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Dynamic games

So far we have investigated static games.

� Players had to simultaneously choose an action and then the
game ended.

In dynamic games, there will be more than one period of play.

� Players may have to choose more than one action.

� Players might observe other players’ past choice of action.
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Dynamic games: A first example

One classical example of dynamic games is an entry game.

Consider two firms, an incumbent and a potential entrant.

The potential entrant plays first and decide whether to enter (E )
the market or to stay out of it (O).

If the entrant decided to enter, the incumbent can choose either to
fight them F or to accommodate A.
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Dynamic games: A first example

A convenient way to describe those games is to draw a tree.

Entrant

1, 2

O

Incumbent

0, 0

F

2, 1

A

E

The first number is the entrant’s payoff.
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Dynamic games: A first example

What is peculiar about this game?

First, the incumbent can play only if the entrant has decided to
enter.

Second, when the incumbent plays, they know that the Entrant
has chosen to enter.

� The incumbent really observes the action chosen by the
entrant.

Third, we account for players’ payoffs only at the end of the
game.
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A first example: Game tree

This game seems different from the ones we have seen previously.

We will have to find a way to describe those games: Players,
Rules, Payoffs.

And a way to solve them: A solution concept.

We can start by trying to apply the tools we have already
introduced.

� Namely, the normal-form representation and Nash
equilibrium.
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A first example: Normal-form?

Normal-form. Players N = {Entrant, Incumbent}, AE = {O,E},
AI = {F ,A} and payoffs can be described using a payoff matrix:

Ent.\In. F A

O 1, 2 1, 2

E 0, 0 2, 1

The first problem we encounter with this description is that we do
not really understand what it means to play F and A when the
entrant stays out.
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A first example: Normal-form?

So, do we have to simply ignore the existence of F and A when
the entrant chooses O?

But when you play such a game, it is not because you are not able
to play that you cannot still make a plan about what you would
have played in that case.

This is where the notions of actions and strategies start to
become really different objects.
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A first example: Actions and strategies

Actions should be considered as the physical choices available to
agent.

� It describes what they are able to do at each period or after
moves of other players.

Strategies must be thought more like plans that players formulate
in their mind.

� If X happened I would choose to do Y .

� Does not necessarily occur at any moment.

� But the plan is there if the situation occurs.
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A first example: Nash equilibrium?

Hence, if we want to think about Nash equilibrium, we have to
think in terms of strategies and not in terms of actions.

Ent.\In. F A

O 1, 2 1, 2

E 0, 0 2, 1

In our example, when the entrant thinks about staying out, they
must try to anticipate what the incumbent would do if instead
they decided to enter.
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A first example: Nash equilibrium?

Nash equilibrium. If we apply our Nash equilibrium concept to
this game we obtain a solution.

Ent.\In. F A

O 1, 2 1, 2

E 0, 0 2, 1

We obtain two Nash Equilibria: (O,F ) and (E ,A).
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A first example: Nash equilibrium?

Ent.\In. F A

O 1, 2 1, 2

E 0, 0 2, 1

The Nash Equilibrium (E ,A) is easy to interpret.

� The Entrant enters and the Incumbent Accommodates.
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A first example: Nash equilibrium?

Ent.\In. F A

O 1, 2 1, 2

E 0, 0 2, 1

The Nash Equilibrium (O,F ) is a bit more subtle to interpret:

� The Entrant stays out and the Incumbent had planned to
fight in case the Entrant entered.

The Incumbent’s strategy is a threat.
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A first example: Nash equilibrium?

Ent.\In. F A

O 1, 2 1, 2

E 0, 0 2, 1

Do you find (O,F ) satisfying as a solution to this game?

We will see why the Nash equilibrium is not our first choice as a
solution concept for dynamic games.
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Extensive-form representation

Dynamic games can be represented with what we call the
extensive-form representation.

Like the normal form, the extensive form describes a wide range of
games.

It contains more information than the normal form because it
specifies also when players can play and what can they do in each
of their move.
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Extensive-form representation

The extensive form of a game specifies.

� Players.

� When each player can play.

� What each player can play when it is their turn.

� The payoff of each player for every possible terminal history
of the game.
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Extensive-form representation

More formally, the extensive form of a game specifies.

� Players: N = {1, . . . , n}.

