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Vectors

Vectors

A vector is a collection of numbers (scalars) ordered by column (or row).

a =


a1
...
ai
...
an

 , a =

 5
−2
−3

 , a =

[
1
1

]

From a geometric perspective, a is a point in a n-dimensional space (a subset of
Rn), with coordinates provided by the elements ai .
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Vectors

The symbol a′ (a transpose) denotes a row vector: a′ = [a1, a2, . . . , an].
Special cases:
0 (zero vector);
ei = [0, . . . , 0, 1, 0, . . . , 0]′ (unit vector);
i = [1, 1, . . . , 1]′.
Basic operations:

Multiplication by a scalar.
Let ρ denote a scalar; ρa is the vector with elements {ρai}. [Geom.
Interpretation: a point in the same direction as a].
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Vectors

Sum of two vectors.
Let a and b be two vectors with the same size n; their sum c = a + b is the
vector with elements ci = ai + bi . [Geometric Int.: a new point in Rn obtained
by the parallelogram rule].

Linear combination.
Let a and b denote 2 vectors and let ρ1 e ρ2 be two coefficients:

ρ1a + ρ2b

is their linear combination.
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Vectors

Figure: Sum of two vectors (parallelogram rule )
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Vectors

Inner (scalar) product

The inner product between the two n-dimensional vectors a and b is defined as

a′b =
n∑

i=1

aibi

Example:

a =

 2
−1
3

 ,b =

 5
−2
−3

 ,⇒ a′b = 2 · 5 + (−1) · (−2) + 3 · (−3) = 3
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Vectors Inner (scalar) product

Example: x̄ = n−1i ′x is the average of the elements of x .

n = 4, x =


3
4
2
7

 , i =


1
1
1
1

 ,

⇒ 1

4
x ′i =

1

4
(3 · 1 + 4 · 1 + 2 · 1 + 7 · 1) = 4

Example: let x and y be zero mean vectors containing n measurements on two
variables (n−1i ′x = n−1i ′y = 0). Then Cxy = n−1x ′y is the sample covariance.
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Vectors Inner (scalar) product

Vector Norm or length

By Pythagoras theorem, the norm of a is the square root of the inner product of a
with itself:

∥ a ∥=
√
a′a =

(
n∑

i=1

a2i

)1/2

This is the distance from the origin of the point a or the length of the vector.

||a|| ≥ 0

The (normalized) vector a/||a|| has unit length.
Example: let x a zero mean vector. Then SDx = n−1/2||x || is the sample standard
deviation of X ; Dx = ||x ||2 is the deviance of X and Vx = Dx/n is the variance.
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Vectors Inner (scalar) product

Euclidean distance

The distance between the vectors xi and xj is the norm of the difference vector
xi − xj :

dij = ||xi − xj || =
√

(xi − xj)′(xi − xj) =

(
p∑

k=1

(xik − xjk)
2

)1/2

Orthogonality
Two vectors are orthogonal, a ⊥ b, iff their inner product is zero, a′b = 0.
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Vectors Inner (scalar) product

Examples

a =

[
1
1

]
,b =

[
1

−1

]
, ||a|| = ||b|| =

√
2, a′b = 0

c =

[
1

−3

]
,d =

[
.6
.2

]
,

||c || =
√
10 = 3.16, ||d || =

√
.4 = 0.63, c ′d = 0

a′c = −2
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Vectors Inner (scalar) product

Cauchy-Schwartz inequality:

|a′b| ≤ ||a|| · ||b||

(equality holds iff a = ρb, ρ ≥ 0).
This is used to prove that |Cxy | ≤ SDx · SDy

Triangular inequality:
||a + b|| ≤ ||a||+ ||b||

(equality holds iff a ⊥ b).
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Vectors Inner (scalar) product

Geometric interpretation

Let a,b ∈ V ⊆ Rn.

We can choose a scalar ρ and a vector c , orthogonal to b, b ⊥ c , so that, by
the parallelogram law, a = c + ρb.

The vector â = ρb is the orthogonal projection of a along the vector b.

The inner product of both sides of a = c + ρb and the vector b yields

a′b = c ′b + ρb′b = ρ||b||2.

Thus, ρ = a′b/||b||2, and we can write the projection of a

â =
a′b

||b||2
b

(we can rearrange the formula in this way: â = b(b′b)−1b′a)

Tommaso Proietti (DEF Tor Vergata) Statistical Learning AA 2023-24 12 / 41



Vectors Inner (scalar) product

Figure: Geometric interpretation of inner product
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Vectors Inner (scalar) product

Note: ρ = (b′b)−1b′a represents the coordinate of the point a in the subspace
generated by the vector b.

