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Classi�cation



Introduction

Classi�cation (discrimination) is the second class of supervised learning
problems that we consider.

Our task is to classify an individual into one of several categories on the
basis of a set of measurements on that individual.

More formally, given an output variable, denoted by G, taking values in a
discrete index set, G, with K classes or categories, we aim at establishing
a classi�cation rule which allocates cases to the categories according to
the value of X.

A classi�er is a prediction rule that, based on the X's, assigns a
response category: we denote it by Ĝ(X)



Example

Consider two response categories: G0 = solvent, G1 = insolvent.

We estimate
pk(X) = P (G = k|X), k = 0, 1,

on the basis of the training sample and construct the prediction rule

Ĝ(X) = argmaxk {p̂k(X)} .

(argmaxk stands for the value k that maximises the function in curly
brackets).



The Challenger Disaster

I January 28, 1986: the space shuttle Challenger exploded after take
o�.

I This was due to a failure of an O-ring seal in the right solid rocket
booster (SRB).

I For the previous 24 launches the SRB had been recovered from the
ocean and inspected. 7 had incidents of damage to the joints, 16
had no incidents of damage.

I Is 'joint damage' related to the temperature at the time of the
launch?

I Temperature on the day of the launch was very low: 29 F.



Figure: The Challenger Disaster data.
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Loss functions for Classi�cation

In the linear regression problem for a continuous output we focused on
the mean square error (quadratic loss) and derived the optimal predictor

Ŷ = Ê(Y |X).

In the classi�cation case, an important LF is the 0-1 Loss:

L(G, Ĝ(X)) = I(G 6= Ĝ) =

{
1, G 6= Ĝ,

0, G = Ĝ,

(i.e. a unit loss is incurred in the case of missclassi�cation).
For a population with two groups, G = {0, 1}, the loss function

L(G, Ĝ(X)) behaves as follows:

Ĝ(X)
G 0 1
0 0 1
1 1 0



Bayes classi�cation rule

The following Bayes classi�er is optimal under the 0-1 loss function:

Ĝ(X) = Gk if P (G = k|X) is a maximum for all k

[a unit should be allocated to the group for which the a posteriori
probability is a maximum]

When there are only two classes, G = {0, 1}, the Bayes classi�er is
de�ned as follows:

Ĝ(x) =

{
1, P (G = 1|X = x) > P (G = 0|X = x)
0, P (G = 1|X = x) < P (G = 0|X = x)

The set of x values for which P (G = 1|X = x) = P (G = 0|X = x) is
the decision boundary.



De�nitions: how good is a classi�cation?

Consider the confusion matrix:

Ĝ(X) (prediction outcome)
G (actual value) 0 1

0 True negative (TN) False positive (FP)
1 False negative (FN) True positive (TP)

The true positive rate (TPR) is de�ned as

P (Ĝ(X) = 1|G = 1) = TPR =
TP

TP + FN

this is also referred to as the sensitivity rate.
The false positive rate (FPR) is de�ned as

P (Ĝ(X) = 1|G = 0) = FPR =
FP

TN + FP

The speci�city rate is P (Ĝ(X) = 0|G = 0) = TN
TN+FP

.



The empirical error rate in the training sample of size N is

ērr =
1

N

N∑
i=1

I(Gi 6= Ĝi) =
1

N
(FP + FN)

(proportion of missclassi�ed units - missclassi�cation rate or error).
Our objective is to select the model for which the test sample
missclassi�cation error is a minimum.



Overview: methods for classi�cation

There are methods that estimate directly P (G = k|X) (logistic
regression).

Others exploit Bayes theorem (discriminant analysis).

Let

I πk: prior probability of group k,
∑
k πk = 1.

I fk(x): multivariate density of X in group k.

The posterior probability (Bayes theorem) is

P (G = k|X = x) =
P (G = k)f(x|G = k)∑K
j=1 P (G = j)f(x|G = j)

=
πkfk(x)∑K
j=1 πjfj(x)



Figure: The Challenger Disaster data. The probability of joint damage,
P (G = 1|X), is estimated as a function of temperature by a logistic regression
model.
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Discriminant analysis

We are going to assume that fk(x) is Gaussian. This is a strong
parametric assumption, but it leads to considerable insight and
simpli�cation in the form of the decision boundary.

