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Predictive Ability of a Model: Definition and Estimation

Predictive Ability of a Model: Definition and Estimation

We aim at achieving a balance between parsimony (model complexity) and
goodness of fit.

When we increase model complexity (e.g. by including further regressors) we
improve the fit within the training sample, but the improvement is not
necessarily generalisable outside the sample (for predictive purposes).

The least squares (LS) estimates have high variability when the number of
inputs is large. This results in inaccurate predictions.

A parsimonious model (adhering to Occam’s Razor: Entia non sunt
multiplicanda praeter necessitatem) is estimated precisely and is easily
interpretable, but is potentially biased.
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Predictive Ability of a Model: Definition and Estimation

Hypothesis testing is one approach to model selection. The problem is to control
the size of the test procedure when a sequence of correlated tests is carried out.
A more fruitful approach is to estimate the predictive ability of a model and select
the one that maximises it.

Learning objectives of this unit:

Define and understand the relation between model complexity and predictive
ability.

Validation of a model in terms of predictive ability.

Define operational criteria for model selection.

Illustrate alternative model selection strategies (subset selection,
regularization).
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Predictive Ability of a Model: Definition and Estimation Training sample: bias-variance trade-off

Training sample: bias-variance trade-off

Assume that the true data generating process is Y = f (X ) + ε.
The training sample of size N, y , is generated as above, that is

y = f + ε, E(ε|X ) = 0, Var(ε|X ) = σ2I .

The true regression function f (X ) is unknown. We estimate it as a linear function
of a set of measurable characteristics in X .
From the training sample we estimate f as

f̂ = X β̂, β̂ = (X ′X )−1X ′y

The fitted values are ŷ = f̂ = Hy , where H = X (X ′X )−1X ′ and the residuals are
e = y − ŷ = My , M = I −H .
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Predictive Ability of a Model: Definition and Estimation Training sample: bias-variance trade-off

The estimation of the regression function f using f̂ faces a fundamental
bias-variance trade-off.

The statistical accuracy of f̂i as an estimator of fi , for i = 1, . . . ,N, is
measured by MSE(f̂i ) = E[(f̂i − fi )

2].

The MSE has two components: MSE(f̂i ) = Bias2(f̂i ) + Var(f̂i )

We can reduce the bias by increasing the complexity of the model, which in
turn determines an increase of the variance.

It can be shown that Var(f̂i ) = σ2hi (it is more difficult to predict accurately
observations that are remote in the input space).

The bias term depends on f (X ) being nonlinear and on the omission of
relevant inputs.

We denote the bias bi = E(f̂i )− fi .

(Note: we have suppressed for notational convenience dependence on X . We should
have written MSE(f̂i |X ), etc.)
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Predictive Ability of a Model: Definition and Estimation Training sample: bias-variance trade-off

The true regression function is f (x) = 4 + 1.5x + 3.2x2 − 4x3. The fitted model
contains the intercept and x (misspecification). Plot of Bias(f̂i ) and Var(f̂i ) = σ2hi

Figure
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Predictive Ability of a Model: Definition and Estimation Training sample: bias-variance trade-off

The true regression function is f (x) = 4 + 1.5x + 3.2x2 − 4x3. The fitted model
contains the intercept, x , x2, and x3 (Correctly specified model).
Plot of Bias(f̂i ) and Var(f̂i ) = σ2hi
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Predictive Ability of a Model: Definition and Estimation Training sample and training error

Training sample and training error

The LS residuals e are used to assess the goodness of the training sample fit.
Recall their definition:

e = y − ŷ = y −Hy = (I −H)y = My

We define the training error

err =
1

N
e ′e =

1

N

∑
i

e2i =
1

N
(y − X β̂)′(y − X β̂) =

RSS

N

The model that maximises the fit for the training sample is the one for which the
training error is a minimum. However, what is best for in-sample fit is not best for
out-of-sample prediction (it does not generalize to a different test sample), as we
shall see shortly.
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Predictive Ability of a Model: Definition and Estimation Training sample and training error

The expected training error

E(err |X ) = E
(
1
N

∑
i e

2
i

)
= 1

N

∑
i E(e

2
i )

= 1
N

∑
i (b

2
i + Var(ei ))

= 1
N

∑
i b

2
i + σ2 − σ2 p+1

N

is a downward biased (i.e. an optimistic) estimate of the expected test error. It
appears as if only accuracy gains accrue from increasing the complexity of the
model.

Note: we have written ei = E(ei ) + ei − E(ei ) (again, suppressing dependence on
X ).
Also, recall that bi = E(ŷi )− fi , so that

E(ei ) = E(yi − ŷi )
= fi − E(ŷi )
= −bi
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Predictive Ability of a Model: Definition and Estimation Training sample and training error

Test sample and test error

Consider drawing, for every training sample (y ,X ), a test sample y∗ of size N from
the same population, independently of y and matching the same X ’s (again this is
quite unrealistic, but it simplifies the analysis considerably), so that the systematic
part is f , and y∗ = f + ε∗.