Denoting by θ the angle formed by the two vectors a e b,

| cos θ| = ||ρb||
||a||

=
|a′b|

||a|| ||b||

or
a′b = ||a|| ||b|| cos θ.

Note: a ⊥ b ⇒ θ = π
2 + kπ, k = 0,±1,±2, . . ..
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Vectors Inner (scalar) product

Example: regression and correlation

Let x and y be zero mean vectors containing n measurements on two variables X
and Y .
The scalar

x ′y

||x ||2
= (x ′x)−1x ′y =

Cxy

Vx

is the coefficient of the regression of Y on X and

ŷ =
Cxy

Vx
x

is the vector of predicted values of Y .∑
i xiyi√

(
∑

i x
2
i )(
∑

i y
2
i )

is the sample correlation coefficient.
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Matrices

Matrices

A matrix is a rectangular (n × p) or two-dimensional array of numbers.

X =



x11 x12 . . . x1k . . . x1p
x21 x22 . . . x2k . . . x2p
...

...
...

...
...

...
xi1 xi2 . . . xik . . . xip
...

...
...

...
...

...
xn1 xn2 . . . xnk . . . xnp


.

The rows or columns can be considered as vectors.
We can also write X = {xik}. In a typical data matrix, the index i = 1, . . . , n, refers
to the statistical units, and the index k = 1, . . . , p, to the variables or attributes.
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Matrices

We can represent X as a partitioned matrix whose generic block is the 1× p row
vector x ′

i = [xi1, xi2, . . . , xik , . . . , xip], which contains the profile of the i-th row unit.

X =


x ′
1
...
x ′
i
...
x ′
n

 .

Alternatively, we can partition

X = [x1, x2, . . . , xk , . . . , xp] ,

where xk is the n × 1 column vector referring to the k-th variable.
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Matrices

Matrix manipulations

Matrix transpose: transposition yields the m × n matrix with rows and columns
interchanged:

X ′ =



x11 x21 . . . xi1 . . . xn1
x12 x22 . . . xi2 . . . xn2
...

...
...

...
...

...
x1k x2k . . . xik . . . xnk
...

...
...

...
...

...
x1p x2p . . . xip . . . xnp


,

Scalar multiplication: ρX = {ρxik},
Matrix sum: C = X + Y , cik = {xik + yik}
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Matrices

Matrix product

let A be an e n×m matrix whose i-th row is the 1×m vector a′i . Let also B be an
m × p matrix whose j-th column is the m × 1 vector bj , so that

A =


a′1
...
a′i
...
a′n

 , B = [b1, . . . ,bj , . . . ,bp]

The matrix product C = AB, where A pre-multiplies B, is the n × p matrix with
elements

cij = a′ibj =
m∑

k=1

aikbkj , i = 1, . . . , n; j = 1, . . . , p.
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Matrices

Properties

(A′)′ = A

(A+ B)′ = A′ + B ′

(AB)′ = B ′A′.

(AB)C = A(BC )

A(B + C ) = AB + AC

Il matrix product is not commutative: if n ̸= p, BA is not even defined.
Notice the difference between X ′X (p × p matrix of crossproducts) and XX ′

(n × n)
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Matrices

Examples:

A =

 1 0
5 −1
3 2

 ,B =

[
2 −1
3 6

]
, i =

 1
1
1


C = AB =

 2 −1
7 −11
12 9

 , i ′C = [21 − 3]

BA is not defined.
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Matrices

Mean vector:

1

n
X ′i = x̄ x̄ =


x̄1
...
x̄k
...
x̄p

 , (p × 1)

x̄ ′ =
1

n
i ′X = [x̄1, . . . , x̄k , . . . , x̄p] , (1× p)
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Matrices

Important special cases

A square matrix has many rows as columns (m = n).
A square matrix A is symmetric if A′ = A.
Diagonal matrix: a square matrix with nonzero diagonal entries

D =



d1 0 . . . 0 0

0 d2
. . . 0 0

...
. . .

. . .
. . .

...

0 0
. . . dn−1 0

0 0 . . . 0 dn


= diag(d1, . . . , dn)

Identity matrix: if A is n × n, InA = A, AIm = A.

I =



1 0 . . . 0 0

0 1
. . . 0 0

...
. . .

. . .
. . .

...

0 0
. . . 1 0

0 0 . . . 0 1


,
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Matrices

Scalar matrix: ρI

Quadratic form: let A be an n dimensional square matrix and x an n × 1
vector. The scalar x ′Ax is called a quadratic form.

