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Introduction

Introduction

Let us consider the regression model with a single input X :

Y = f (X ) + ϵ,

where f (X ) = E(Y |X ) is an unknown conditional mean function.

f (X ) is possibly nonlinear and non-additive.

In the linear regression framework we considered the global polynomial
approximation

f (X ) = β0 + β1X + β2X
2 · · ·+ βpX

p.

Here global means that the coefficients of the polynomial are constant across
the sample span of X and it is not possible to control the influence of the
individual observations on the fit.
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Introduction

Global polynomials are amenable to mathematical treatment, but are not very
flexible: they can provide bad local approximations and behave rather weirdly
at the extremes of the sample.

This point is illustrated by the first panel of figure 1, which plots the original
series, representing the industrial production index for the Italian Automotive
sector, and the estimate of the trend arising from fitting cubic and quintic
polynomials of time.

In particular, it can be seen that a high order is needed to provide a reasonable
fit (the cubic fit being very poor).
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Introduction

Industrial Production Index, Manufacture and Assembly of Motor Vehicles,
seasonally adjusted, Italy, January 1990 - October 2005.
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Regression splines Specification

Regression splines

We will discuss the approximation

f (X ) =
M∑

m=1

βmhm(X ),

which retains linearity in the regression coefficients and uses a suitable set of
transformation or functions of X , hm(X ), called basis.

In the case of polynomial splines the idea is to add to a global polynomial of
order p polynomial pieces at given points, called knots, so that the sections are
joined together, ensuring that certain continuity properties are fulfilled.

Given the set of points ξ1 < . . . < ξk < . . . ξK , a polynomial spline function of
degree p with K knots {ξk , k = 1, . . . ,K} is a polynomial of degree p in each
of the k +1 intervals [ξk , ξk+1), with p− 1 continuous derivatives, whereas the
p-th derivative has jumps at the knots.
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Regression splines Truncated power basis functions

The spline can be represented as follows:

f (X ) = β0 + β1X + · · ·+ βpX
p +

K∑
k=1

βp+k(X − ξk)
p
+, (1)

where the set of functions

(X − ξk)
p
+ =

{
(X − ξk)

p, X − ξk ≥ 0,
0, X − ξk < 0

defines what is usually called the truncated power basis of degree p.
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Regression splines Truncated power basis functions

Figure: Truncated power basis for polynomial spline models.
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Regression splines Truncated power basis functions

According to (1) the spline is a linear combination of polynomial pieces; at
each knot a new polynomial piece, starting off at zero, is added so that the
derivatives at that point are continuous up to the order p − 1.

The truncated power representation has the advantage of representing the
spline as a multivariate regression model.

The piecewise nature of the spline “reflects the occurrence of structural
change” (Poirer, 1973). The knot ξi is the location of a structural break. The
change is “smooth”, since certain continuity conditions are ensured.

The coefficients βk determines the size of the break.
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Regression splines Cubic splines and natural boundary conditions

Cubic splines and natural boundary conditions

The cubic spline model arises when p = 3:

f (X ) = β0 + β1X + β2X
2 + β3X

3 + β4(X − ξ1)
3
+ + · · ·+ βK+3(X − ξK )

3
+.

The model has K + 4 parameters and the number of effective degrees of freedom is
df = 4 + K .

A cubic spline (like any other high order spline) behaves too erratically at the
boundary of the X support, i.e. the variance of the fit is very high.
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Regression splines Cubic splines and natural boundary conditions

Training sample (xi , yi ) and true regression function
f (X ) = [exp(1.2X ) + 1.5 sin(7X )− 1]/3.
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Regression splines Cubic splines and natural boundary conditions

Comparison of cubic and linear spline fit with 4 internal equally spaced knots at 0.2,
0.4, 0.6, 0.8.
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Regression splines Cubic splines and natural boundary conditions

Cubic spline fit with different K and global cubic fit (knots are located
automatically at quantiles of the X distribution.
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Regression splines Cubic splines and natural boundary conditions

This is the reason why it is preferable to impose the so called natural boundary
conditions, which constrain the spline be linear outside the boundary knots.

The natural boundary conditions require that the second and the third
derivatives are zero for x ≤ ξ1 and x ≥ ξK . This amounts to imposing 4
restrictions, and this frees 4 df.

The complexity of the spline model is measured by the degrees of freedom,
which is the trace of the hat matrix. This is equal to p + 1 + K for polynomial
splines and K for a natural cubic spline.
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Regression splines Natural boundary conditions

Natural boundary conditions

The 2nd and 3rd derivatives of

f (X ) = β0 + β1X + β2X
2 + β3X

3 +
K∑

k=1

βk+3(X − ξk)
3
+

are respectively

f
′′
(X ) = 2β2 + 6β3X + 6

K∑
k=1

βk+3(X − ξk)+

f
′′′
(X ) = 6β3 + 6

K∑
k=1

βk+3(X − ξk)
0
+.