Using X we aim at predicting f and y∗ for the new units. The optimal predictor
based on the linear model is ŷ∗ = X β̂ (β̂ = (X ′X )−1Xy has already been
estimated from the training sample, whereas y∗ is not used for fitting).
The test sample prediction error is

e∗ = y∗ − ŷ∗
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Predictive Ability of a Model: Definition and Estimation Training sample and training error

The test error (average prediction error over the test sample)

Errin =
1

N
e∗

′
e∗ =

1

N

∑
i

e2∗i ,

has expected value

E(Errin|X ) = 1
N

∑
i b

2
i + σ2 + σ2 p+1

N = E(err |X ) + 2 p+1
N σ2

In fact, there are two independent sources of error: the error that accrues from
estimating the true f (X ) using the training sample, and the intrinsic variation
induced by ϵ∗.
We wish to select the model which yields the minimum expected test error
E(Errin|X ). The main issue deals with the estimation of E(Errin|X ). We wish to
use the training sample for this purpose.
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Predictive Ability of a Model: Definition and Estimation Training sample and training error

The true regression function is f (x) = 4 + 1.5x + 3.2x2 − 4x3. The fitted model
contains the intercept and x (misspecification). Mean and variance of the training
sample residuals ei and of the test sample prediction errors e∗i .

Figure
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Predictive Ability of a Model: Definition and Estimation Training sample and training error

We have shown that the expected training error

E(err |X ) = E(Errin|X )− 2σ2 p+1
N

is a downward biased (i.e. an optimistic) estimate of the expected test error.

We define the ”Optimism” as: op = Errin − err

The expected optimism is E(op) = 2 p+1
N σ2.

Notice that p+1
N = 1

N trace(H).

The trace is the sum of the values on the diagonal of a matrix.

Number of degrees of freedom used for fitting (model complexity): trace(H).
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Predictive Ability of a Model: Definition and Estimation Training sample and training error

It also can be shown that

E(op) =
2

N
trace (Cov(y , ŷ |X ))

In fact, Cov(y , ŷ |X ) = σ2H

Interesting interpretation: Cov(y , ŷ |X ) measures overfitting.
The larger the covariance between the fitted and the observed values, the more
the model is likely to overfit.

Notice that Errin measures the bias-variance trade-off: increasing the
complexity reduces the bias component, but it inflates the variance via the
term depending on p.
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Criteria for Model Selection

Criteria for Model Selection

A model selection procedure should focus on the expected prediction error.
In practice we have to estimate σ2. We can use σ̃2 = RSSpmax/(N − pmax − 1)
where pmax is the largest p considered
Popular criteria are:

Mallows’ Cp = err + 2 p+1
N σ̃2 = RSS

N + 2 p+1
N σ̃2

(this is obtained from E(Errin|X ) by replacing σ̃2 for σ2).
Akaike information criterion: same as Mallow’s Cp statistic,

AIC = ln
RSSp
N

+ 2
p + 1

N
,

(Taking logs of Cp and by 1st order Taylor approximation).
Bayesian information criterion:

BIC = ln
RSSp
N

+ lnN
p + 1

N
.

The factor 2 is replaced by lnN, so that for N > 8, BIC penalises complex
models more heavily.
Cross validation

These criteria penalize model complexity.
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Criteria for Model Selection Cross-validation

Cross-validation

Method that estimates the average generalization prediction error.
Useful when we are unable to evaluate the expected optimism.
Let us consider leave-one-out CV.
The CV criterion is

CV =
N∑
i=1

(
yi − ŷ(i)

)2
where ŷ(i) is the prediction of yi obtained using all the remaining observations.
Indeed, we saw that the problem with RSS is that the same y is used for fitting and
assessing the gof.
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Criteria for Model Selection Cross-validation

In a linear regression framework,

CV =
∑
i

(
yi − ŷ(i)

)2
=

∑
i

e2i
(1− hi )2

Recall that
1

N
≤ hi ≤ 1,

1

N

∑
i

hi =
p + 1

N

Replacing hi by their average, we get the generalized CV criterion:

GCV =
RSS

(1− N−1trace(H))2

Considering the first order Taylor approximation,

GCV ≈ RSS

(
1 + 2

p + 1

N

)
and thus GCV /N is approximately equal to Cp.
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Criteria for Model Selection Cross-validation

In a more general setting CV works as follows:

The sample is divided into K segments of equal size

For k = 1, . . . ,K , we fit the model using the other K − 1 segments, construct
the predictor ŷ(k), and calculate the prediction error

e(k) = yk − ŷ(k).