A symmetric matrix A such that, for any vector x , x ′Ax ≥ 0 is said to be
semi-positive (nonnegative) definite. If x ′Ax > 0,∀x ∈ Rn, the matrix is
positive definite (p.d.).

Outer product: if x an n × 1 vector, the outer product xx ′ is an n × n matrix.
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Matrices

Example: variance covariance matrix S (p × p):

S =



s21 s12 . . . s1k . . . s1p
s21 s22 . . . s2k . . . s2p
...

...
. . . . . .

...
...

sk1 sk2 . . . s2k . . . skp
...

... . . .
...

. . .
...

sp1 sp2 . . . spk . . . s2p


,

s2k =
1

n

n∑
i=1

(xik − x̄k)
2, shk =

1

n

n∑
i=1

(xih − x̄h)(xik − x̄k)

S is symmetric (shk = skh), and p.d.
In terms of the original data matrix X ,

S =
1

n
(X − inx̄

′)′(X − inx̄
′) =

1

n
X ′X − x̄ x̄ ′,

where in is an n × 1 of ones.
In terms of the unit profiles

S =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)′
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Matrices Rank

Matrix rank

Let A be n ×m.

Column (row) space: the vector space generated by the column (row) vectors
that form the matrix A.

Column (row) rank: the dimension of the vector space generated by the
columns (rows) of the matrix A.

The column and row rank are coincident and so we can define the rank of the
matrix as the maximum number of linearly independent vectors (those forming
either the rows or the columns) and denote it by r(A). Obviously,
r(A) ≤ min(n,m).

Assume m ≤ n. If r(A) = m the matrix is full column rank. If further m = n,
A is full rank.

Note: if Ab = 0 for b ̸= 0, the columns of A are linearly dependent and A is
reduced rank.
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Matrices Determinant

Determinant

Let A be n × n.

Its determinant, det(A), or |A|, is a scalar, whose absolute value measures the
volume of the parallelogram delimited in Rn by the columns of A.

For the identity matrix, |I | = 1.

For D = diag(d1, . . . , dn)

|D| = d1 · d2 · · · dn =
n∏

i=1

di

Moreover, if ρ is a scalar |ρD| = ρn|D|.
If A is 2× 2,

|A| =
∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21.
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Matrices Determinant

The general expression for the determinant is the following Laplace (cofactor)
expansion:

|A| =
n∑

j=1

aij(−1)i+j |Aij |,

where Aij is the submatrix obtained from A by removing the i-th row and the j-th
column; |Aij | is called a minor of A and (−1)i+j |Aij | is a cofactor.
(We do not need to bother about this formula. The computation of the
determinant is usually carried out by transforming the matrix into a simpler form,
e.g. triangular).
Properties

If the columns (rows) of A are linearly dependent, so that rank(A) < n,
|A| = 0.

|AB| = |A| |B|.
|A′| = |A|.
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Matrices Trace

Trace of a matrix

The trace of a square matrix is the sum of its diagonal elements.
If A is n × n,

tr(A) =
n∑

i=1

aii

Properties:

tr(ρA) = ρtr(A)

tr(A+ B) = tr(A) + tr(B)

tr(A′) = tr(A)

tr(AB) = tr(BA), if both products exist.
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Matrices Linear systems

Linear equations systems

Consider the system of n linear equations in n unknowns, where A is a known n× n
coefficients matrix and b a known n × 1 vector:

Ax = b.

The system is said to be homogeneous if b = 0.

In the latter case there exists non trivial solutions (x ̸= 0) iff A has reduced
rank (rank(A) < n) or the columns of A are linearly dependent, or equivalently
|A| = 0.

A non homogeneous system admits a unique solution iff |A| ≠ 0, or
equivalently rank(A) = n. In such case the solution can be written is

x = A−1b

where A−1 is the inverse of A.
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Matrices Matrix Inverse

Matrix Inverse

Let A be a square matrix of dimension p with full rank (r(A) = p).

The inverse matrix is the matrix B which when pre-multiplied or
post-multiplied by A returns the identity matrix:

BA = I , AB = I .

In the sequel we shall write B = A−1.

The inverse exists and is unique iff r(A) = p, in which case we say that A is
non singular or invertible.

For a diagonal matrix the computation of the inverse is immediate:
D−1 = diag(1/d1, . . . , 1/dn).

In general, the computation of the inverse entails the solution of a system of
p2 linear equations in p2 unknowns.
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Matrices Matrix Inverse

The solution can be expressed as follows

A−1 =
1

|A|
A∗

where A∗ is known as the adjoint matrix of A, with elements given by the cofactors
of A:

a∗ji = (−1)i+j |Aij |
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Matrices Matrix Inverse

We now illustrate the 2× 2 case. Form the definition of an inverse,
AB = I , it follows [

a11 a12
a21 a22

] [
b11 b12
b21 b22

]
=

[
1 0
0 1

]
.

