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Introduction

Introduction

Classification (discrimination) is the second class of supervised learning
problems that we consider.

Our task is to classify an individual (unit) into one of several categories on the
basis of a set of measurements on that individual.

More formally, given an output variable, denoted by G , taking values in a
discrete index set, G, with K classes or categories, we aim at establishing a
classification rule which allocates cases to the categories according to the value
of X .

A classifier is a prediction rule that, based on the X ’s, assigns a response
category: we denote it by Ĝ (X ).
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Introduction

Example

Consider two response categories: G0 = solvent, G1 = insolvent.

We estimate
pk(X ) = P(G = k |X ), k = 0, 1,

on the basis of the training sample and construct the prediction rule

Ĝ (X ) = argmaxk {p̂k(X )} .

(argmaxk stands for the value k that maximises the function in curly brackets).
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Introduction The Challenger Disaster

The Challenger Disaster

January 28, 1986: the space shuttle Challenger exploded after take off.

This was due to a failure of an O-ring seal in the right solid rocket booster
(SRB).

For the previous 24 launches the SRB had been recovered from the ocean and
inspected. 7 had incidents of damage to the joints, 16 had no incidents of
damage.

Is the indicator variable of ’joint damage’ related to the temperature at the
time of the launch?

Temperature on the day of the launch was very low: 29 F.
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Introduction The Challenger Disaster

The Challenger Disaster data. Plot of the indicator variable of a joint damage vs
temperature.
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Loss functions for Classification

Loss functions for Classification

In the linear regression problem for a continuous output we focused on the mean
square error (quadratic loss) and derived the optimal predictor Ŷ = Ê(Y |X ).

In the classification case, an important loss function is the 0-1 Loss:

L(G , Ĝ (X )) = I (G ̸= Ĝ ) =

{
1, G ̸= Ĝ ,

0, G = Ĝ ,

(i.e. a unit loss is incurred in the case of missclassification).

For a population with two groups, G = {0, 1}, the loss function L(G , Ĝ (X ))
behaves as follows:

Ĝ(X )
G 0 1
0 0 1
1 1 0
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Bayes classification rule

Bayes classification rule

What is the optimal classification rule if we face a constant loss for a
missclassfication?

The following Bayes classifier is optimal under the 0-1 loss function:

Ĝ (X ) = Gk if P(G = k |X ) is a maximum for all k

[a unit should be allocated to the group for which the a posteriori probability is
a maximum]

When there are only two classes, G = {0, 1}, the Bayes classifier is defined as
follows:

Ĝ (x) =

{
1, P(G = 1|X = x) > P(G = 0|X = x)
0, P(G = 1|X = x) < P(G = 0|X = x)

The set of x values for which P(G = 1|X = x) = P(G = 0|X = x) is the
decision boundary.
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Bayes classification rule

Overview: methods for classification

There are methods that estimate directly P(G = k |X ) (logistic regression).

Others exploit Bayes theorem (discriminant analysis).

Let

πk : prior probability of group k ,
∑

k πk = 1.

fk(x): multivariate density of X in group k .

The posterior probability (Bayes theorem) is

P(G = k |X = x) =
P(G = k)f (x |G = k)∑K
j=1 P(G = j)f (x |G = j)

=
πk fk(x)∑K
j=1 πj fj(x)
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Bayes classification rule

The Challenger Disaster data. The probability of joint damage, P(G = 1|X ), is
estimated as a function of temperature by a logistic regression model.

Figure
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Bayes classification rule Definitions

Definitions: how good is a classification?

Consider the confusion matrix:

Ĝ(X ) (prediction outcome)
G (actual value) 0 1

0 True negative (TN) False positive (FP)
1 False negative (FN) True positive (TP)

The true positive rate (TPR) is defined as

P(Ĝ(X ) = 1|G = 1) = TPR =
TP

TP + FN

this is also referred to as the sensitivity rate.
The false positive rate (FPR) is defined as

P(Ĝ(X ) = 1|G = 0) = FPR =
FP

TN + FP

The specificity rate is P(Ĝ(X ) = 0|G = 0) = TN
TN+FP

.
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Bayes classification rule Definitions

The empirical error rate in the training sample of size N is

ērr =
1

N

N∑
i=1

I (Gi ̸= Ĝi ) =
1

N
(FP + FN)

(proportion of missclassified units - missclassification rate or error).
Our objective is to select the model for which the test sample missclassification
error is a minimum.
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Discriminant analysis

Discriminant analysis

Recall that the posterior probability, by Bayes theorem, is

P(G = k |X = x) =
P(G = k)f (x |G = k)∑K
j=1 P(G = j)f (x |G = j)

=
πk fk(x)∑K
j=1 πj fj(x)

We are going to assume that πk is given and fk(x) is Gaussian. This is a strong
parametric assumption, but it leads to considerable insight and simplification in the
form of the decision boundary.

