

5. Iterate steps 2-4 until M is reached.



Notes:

I Shrinkage: reduce the complexity by regularizing the �t, using only a
fraction ν (known as learning rate) of each new base learner (e.g. a
tree) that is successively added. The fraction ν is used to shrink the
contribution of each base learner (tree) as it is added to the model.

I The value of ν can also be determined by minimising∑N
i=1 L(yi, f̂m−1(x) + νĝm(xi)) with respect to ν.

I In Stochastic Gradient Boosting at each iteration m = 1, . . . ,M , a
subsample of the training data of size η, 0 < η < 1 is drawn at
random (without replacement) from the training data set.
The subsample is then used, instead of the full training data set, to
�t the base learner (to grow the tree) for the current iteration.

I The optimal number of iterations of the steps 2-4 is determined by
cross validation or by some information criterion.



GB in regression problems (quantitative output)

I When the loss function is (y − f(x))2, gi = −2(yi − f̂m−1(xi)), and
step 3 amounts to residual �tting.

I A base procedure for the regression case can be selecting the best
variable in a simple linear regression model.

I The base learner amounts to �tting in every iteration the best
predictor variable reducing the residual sum of squares most.

I The base learner is characterised by large bias, but small variance.

I Then, at every iteration one predictor variable is selected, and
ĝm(xi) = β̂(m)xi,(m), where xi,(m) is the value for the variable

selected at step m and β̂(m) is the coe�cient estimated from the
regression of the residuals on that variable.

I As m goes to in�nity f̂(x) converges to the full regression model �t.



I Regression trees are also a very popular choice for the base learner.

I When applied to regression trees, at each iteration m, a regression
tree partitions the input space into L-disjoint regions
{Rlm, l = 1, . . . , L} and predicts a separate constant value in each
one.

I The parameters regulating the �t are the size of the trees Tm (tree
complexity) and the number M of boosting iterations.

I Usually Tm is �xed for all m.

I Too large an M exposes to the dangers of over�tting. M is usually
estimated by plotting the test error versus the boosting iterations.

I Typically grow small trees: the base procedure has to have small
variance at the price of large estimation bias.



GB for classi�cation (qualitative outputs)
In classi�cation, f(x) is the log-odds-ratio

f(x) = ln
p(x)

1− p(x)

and a candidate loss function (it is di�erentiable!) is the deviance:

L(y, f(x)) = −2[y ln p(x) + (1− y) ln(1− p(x))].

The 0-1 loss cannot be used as it is not di�erentiable.
If we transform the output variable, y → ỹ = 2y − 1, so that it takes the
values {−1,+1}, and set

f(x) =
1

2
ln

p(x)

1− p(x)
,

(one-half the log-odds ratio), then

L(ỹ, f(x)) = ln[1 + exp(−2ỹf(x))].

Under this setting, GB is known as LogitBoost or BinomialBoosting.



Software

I In R (Rstudio)
I The gbm package implements Friedman's tree-based GB for

regression and classi�cation.
I The package GAM-Boost implements boosting for spline-based

additive models.
I The package mboost implements L2-Boosting and BinomialBoosting.

I In SAS Enterprise Miner, the Gradient Boosting Node implements
Friedman's tree-based GB for regression and classi�cation.

The various implementation di�er wrt the base procedure (tree,
regression, logistic regression, splines) and the random resampling of the
training set at each iteration.



Figure : German credit data: gradient boosting - plot of performance versus
number of trees for the train and the test sample.
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Random forests

In some situations both N (number of observations) and p (number of
inputs) are very large.

Several decision trees are grown by selecting a random subsample of both
the units (with replacement) and of the inputs.

Each decision tree is built to its maximum size, (no pruning).

The trees are combined into a single classi�er by averaging the individual
classi�ers.



Figure : ROC curves for gradient boosting tree and Random forests (blue).
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Variable importance

There are two essential ways of measuring the relative importance of
each input variable in predicting the response.

The split-based variable importance measure is based on the number of
times a variable is selected for splitting, weighted by the squared
improvement in the impurity measure as a result of each split, and
averaged over all trees. This is subsequently scaled so that the sum adds
to 100, with higher numbers indicating stronger in�uence on the
response.

Partial Dependence plots are obtained by integrating out the e�ects of
other predictors to show the partial dependence of the �t on the
predictors of interest.



Figure : Random forests. Partial dependence plots (logits) for Duration,
CreditAmount and Age.
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The receiver operating characteristic (ROC) curve

Consider the confusion matrix:

Ĝ(X) (prediction outcome)
G (actual value) 0 1

0 True negative (TN) False positive (FP)
1 False negative (FN) True positive (TP)

The true positive rate (TPR) is de�ned as

P (Ĝ(X) = 1|G = 1) = TPR =
TP

TP + FN

this is also referred to as the sensitivity rate.
The false positive rate (FPR) is de�ned as

P (Ĝ(X) = 1|G = 0) = FPR =
FP

TN + FP

The speci�city rate is P (Ĝ(X) = 0|G = 0) = TN
TN+FP

;



I The ROC curve displays the true positive rate (TPR, aka
sensitivity) on the vertical axis and false positive rate (FPR,
1-speci�city) on the horizontal axis.

I The point (0,1) is the perfect classi�cation point. The 45 degrees
line is the line of no discrimination (random guess). Below the line
the classi�er performs worse than a pure random guess.

I ROC is used to illustrate the trade-o� between TPR and FPR.

I In logistic regression p̂i, yi are sorted according to the values of p̂i
from the largest to the smallest. For each threshold p from 1 to 0
we compute the TPR and FPR when the classi�er allocates to
Group 1 if p̂i > p.

I The area under the curve (AUC) is often used as a measure of
accuracy.
AUC is 0.5 for a random classi�er. Its maximum is 1.
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