Quadratic Discriminant Analysis

Assume X|G = k ∼ N(µk,Σk) so that

fk(x) =
1

(2π)p/2|Σk|1/2
exp

{
−1

2
(x− µk)′Σ−1k (x− µk)

}
A unit with feature vector x is allocated to the class for which
P (G = k|x) ∝ πkfk(x), or equivalently its logarithm

ln(πkfk(x)) = lnπk −
1

2
ln |Σk| −

1

2
d(x,µk; Σk)

is highest.
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Bivariate Normal Distribution
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The component d(x,µk; Σk) = (x− µk)′Σ−1k (x− µk) is the
Mahalanobis distance from the centroid (vector of group means) of the
k-th group.
We de�ne δk(x) = ln(πkfk(x)) a quadratic discriminant function. The
terminology alludes to the fact that the decision boundary between
groups k and l, {x : δk(x) = δl(x)}, is a quadratic function of x.

Estimation

From the training sample we compute the variable means in that group,
x̂k, the proportion of cases in group k, and the within group covariance
matrix:

π̂k =
1

N

∑
i

I(Gi = k) =
Nk
N
, Ŝk =

1

Nk

∑
i:(G=k)

(xi − x̂k)(xi − x̂k)′

Hence, the classi�er Ĝ(X) = argmaxk{δk(x)} depends on the prior
probabilities, πk, and the within group covariance. When πk does not
vary with k, x is allocated to the group to which it is closest, i.e. the
Mahalanobis distance is a minimum.



Linear Discriminant Analysis

A simpli�cation occurs if Σk = Σ for all k. In this case the discriminant
function depends on x only via a linear term:

δk(x) = c+ lnπk + µ′kΣ
−1x− 1

2
µ′kΣ

−1µk

The decision boundary between groups k and l is linear in x.

Estimation:

Σ̂ =
∑
k

Nk
N

Ŝk

a weighted average of the within group covariance matrices, with weights
equal to relative group size.



Example 1: in the single input and 2 groups case, assume
π0 = π1 = 0.5, and that X|G = 0 ∼ N(80, 4), X|G = 1 ∼ N(70, 4).

The decision boundary is the point at which f1(x) = f2(x), that is
x = 75 = µ0+µ1

2 . The probability of missclassi�cation is
1− Φ

(
75−70

2

)
+ Φ

(
75−80

2

)
= 0.0124.

Example 2: let x = (x1, x2)′ ∈ R2, G = A,B.
The decision boundary is the set of points for which δA(x) = δB(x).
This is the straight line ax1 + bx2 = c, where

c = 0.5(µ′BΣ−1µB − µ′AΣ−1µA) + lnπA − lnπB

(a, b) = (µB − µA)′Σ−1



Figure: Gaussian densities and discriminant function for π0 = π1 = 0.5 and
X|G = 0 ∼ N(80, 4), X|G = 1 ∼ N(70, 4).
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Canonical analysis

Fisher's linear discriminant analysis aims at determining one or more
linear combinations of the X variables which maximise the separation
between the groups.

These are referred to as canonical variables.

Discrimination is useful for classi�cation of a new unit and allocation to
one of the groups.

Let X denote a N × p matrix. We form a linear combination (a
one-dimensional synthesis) of the p variables

z = Xa, zi = a′xi

where a′ = (a1, . . . , ap).



Denoting by z̄k, k = 1 . . . ,K, the group means of the variable z and by z̄
the overall mean, the deviance of z can be decomposed as follows:

Tz(a) =
∑
i(zi − z̄)2

=
∑K
k=1

∑
i∈Gk(zi − z̄k)2 +

∑K
k=1Nk(z̄k − z̄)2

= Wz(a) +Bz(a)

I Wz(a) is the within-group deviance

I Bz(a) is the between-group deviance

The notation stresses the dependence on a.

The vector a is chosen so as to maximise the between-group deviance
(separation between groups), subject to the normalisation constraint
Wz(a) = 1.