� Nodes: A set X = {x1, . . . , xp}.
� A Root, or starting point: r ∈ X .

� Decision nodes for each player: Xi ⊆ X .

� Terminal nodes: T ⊆ X .

� Actions available at each decision node: Axi for xi ∈ Xi .

� Payoffs at each terminal nodes: ui : T → R.
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Extensive form: An Example

1
x0

2
x1

0, 2

x3
O

x5
1

−1,−1

x7
F

1, 1

x8
A

E

C

2
x2

0, 2

x4
O

x6
1

−2, 0

x9
F

−1, 1

x10
A

E

W
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Extensive-form: An example

� Players: N = {1, 2}.

� Nodes: X = {x0, . . . , x10}.
� A Root, or starting point: r = x0.

� Decision nodes: X1 = {x0, x5, x6}, X2 = {x1, x2}.

� Terminal nodes: T = {x3, x4, x7, x8, x9, x10}.

� Action spaces: Ax0 = {C ,W }, Ax1 = Ax2 = {O,E},
Ax5 = Ax6 = {F ,A}.

� Payoffs at each terminal nodes:

� For instance u1(x7) = −1 and u2(x9) = 0.

But we can use also the usual notation u1(C ,E ,A) = 1.
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Strategies and actions

In order to define possible solution concepts we need to precisely
define what is a strategy in an extensive-form game.

As said previously, a strategy is now a different object from an
action.

The set of actions of player i is simply a description of what is
available to this player at each node they are asked to play.

A strategy of player i is a complete plan of actions for all
possible contingency.

� It describes what player i plans to play at every node they are
asked to play.

� Be careful: The strategy also assigns an action to nodes that
“should not be reached”.
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Strategies: An example

Consider the following game.

1

2

3, 1

L

1, 2

R

U

2

2, 1

L

0, 0

R

D
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Strategies: An example

In this game, player 1 has to play first and must choose between U
and D.

� For them, an action and a strategy is the same.

� We write S1 = {U,D}.

S1 describes the complete plan of actions of P1 because they have
to play only in one node.

It is similar to what we have seen in static games.

Game Theory: Dynamic Games of Complete Information 25 / 96



Strategies: An example

Player 2 has to choose between L and R but in two possible
scenarios: After P1 played U or after P1 played D.

� For them, an action and a strategy is different.

� We write S2 = {LL, LR,RL,RR}.

S2 describes the complete plan of actions of P2 with the
convention that:

� The first letter corresponds to P2’s plan after U.

� The second letter corresponds to P2’s plan after D.
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Strategies: An example

Hence, LL corresponds to the strategy

� Play L after U.

� Play L after D.

And RL corresponds to the strategy

� Play R after U.

� Play L after D.

And so on.
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Strategies: Why?

Why should we define a complete plan of actions?

� Couldn’t we just “wait” to see what P1 does and define P2’s
action only for this case?

Assume we do that.

� How could P1 even decide what to do if they cannot
anticipate what P2 would play in each scenario?
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Strategies: Why?

When you play Chess and have to decide whether to move the
king to E4 or D5.

� You end up moving the king only to one of those location.

� But you had to think about the consequences of both
moves in terms of subsequent actions of the other player.

� So you have in mind that the other player would have played
different actions in each case.
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Nash equilibrium

Now that we have defined what is a strategy in a dynamic game
let us try to apply the Nash equilibrium concept to them.

Let us consider this game once again:

1

2

3, 1

L

1, 2

R

U

2

2, 1

L

0, 0

R

D
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Nash equilibrium

We could represent this game in normal form with the associated
payoff matrix.

1 \2 LL LR RL RR

U 3, 1 3, 1 1, 2 1, 2

D 2, 1 0, 0 2, 1 0, 0

It important to understand that for P2 we must take into account
strategies and not actions.

� That way, when P1 decides between U and D against LR, for
instance.

� P1 actually compares the history U followed by L to the
history D followed by R.
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Nash equilibrium

Underlining best responses we obtain:

1 \2 LL LR RL RR

U 3, 1 3, 1 1, 2 1, 2

D 2, 1 0, 0 2, 1 0, 0

Be careful when looking for P2’s BR:

� Both RL and RR “are” best response to U.