The natural boundary conditions imply the following constraints on the coefficients:

β2 = β3 = 0;
K∑

k=1

βk+3 = 0;
K∑

k=1

ξkβk+3 = 0
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Regression splines Natural boundary conditions

Natural cubic splines. Comparison of fit with different K and global cubic fit.
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Regression splines Selection of Knots

Model selection: how many knots? Where?

Model selection is carried out by the same methods considered for regression.

It entails not only the selection of the number of knots, K , but also their
location along the support of X .

The automatic option is to locate them at the 100k/(K + 1), k = 1, . . . ,K -th
percentiles of the distribution of X .

If there are K candidate knots, there are 2K possible models to select.
Stepwise selection has been proposed. An alternative is to use a regularization
approach, i.e. smoothing splines.

Model complexity is measured by the degrees of freedom, e.g.
df = trace(H) = p + 1 + K for a polynomial spline.

Note: the truncated power basis is easily interpretable; however, for computational
efficiency a linear transformation of this basis, the B-spline basis, is used for
estimation (the regressors are less collinear and more ‘sparse’).
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Smoothing splines

Smoothing splines

A smoothing spline is a natural cubic spline with N knots placed at each
observation xi , i = 1, . . . ,N. Hence each new observation carries “news”.

Obviously, such a model is overparameterized, as the number of parameters is
N, i.e. there is one parameter for each observation.

We can write f (X ) =
∑N

k=1 θkNk(X ), where Nk(X ) are the elements of the
natural spline basis corresponding to the knots xk ’s.

The coefficients θk are estimated by minimising the following penalised residual
sum of squares function:

PRESS(λ) = min

{
N∑
i=1

[yi − f (xi )]
2 + λ

∫
[f ′′(x)]2dx

}
, (2)

where λ ≥ 0 is the smoothness parameter, f ′′(x) is second derivative of the
function, and

∫
[f ′′(x)]2dx is the curvature of the function.

Tommaso Proietti (DEF Tor Vergata) Statistical Learning AA 2024-25 17 / 24



Smoothing splines Estimation

The parameter λ regulates the complexity of the model.

For λ = 0, the spline fits the observations perfectly (yi = f̂ (xi )).

For λ → ∞ we obtain the linear fit f̂ (xi ) = β̂0 + β̂1xi (the linear function has
zero second derivative and so

∫
[f ′′(x)]2dx = 0).

In vector notation, writing f = Nθ,

PRESS(λ) = (y −Nθ)′(y −Nθ) + λθ′Ωθ,

where N is the regression matrix of the natural spline and Ω has elements∫
N

′′

h (x)N
′′

k (x)dx .

For a fixed value of λ, the solution is

θ̂ = (N ′N + λΩ)−1N ′y

(notice the analogy with ridge regression).
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Smoothing splines Estimation

The estimated regression function is f̂ = Hλy , where
Hλ = N(N ′N + λΩ)−1N ′.

The effective degrees of freedom (complexity) of the spline fit is

df (λ) = tr(Hλ).

When λ → ∞, df (λ) → 2 (minimal complexity), whereas as λ → 0
df (0) → N (maximum complexity).

The estimation of λ is carried out either by minimizing an information criterion
or by crossvalidation. Denoting

RSS(λ) =
N∑
i=1

[yi − f (xi )]
2,

AIC (λ) = ln[RSS(λ)] + 2df (λ)/N.
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Smoothing splines Crossvalidation

Crossvalidation

We seek the value of λ which minimises

CV (λ) =
N∑
i=1

(
yi − f̂ (xi )

1− hi,λ

)2

where hi,λ is the i-th diagonal element of Hλ, or

GCV (λ) =
RSS(λ)

[1− N−1df (λ)]2
.
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Smoothing splines Crossvalidation

Simulated example: N = 100, f (X ) = sin[12(X + 0.2)]/(X + 0.2), ϵ ∼ N(0, 1),
Y = f (X ) + ϵ.
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Smoothing splines Crossvalidation

Simulated example: N = 100, f (X ) = sin[12(X + 0.2)]/(X + 0.2), ϵ ∼ N(0, 1),
Y = f (X ) + ϵ. Smoothing spline fit.
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Nonparametric logistic regression

Nonparametric logistic regression

Polynomial splines can be easily adapted to logistic regression.

In particular, we specify

ln
P(G = 1|X = x)

P(G = 0|X = x)
= f (x).

As for spline smoothing, the function f can be estimated by minimizing the
penalized log-likelihood, where the additional term penalizes the curvature of
the function.

Again, for large values of λ the logits are a linear function of X , whereas for
small values a more complex fit is obtained.
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Multiple predictors

Multiple predictors

Multidimensional generalizations of regressions and smoothing splines are
difficult.

They suffer from the curse of dimensionality.

Restricted approaches, that impose additivity, like Generalized Additive Models
(GAMs, see later), are preferred.

We model only the main effects and leave out interactions.
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