Classi�er. A unit with canonical score zi is allocated to the group k for
which the distance (zi − z̄k)2 is a minimum.



(The following algorithmic details can be ignored)
In general, the total deviance matrix T =

∑
i(xi − x̄)(xi − x̄)′ = NS,

can be decomposed as T = W + B,

I W =
∑
kNkSk is the within-group deviance matrix

I B =
∑
kNk(x̄k − x̄)(x̄k − x̄)′ is the between-group deviance matrix

The vector a is determined by the following algorithm:

I Determine the spectral decomposition W = VΛV′

I Form the matrix W−1/2 = VΛ−1/2 and the new unit pro�les
ui = W−1/2xi, (U = XW−1/2′). The new variables are orthogonal
and have unit deviance within the groups. The deviance of the ui
values is W−1/2TW−1/2′ = W−1/2BW−1/2′ + I.

I Compute the eigenvalues and the eigenvectors of W−1/2BW−1/2′

(the between group deviance of the U variables).

I Set a equal to the eigenvector corresponding to its largest
eigenvalue.



I The solution amounts to choosing a so as to maximise a′Ba subject
to a′Wa = 1.

I If the number of groups is greater than 2, we can determine other
linear combinations, with zero within group correlation, that
maximise the separation between the groups. Their coe�cients are
obtained from the eigenvectors corresponding to the remaining
eigenvalues, which are in decreasing order.

I Note: canonical analysis is the same as linear discriminant analysis
when all the canonical variates are considered. The Mahalanobis
distance in δk(x) becomes an Euclidean distance:
d(x,µk; Σ) = (x− µk)′Σ−1k (x− µk) = (u− ūk)′(u− ūk).



Iris dataset

150 observations on 4 variables concerning the length and width of sepal
and petal for three northern american species of iris: iris setosa, iris
versicolor, iris verginica (N1 = N2 = N3 = 50).

Group means:

Sepal.Length Sepal.Width Petal.Length Petal.Width

setosa 5.0 3.4 1.5 0.25

versicolor 5.9 2.8 4.3 1.33

virginica 6.6 3.0 5.6 2.03

Coefficients of linear discriminants:

LD1 LD2

Sepal.Length 0.83 0.024

Sepal.Width 1.53 2.165

Petal.Length -2.20 -0.932

Petal.Width -2.81 2.839

Proportion of trace:

LD1 LD2

0.9912 0.0088



Figure: Iris dataset.
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Figure: Plot of canonical variables for Iris data.
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Linear Regression Methods for Classi�cation

Consider a categorical response variable G with K categories and let X
an N × (p+ 1) data matrix collecting the values of p covariates for N
individuals and the intercept in the �rst column.

We de�ne a set of K indicator variables, Yk, one for each response
category or groups, taking value 1 if G = k and 0 otherwise.

We can form an indicator response matrix Y (N ×K), such that each
row contains the values of the indicator variables (Y1, . . . , YK) for the
i-th unit.

Note that
Y′Y = N = diag(N1, N2, . . . , NK)

where Nk is the number of units in group k (total n. on 1's in column k
of matrix Y). We denote the k-th column of Y by yk.



Gk y1 y2 y3

Happy 1 0 0
Happy 1 0 0

Don'k know 0 0 1
Happy 1 0 0
Unhappy 0 1 0
Happy 1 0 0
Unhappy 0 1 0
Unhappy 0 1 0
Unhappy 0 1 0

Don'k know 0 0 1



Linear Regression of an indicator matrix

I Regress Y = [y1, . . . ,yK ] on X (whose 1st column is the vector iN )

by LS: B̂ = (X′X)−1XY is the regression matrix. The �tted values

are Ŷ = XB.

I To classify a new observation with features x, compute the K × 1
vector ŷ(x) = B̂′x and select the label k for which ŷk(x) is a
maximum.

I This complies with Bayes classi�cation rule, as
ŷk(x) = P̂ (G = k|X = x)

I It is true that
∑
k ŷk(x) = 1, but there is no guarantee that

0 ≤ ŷk(x) ≤ 1.

I Recall that LS is optimal under squared loss.