The CV score is computed as

CV =
1

N

∑
k

e ′(k)e(k)
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Model selection

Model selection

Model selection refers to choice of y (transformation of the response variable), X
(selection of the inputs and tranformation of the inputs), choice of an estimation
method and of a prediction rule f̂ (X ).

Subset selection methods deal with the choice of the X ’s.

Shrinkage methods deal with the choice of the prediction rule.

Methods using derived input directions deal with deriving linear or nonlinear
combinations of the inputs that summarise their information.
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Subset selection

I. Subset selection

In principle, we could fit all the possible models and select the one that has
minimum Cp or AIC.

However, if there are p regressors, there are 2p competitor models (all of them
including the intercept). If p = 10, 2p = 1024. With 50 explanatory variables,
there are 1,125,899,907 million models.

We focus on a situation in which the investigator has available a number of
potential inputs that is too large, either because p ≥ N or 2p is unfeasible.
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Subset selection Best subset selection

I1. Best subset selection

For each k ∈ {0, 1, . . . , p}, BSS selects the subset of size k among the
possible candidates that minimise the RSS, exploring all the possibilities.

Select k that minimises the expected prediction error (Cp, AIC, etc)
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Subset selection Stepwise selection

I2. Stepwise selection

1 Forward stepwise Selection
1 Start with a model containing only the intercept
2 Add the input which improves the fit (max t-statistic, or F-stat from addition,

or R2).
This is also the variable with largest squared correlation with the residuals of the
previous step regression.

3 Select the model with minimum AIC or Cp.

2 Backward stepwise selection.
1 Start with the full model (requires p < N).
2 Drop the variable with smallest t-statistic.
3 Select model with smallest Cp, AIC, etc.

3 An hybrid strategy can be implemented (add or delete according to AIC - step
function in R).
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Shrinkage Methods

II. Shrinkage Methods

We do not select a subset of the inputs.

These methods yield an estimate of f (X ) depending on a regularization
parameter which regulates the amount of shrinkage of the regression
coefficients to zero.

These methods trade-off some increased bias for a reduction in the variance.
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Shrinkage Methods Ridge regression

II.1. Ridge Regression

The ridge regression estimator is the minimizer of the penalised LS criterion

(y − Xβ)′(y − Xβ) + λ

p∑
j=1

β2
j .

λ ≥ 0 is a penalty parameter which regulates the tradeoff.

λ = 0 yields the usual LS criterion, as a particular case.

The second addend penalises the departure from zero of the regression
parameter and shrinks them toward zero.

Now, zero is a sensible target if the variables have the same scale. Thus we assume
that both the response and the inputs are standardized (the regression model does
not include the intercept and X ′X is N times the correlation matrix of the inputs).
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Shrinkage Methods Ridge regression

Redefining β = (β1, . . . , βp)
′, the PLS criterion is

RSSλ(β) = (y − Xβ)′(y − Xβ) + λβ′β.

The minimiser of RSSλ(β) wrt β is

β̂r = (X ′X + λI )−1X ′y

Properties of β̂r

Assume that f = Xβ (the model is correctly specified: the systematic part is linear
in the available X ’s).

β̂r is biased: E(βr ) = [I + λ(X ′X )−1]−1β

The variance is smaller than that of the LS estimator
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Shrinkage Methods Ridge regression

Choice of λ

λ regulates model complexity. λ = 0 corresponds to the greatest complexity (bias is
a minimum, but variance is high). As λ increases we increase the bias at the
advantage of precision.

We choose λ so as to minimise the (estimated) expected test error:

RSSλ
N

+ 2σ2 trace(Hλ)

N
.

The fitted values are

ŷr = X β̂r = X (X ′X + λI )−1X ′y = Hλy .
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Shrinkage Methods Ridge regression

Figure: Housing dataset: p = 20. Coefficient profiles as a function of λ.
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Shrinkage Methods Ridge regression

Figure: Housing dataset: p = 20. Degrees of freedom df (λ) = trace(Hλ) as a function of λ.
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Shrinkage Methods Lasso

II.2 Lasso

The lasso (Least Absolute Shrinkage and Selection Operator) estimator is the
minimizer of the penalised LS criterion

(y − Xβ)′(y − Xβ) + λ

p∑
j=1

|βj |,

where λ is a penalty parameter, or, equivalently, it is obtained as the solution to the
constrained minimization problem:

argminβ {(y − Xβ)′(y − Xβ)} , s.t.
p∑

j=1

|βj | < t,

where t is a tuning parameter.
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Shrinkage Methods Lasso

No closed form solution for β̂l (solve a quadratic programming problem).

Lasso performs variable selection and shrinkage. Coefficients are forced to zero
as t decreases (effectively a subset selection).