This yields a system of 4 equations in 4 unknowns with solution:[
b11 b12
b21 b22

]
= 1

a11a22−a12a21

[
a22 −a12
−a21 a11

]
.

Here, we have

|A| = a11a22 − a12a21, A∗ =

[
a22 −a12
−a21 a11

]
.

Tommaso Proietti (DEF Tor Vergata) Statistical Learning AA 2023-24 33 / 41



Matrices Matrix Inverse

Examples:
S = diag{10, 20, 1/2}; S−1 = diag{0.1, 0.05, 2}

S = diag{10, 20, 0}; S−1 does not exist

R =

[
1.0 0.2
0.2 1.0

]
;R−1 =

[
1.04 −0.21

−0.21 1.04

]
R =

[
1.0 0.9
0.9 1.0

]
;R−1 =

[
5.26 −4.74

−4.74 5.26

]
R =

[
1.0 −0.9

−0.9 1.0

]
;R−1 =

[
5.26 4.74
4.74 5.26

]
R =

[
1 −1

−1 1

]
;R−1 does not exist

R =

[
1 1
1 1

]
;R−1 does not exist

X =


10 20 15
15 15 15
5 3 4

20 32 26

 ; (X ′X )−1 does not exist
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Matrices Matrix Inverse

Properties of the matrix inverse

Hereby we list some useful properties of matrix inverse.

|A−1| = 1/|A|
(A−1)−1 = A

(A−1)′ = (A′)−1

(AB)−1 = B−1A−1

Orthogonal matrix A square matrix is orthogonal if the transpose and the inverse
coincide

A′A = I AA′ = I
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Appendix Vector spaces and bases

Vector Spaces and Bases

Let e1 =

[
1
0

]
, e2 =

[
0
1

]
.

[
1
1

]
= 1 · e1 + 1 · e2 = i ;

[
0.7

−0.3

]
= 0.7 · e1 − 0.3 · e2

All the points lying on the plane [x1, x2]
′ ∈ R2 can be generated by linearly

combining e1 and e2.
The set of vectors in R2 will be call a vector space, while e1 and e2 form a basis of
that vector space.
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Appendix Vector spaces and bases

A vector space is a set of vectors that is closed with respect to scalar
multiplication and vector sum (a,b ∈ V ⇒ c = ρ1a + ρ2b ∈ V, where V is a
VS).

Any set of n-vectors such that any linear combination of the vectors in V ⊆ R
is also in V constitutes a basis of the vector space.
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Appendix Vector spaces and bases

Example i. a =

[
1
2

]
,b =

[
3
.5

]
form a basis for R2. Note: the basis is not unique.

Example ii. a =

[
1
0

]
,b =

[
3
0

]
do not form a basis for R2, but only for R (the vector [c1, c2]

′, c2 ≠ 0, belonging to
R2, cannot be obtain from a linear combination a and b).

Note: a e b = ρa are not a basis for R2.
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Appendix Linear dependence

Linear dependence

If a given vector can be formed by a linear combination of one or more vectors,
the set of vectors (including the given one) is said to be linearly dependent;
conversely, if in a set of vectors no one vector can be represented as a linear
combination of any of the others, the set of vectors is said to be linearly
independent.

A set of vectors is linearly dependent if one or more of its elements can be
formed by a linear combination of any of the others elements of the set, or,
equivalently, there exists a non trivial (i.e. with nonzero coefficients) linear
combination yielding the null vector.

For instance, the three vectors

a =

 1
0
1

 ,b =

 0
1
1

 , c =

 2
−1
1


are linearly dependent as c = 2a − b, or equivalently, 2a − b − c = 0.
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Appendix Linear independence

Linear independence

A set of vectors {a1, . . . , an} is linearly independent if

ρ1a1 + ρ2a2 + · · ·+ ρnan = 0 ⇐⇒ ρ1 = · · · = ρn = 0

The basis of an n-dimensional vector space is formed by any set of n linearly
independent vectors.
Example:

a =

 1
0
1

 ,b =

 0
1
1

 , c =

 2
−1
1

 , u =

 2
−1
0


while {a,b, c} are linearly dependent (2a − b − c = 0).
a,b,u are linearly independent.
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Appendix Linear independence

Dimension of a vector space

The dimension of a vector space V ⊆ Rn generated by n vectors is the largest
number (≤ n) of linearly independent vectors that generate V.
Example: the dimension of the vector space generated by a, b and
c = ρ1a + ρ2b, with a and b linearly independent is 2.
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