If there are only two classes, we just need to regress the indicator for one
of the classes, e.g. the 1st, y, on X and assign an individual to that class
if the predicted value is larger than 0.5. R : x′β̂ > 0.5. The decision
boundary is linear.
Notice also that in the case K = 2 we can build the variable y1 − y2 or
Y(1,−1)′. The decision boundary is then x′β̂ = 0. LDA yields the same
solution.



Logistic Regression

We focus on the case in which G has only two response categories
(binary, or dichotomous, variable).

The linear regression model does not make the most e�cient use of the
information available.

In fact, we know that LS is optimal for a regression model in which the
errors ε are such that E(ε|X) = 0 and Var(ε|X) = σ2.

It can be shown that when Y is binary the error term is heteroscedastic.
Moreover, the predictor f(X) could be outside the theoretical range [0,1].



Speci�cation

We assume that conditional on X, G has a Bernoulli distribution:

G =

{
0, with probability P (G = 0|X = x) = 1− p(x;β)
1, with probability P (G = 1|X = x) = p(x;β)

so that E(G|X) = p(x;β) and Var(G|X) = p(x;β)(1− p(x;β)) where
β is a vector of unknown parameters.

The speci�cation of the model is completed by the assumption that

p(x;β) = F (β′x)

where F (·) is a function taking values in [0, 1].



I The logistic regression model chooses the logistic function for F (·):

p(x;β) =
exp(β′x)

1 + exp(β′x)
.

I Other choices for F are possible: the Probit model uses the standard
normal cumulative distribution function.

I The logistic model is easier to interpret. In particular, the
speci�cation implies that the log-odds (logit) is linear:

ln
P (G = 1|X = x)

P (G = 0|X = x)
= ln

[
p(x;β)

1− p(x;β)

]
= β′x.

(the logit transformation transforms probabilitities in [0,1] into logit
scores in R).



Figure: Logistic and Probit link functions.
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Training sample

A training sample consisting of N observations, drawn independently
from the same population, is available.

We code the two classes by the dichotomous variable Y , taking values 0,
if G = 0 and 1, if G = 1.

The sample is thus {(yi,xi), i = 1, . . . , N}.

In the sequel we will denote pi = p(xi;β).



Estimation

Suppose that the observed sample is
{(y1 = 0,x1), (y2 = 1,x2), . . . , (yN = 0,xN )}.

The probability of observing this sample (likelihood) implied by our
model and by our sampling mechanism (units are drawn independently) is

P (y1 = 0|x1)P (y2 = 1|x2) · · ·P (yN = 0|xN ) = (1− p1)p2 · · · (1− pN )

Writing P (yi = k|xi) = pyii (1− pi)1−yi , which is a handy notation for
saying that when yi = 1 then we should have pi, whereas when yi = 0
then we should have 1− pi, the likelihood is de�ned as the joint
probability associated with the observed sample

L(β) =

N∏
i=1

pyii (1− pi)1−yi .

This is a function of β.

The log-likelihood is

`(β) =

N∑
i=1

[yi ln pi + (1− yi) ln(1− pi)]

The maximum likelihood estimator of β is the value of β that maximises
`(β) (or equivalently L(β)).



The estimator is computed by the following algorithm (skip these details):

1. Start with trial value β̂
(0)

(e.g. 0)

2. At iteration k = 0, 1, . . . , compute β̂
(k)′

xi and

p̂i = exp(β̂
(k)′

xi)/[1 + exp(β̂
(k)′

xi)]

3. Compute the Pearson residuals

ri =
yi − p̂i√
p̂i(1− p̂i)

and rescale the inputs:

x∗i = xi

√
p̂i(1− p̂i)

4. Regress ri on x∗i . Let δ
(k) denote the LS estimates.

5. Update β̂
(k+1)

= β̂
(k)

+ δ(k).

6. Iterate until convergence, i.e. until δ(k) = 0.

At convergence, ri is orthogonal to x∗i and all the relevant information
contained in the inputs has been successfully incorporated.
For an interpretation as iteratively reweighted least squares (IRWL) see e.g.
Hastie, Tibshirani and Freedman (2007).