We assume that both the response and the inputs are standardized (the
regression model does not include the intercept).
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Shrinkage Methods Lasso

The single predictor case: soft-thresholding

Let us consider a training sample {xi , yi} on two standardized variables (x̄ = ȳ = 0
and

∑
x2i /N =

∑
i y

2
i /N = 1).

We aim at estimating the model yi = βxi + ϵi , subject to the constraint |β| < t.
This is equivalent to

min
β

{
N∑
i=1

(yi − βxi )
2 + λ|β|

}
.

If β̂ =
∑

i xiyi/N denotes the least square estimate (i.e. the value that is obtained
if λ = 0), then the lasso estimate is

β̂L =


β̂ − λ, if β̂ > λ

0, if − λ ≤ β̂ ≤ λ

β̂ + λ, if β̂ < −λ

which can compactly be written β̂L = sign(β̂)max{|β̂| − λ, 0}.
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Shrinkage Methods Lasso

Figure: Soft-Thresholding operator for λ = 0.5
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Shrinkage Methods Lasso

In the multiple predictor case, the lasso solution can be computed using the Cyclic
Coordinate Descent algorithm.
This repeatedly cycles through the predictors in some fixed (but arbitrary) order
(say j = 1, 2, . . . , p). At the j-th step, the coefficient βj is updated by minimising
with respect to βj the objective function

N∑
i=1

(yi −
∑
k ̸=j

βkxik − βjxij)
2 + λ

∑
k ̸=j

|βk |+ λ|βj |

 ,

holding fixed all other coefficients at their current values.
Letting δ̂j = N−1

∑
i xij(yi −

∑
k ̸=j β̂kLxik), the generic coefficient is updated as

β̂j,L = sign(δ̂j)max{|δ̂j | − λ, 0}.
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Methods Using Derived Input Directions: Principal components Regression Principal components Regression

III. Methods Using Derived Input Directions: Principal
components Regression

Suppose that X denotes a matrix of p standardized variables.

Principal components regression is based on the regression of y on new
variables, called principal components, obtained from the linear combination of
the original ones:

Z = [z1, z2, . . . , zp] = XA, zk = Xak

The loadings matrix A is obtained from the spectral decomposition of the
matrix S = N−1X ′X (correlation matrix),

S = AΛA′,

where A is the eigenvector matrix, A′A = I and Λ = diag(λ1, . . . , λp) is the
diagonal matrix collecting the eigenvalues of the covariance matrix
λ1 ≥ λ2 ≥ · · · ≥ λp.
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Methods Using Derived Input Directions: Principal components Regression Principal components Regression

The p.c.’s are orthogonal (uncorrelated) and have variance equal to λk :
1
NZ

′Z = Λ.

The first component is designed to capture as much of the variability in the
data as possible, and the succeeding components in turn extract as much of
residual variability as possible.

If we consider only the first M ≤ p variables, then PCR is similar to ridge
regression.
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Methods Using Derived Input Directions: Principal components Regression Principal components Regression

Example: eigenvalues and eigenvectors of a correlation matrix

X = scale(data.frame(sqft,sqft^2,Age,Age^2,sqft*Age,Baths,Bedrooms));

S = cor(X) # correlation matrix

sqft sqft.2 Age Age.2 sqft...Age Baths Bedrooms

sqft 1.00 0.952 -0.138 -0.100 0.332 0.716 0.68

sqft.2 0.95 1.000 -0.091 -0.068 0.338 0.668 0.60

Age -0.14 -0.091 1.000 0.927 0.813 -0.293 -0.17

Age.2 -0.10 -0.068 0.927 1.000 0.755 -0.228 -0.12

sqft...Age 0.33 0.338 0.813 0.755 1.000 0.071 0.16

Baths 0.72 0.668 -0.293 -0.228 0.071 1.000 0.58

Bedrooms 0.68 0.603 -0.168 -0.120 0.159 0.579 1.00
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Methods Using Derived Input Directions: Principal components Regression Principal components Regression

eigen(S)

$values

[1] 3.258 2.687 0.459 0.364 0.145 0.055 0.031

$vectors

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] -0.52 -0.122 0.213 -0.268 -0.0858 0.377 0.6670

[2,] -0.50 -0.140 0.362 -0.346 -0.2912 -0.404 -0.4814

[3,] 0.18 -0.566 -0.042 0.069 -0.0054 -0.660 0.4521

[4,] 0.16 -0.556 -0.100 0.197 -0.6349 0.422 -0.1886

[5,] -0.08 -0.577 0.086 -0.071 0.7076 0.261 -0.2812

[6,] -0.47 0.025 0.142 0.866 0.0617 -0.075 -0.0093

[7,] -0.44 -0.050 -0.886 -0.099 0.0108 -0.077 -0.0650
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