Quadratic Discriminant Analysis

Assume X |G = k ∼ N(µk ,Σk) so that

fk(x) =
1

(2π)p/2|Σk |1/2
exp

{
−1

2
(x − µk)

′Σ−1
k (x − µk)

}
A unit with feature vector x is allocated to the class for which
P(G = k|x) ∝ πk fk(x), or equivalently its logarithm

ln(πk fk(x)) = lnπk −
1

2
ln |Σk | −

1

2
d(x ,µk ;Σk)

is highest.
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Discriminant analysis
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Discriminant analysis

Bivariate Normal Distribution
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Discriminant analysis

The component d(x ,µk ;Σk) = (x − µk)
′Σ−1

k (x − µk) is the Mahalanobis
distance from the centroid (vector of group means) of the k-th group.
We define δk(x) = ln(πk fk(x)) a quadratic discriminant function. The terminology
alludes to the fact that the decision boundary between groups k and l ,
{x : δk(x) = δl(x)}, is a quadratic function of x .

Estimation

From the training sample we compute the variable means in that group, x̂k , the
proportion of cases in group k , and the within group covariance matrix:

π̂k =
1

N

∑
i

I (Gi = k) =
Nk

N
, Ŝk =

1

Nk

∑
i :(G=k)

(xi − x̂k)(xi − x̂k)
′

Hence, the classifier Ĝ (X ) = argmaxk{δk(x)} depends on the prior probabilities,
πk , and the within group covariance. When πk does not vary with k , x is allocated
to the group to which it is closest, i.e. the Mahalanobis distance is a minimum.
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Discriminant analysis Linear Discriminant Analysis

Linear Discriminant Analysis

A simplification occurs if Σk = Σ for all k . In this case the discriminant
function depends on x only via a linear term.

The decision boundary between groups k and l is linear in x .
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Discriminant analysis Linear Discriminant Analysis

Example 1: in the single input and 2 groups case, assume that the prior
probabilities are

π0 = π1 = 0.5,

(we call this a diffuse prior) and that

X |G = 0 ∼ N(80, 4), X |G = 1 ∼ N(70, 4).

The decision boundary is the point at which f1(x) = f2(x), that is
x = 75 = µ0+µ1

2 .

The probability of missclassification is

P(X < 75|G = 0) + P(X > 75|G = 1) = Φ
(
75−80

2

)
+

(
1− Φ

(
75−70

2

))
= 0.0124,

where Φ(z) = P(Z < z) for Z ∼ N(0, 1), the c.d.f. of a standard normal r.v.
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Discriminant analysis Linear Discriminant Analysis

Gaussian densities and discriminant function for π0 = π1 = 0.5 and
X |G = 0 ∼ N(80, 4), X |G = 1 ∼ N(70, 4).

Figure
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Logistic Regression

Logistic Regression

We focus on the case in which G has only two response categories (binary, or
dichotomous, variable).

The linear regression model does not make the most efficient use of the
information available.

In fact, we know that LS is optimal for a regression model in which the errors ϵ
are such that E(ϵ|X ) = 0 and Var(ϵ|X ) = σ2.

It can be shown that when Y is binary the error term is heteroscedastic.
Moreover, the predictor f (X ) could be outside the theoretical range [0,1].
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Logistic Regression Specification

Specification

We assume that conditional on X , G has a Bernoulli distribution:

G =

{
0, with probability P(G = 0|X = x) = 1− p(x ;β)
1, with probability P(G = 1|X = x) = p(x ;β)

so that E(G |X ) = p(x ;β) and Var(G |X ) = p(x ;β)(1− p(x ;β)) where β is a
vector of unknown parameters.

The specification of the model is completed by the assumption that

p(x ;β) = F (β′
x)

where F (·) is a function taking values in [0, 1].
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Logistic Regression Specification

The logistic regression model chooses the logistic function for F (·):

p(x ;β) =
exp(β′

x)

1 + exp(β′
x)

.

Other choices for F are possible: the Probit model uses the standard normal
cumulative distribution function.

The logistic model is easier to interpret. In particular, the specification implies
that the log-odds (logit) is linear:

ln
P(G = 1|X = x)

P(G = 0|X = x)
= ln

[
p(x ;β)

1− p(x ;β)

]
= β′

x .

(the logit transformation transforms probabilities in [0,1] into logit scores in R).
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Logistic Regression Specification

Figure: Logistic and Probit link functions.
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Logistic Regression Estimation

Training sample

A training sample consisting of N observations, drawn independently from the same
population, is available.

We code the two classes by the dichotomous variable Y , taking values 0, if G = 0
and 1, if G = 1.

The sample is thus {(yi , xi ), i = 1, . . . ,N}.

In the sequel we will denote pi = p(xi ;β).
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Logistic Regression Estimation

Estimation

Suppose that the observed sample is {(y1 = 0, x1), (y2 = 1, x2), . . . , (yN = 0, xN)}.