Example: German Credit Data

The German Credit data set consists of N = 1000 consumers' credits
from a southern German bank (source: Fahrmeir and Tutz and
http://www.stat.uni-
muenchen.de/service/datenarchiv/kredit/kredit_e.html

The output variable is Creditability (Group), (0: credit-worthy, 1: not
credit-worthy). 20 inputs were collected. A forward stepwise procedure
selects the following inputs
Duration Duration in months (quantitative)
CreditAmount Amount of credit in DM (quantitative)
StatusCAccount Balance of current account (categorical)
CreditHistory Payment of previous credits (categorical)

as well as the square of CreditAmount and the interaction of Duration
and CreditAmount



Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.575e-02 4.588e-01 -0.143 0.886062

Duration 9.020e-02 1.562e-02 5.776 7.63e-09 ***

CreditAmount -1.963e-04 9.569e-05 -2.051 0.040247 *

factor(StatusCAccount)A12 -5.438e-01 1.889e-01 -2.879 0.003988 **

factor(StatusCAccount)A13 -1.064e+00 3.394e-01 -3.135 0.001717 **

factor(StatusCAccount)A14 -1.888e+00 2.084e-01 -9.056 < 2e-16 ***

factor(CreditHistory)A31 -2.021e-01 4.839e-01 -0.418 0.676300

factor(CreditHistory)A32 -1.035e+00 3.815e-01 -2.713 0.006674 **

factor(CreditHistory)A33 -9.962e-01 4.417e-01 -2.255 0.024111 *

factor(CreditHistory)A34 -1.631e+00 4.031e-01 -4.046 5.21e-05 ***

I(CreditAmount^2) 4.279e-08 1.012e-08 4.226 2.38e-05 ***

I(Duration * CreditAmount) -1.076e-05 2.777e-06 -3.876 0.000106 ***

---

Null deviance: 1221.73 on 999 degrees of freedom

Residual deviance: 996.76 on 988 degrees of freedom

AIC: 1020.8

Confusion matrix

FALSE TRUE

0 636 64

1 176 124



Figure: kredit dataset. Plot of yi and p̂i versus the logits x′iβ̂
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Diagnostic checking, hypothesis testing and goodness of �t

The large sample distribution of β̂ is normal with mean β and covariance
matrix (X∗

′
X∗)−1, where X∗ is the matrix of the rescaled inputs (with

i-th row x∗
′

i ).

The square root of the diagonal element is the standard error and
zk = β̂k/st.err(β̂k) (the z-value) is the test statistic for the null that the
k-th coe�cient is 0.

Its square is the Wald test for the same null (chi-squared distribution).

Diagnostic checking is carried out on the Pearson residual ri.
The Pearson Statistic

χ2 =

N∑
i=1

r2i

is the main g.o.f. statistic.



The deviance residual, di, is the signed square root of
−2 [yi ln p̂i + (1− yi) ln(1− p̂i)] .

The deviance is
D = −2[`(β̂)] =

∑
i

d2i

(the sum of squares of the deviance residuals).

The null deviance D0 = −2`0 is the model with β1 = · · · = βp = 0 (only
the intercept is �tted, so that p̂ = N1/N and
`0 = N1 ln(N1/N) +N0 ln(N0/N)).

HTF de�ne the training error ērr = − 2
N `(β̂) = D/N .

The proportion of units missclassi�ed when the Bayes classi�er is adopted
is the measure of training error consistent with the 0-1 loss. The classi�er

is Ĝ(x) = 1 if β̂
′
x > 0, because this implies P (G = 1|x) > 0.5.



Model selection criteria

AIC = −2
1

N
`(β̂) + 2

p

N

BIC = −2
1

N
`(β̂) + ln(N)

p

N

(note: the null model always features the intercept, and thus the d.f. are
p)

Relation with LDA

In the case of only two classes the log-posterior odds is linear in x for
both methods.
The di�erence arise in the way the coe�cients are estimated. Logistic
regression leaves the distribution of X unrestricted, and bases the
estimated coe�cients on the likelihood conditional on X, whereas LDA
assumes that it is normal.
Note that the latter assumption is untenable if X includes dummy
variables.
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