The probability of observing this sample (likelihood) implied by our model and by
our sampling mechanism (units are drawn independently) is

P(y1 = 0|x1)P(y2 = 1|x2) · · ·P(yN = 0|xN) = (1− p1)p2 · · · (1− pN)

Writing P(yi = k |xi ) = pyii (1− pi )
1−yi , which is a handy notation for saying that

when yi = 1 then we should have pi , whereas when yi = 0 then we should have
1− pi , the likelihood is defined as the joint probability associated with the observed
sample

L(β) =
N∏
i=1

pyii (1− pi )
1−yi .

This is a function of β.
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Logistic Regression Estimation

The log-likelihood is

ℓ(β) =
N∑
i=1

[yi ln pi + (1− yi ) ln(1− pi )]

The maximum likelihood estimator of β is the value of β that maximises ℓ(β) (or
equivalently L(β)).
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Logistic Regression Specification

Example: German Credit Data

The German Credit data set consists of N = 1000 consumers’ credits from a
southern German bank (source: Fahrmeir and Tutz and
http://www.stat.uni-muenchen.de/service/datenarchiv/kredit/kredit e.html

The output variable is Creditability (Group), (0: credit-worthy, 1: not credit-worthy).
20 inputs were collected. A forward stepwise procedure selects the following inputs
Duration Duration in months (quantitative)
CreditAmount Amount of credit in DM (quantitative)
StatusCAccount Balance of current account (categorical)
CreditHistory Payment of previous credits (categorical)

as well as the square of CreditAmount and the interaction of Duration and
CreditAmount
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Logistic Regression Specification

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.575e-02 4.588e-01 -0.143 0.886062

Duration 9.020e-02 1.562e-02 5.776 7.63e-09 ***

CreditAmount -1.963e-04 9.569e-05 -2.051 0.040247 *

factor(StatusCAccount)A12 -5.438e-01 1.889e-01 -2.879 0.003988 **

factor(StatusCAccount)A13 -1.064e+00 3.394e-01 -3.135 0.001717 **

factor(StatusCAccount)A14 -1.888e+00 2.084e-01 -9.056 < 2e-16 ***

factor(CreditHistory)A31 -2.021e-01 4.839e-01 -0.418 0.676300

factor(CreditHistory)A32 -1.035e+00 3.815e-01 -2.713 0.006674 **

factor(CreditHistory)A33 -9.962e-01 4.417e-01 -2.255 0.024111 *

factor(CreditHistory)A34 -1.631e+00 4.031e-01 -4.046 5.21e-05 ***

I(CreditAmount^2) 4.279e-08 1.012e-08 4.226 2.38e-05 ***

I(Duration * CreditAmount) -1.076e-05 2.777e-06 -3.876 0.000106 ***

---

Null deviance: 1221.73 on 999 degrees of freedom

Residual deviance: 996.76 on 988 degrees of freedom

AIC: 1020.8

Confusion matrix

FALSE TRUE

0 636 64

1 176 124
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Logistic Regression Specification

Figure: kredit dataset. Plot of yi and p̂i versus the logits β̂
′
x
′
i
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Logistic Regression Diagnostic checking, hypothesis testing and goodness of fit

Diagnostic checking, hypothesis testing and goodness of fit

The square root of the diagonal element is the standard error and
zk = β̂k/st.err(β̂k) (the z-value) is the test statistic for the null that the k-th
coefficient is 0.

Its square is the Wald test for the same null (chi-squared distribution).

Diagnostic checking is carried out by the Pearson residual

ri =
yi − p̂i√
p̂i (1− p̂i )

.
The Pearson Statistic

χ2 =
N∑
i=1

r2i

can be used to assess the goodness of fit.
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Logistic Regression Diagnostic checking, hypothesis testing and goodness of fit

The deviance residual, di , is the signed square root of
−2 [yi ln p̂i + (1− yi ) ln(1− p̂i )] .

The deviance is
D = −2[ℓ(β̂)] =

∑
i

d2
i

(the sum of squares of the deviance residuals).

The null deviance D0 = −2ℓ0 is the model with β1 = · · · = βp = 0 (only the
intercept is fitted, so that p̂ = N1/N and ℓ0 = N1 ln(N1/N) + N0 ln(N0/N)).

A measure of the training error is ērr = − 2
N ℓ(β̂) = D/N.

The proportion of units missclassified when the Bayes classifier is adopted is the
measure of training error consistent with the 0-1 loss. The classifier is Ĝ (x) = 1 if

β̂
′
x > 0, because this implies P(G = 1|x) > 0.5.
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Logistic Regression Diagnostic checking, hypothesis testing and goodness of fit

Model selection criteria

AIC = −2
1

N
ℓ(β̂) + 2

p

N

BIC = −2
1

N
ℓ(β̂) + ln(N)

p

N

(note: the null model always features the intercept, and thus the d.f. are p)
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