� It is solely because when considering P2’s BR against U we
should only consider the first letter in their strategies,

� i.e., the letter that corresponds to P2’s choice after U.
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Nash equilibrium

Hence,

1 \2 LL LR RL RR

U 3, 1 3, 1 1, 2 1, 2

D 2, 1 0, 0 2, 1 0, 0

tells us that (U,RR) and (D,RL) are Nash equilibria of this game.

� It is important to keep the full strategy of P2 (i.e. both
letters) even if one seems useless.

� In (D,RL), knowing that P2 would have played R against U is
as important as knowing that P2 plays L after D.
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Nash equilibrium

Consider (U,RR) and (D,RL) in the game tree.

1

2

3, 1

L

1, 2

R

U

2

2, 1

L

0, 0

R

D

Could you confirm that indeed both are Nash equilibria in the
sense that no player is willing to deviate?
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Nash equilibrium

Let us start with (D,RL).

If P1 believes that

� P2 plays R after U.

� P2 plays L after D.

Then playing U yields 1 while playing D yields 2.

� P1 has no incentive to deviate and play U instead of D.
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Nash equilibrium

Still considering (D,RL).

After observing D, P2

� obtains 1 by playing L.

� obtains 0 by playing R.

Then P2 has no incentive to deviate and play R instead of L
after D.
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Nash equilibrium

Then consider (U,RR).

If P1 believes that

� P2 plays R after U.

� P2 plays R after D.

Then playing U yields 1 while playing D yields 0.

� P1 has no incentive to deviate and play D instead of U.
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Nash equilibrium

Still considering (U,RR).

After observing U, P2

� obtains 1 by playing L.

� obtains 2 by playing R.

Then P2 has no incentive to deviate and play L instead of R
after U.
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Nash equilibrium: Satisfying?

Are we good then?

� (U,RR) and (D,RL) are indeed Nash Equilibrium.

But let us have a closer look at (U,RR).

1

2

3, 1

L

1, 2

R

U

2

2, 1

L

0, 0

R

D
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Nash equilibrium: Satisfying?

1

2

3, 1

L

1, 2

R

U

2

2, 1

L

0, 0

R

D

What does P2 prefers after D?

� L and not R.
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Nash equilibrium: Satisfying?

Hence it seems intuitive that if D was played, then P2 would
always play R and not L.

But we have found that (U,RR) was a Nash equilibrium.

� So it means that P2 has formulated the plan to play R after
D.

Where is the mistake here?

There is no real mistake but it is the weakness of the Nash
equilibrium as a solution concept in dynamic games.
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Nash equilibrium: Satisfying?

When we have considered deviations of P1, we have used the
unilateral deviation principle and considered the deviation of P1
against the fix strategy RR.

And thus we assumed that if P1 deviated to D, P2 would stick
to their plan and play R after D.

� But intuition suggests us that in that case P2 would have
then chosen L and not R.

� Because it is a dynamic game and P2 can now observe P1’s
choice before playing.
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Nash equilibrium: Satisfying?

It seems that the strategy RR is not sequentially rational.

We like to call this strategy a non-credible threat.

Because it’s a threat that makes P1 choose U instead of D,
fearing that playing D would lead to R.

� But if P1 were actually to choose D then it would be rational
for P2 to play L.

� Hence the initial threat is not credible.
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Beyond Nash equilibrium

It is not that we got the wrong Nash equilibria.

It is simply that this was a solution concept tailored to static
games.

We are now going to introduce a solution concept that takes this
problem into account.

� Namely, Subgame-perfect Nash equilibrium.
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Subgame-perfect Nash equilibrium

The new solution concept we introduce now is the
Subgame-perfect Nash equilibrium.

The name obviously suggests that it is going to work in a similar
fashion as the Nash equilibrium.

The new important word is: Subgame.

� Let us define what it means.
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What are we trying to improve?

Recall that some solutions obtained with the Nash equilibrium
concept were not satisfactory.

� Some players’ strategy were not sequentially rational.

More precisely, this may happen to strategies planned for
histories not played at equilibrium.

� That is, what player i had planned to do for some path of
plays that should not occur if everyone were playing their
equilibrium strategies.
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What are we trying to improve?

The problem is the way the Nash equilibrium deals with
deviations.

We cannot deal with the fact that if player i deviates then player j
might want to change their strategy after observing player i ’s
action.

� Because the Nash equilibrium allows only for unilateral
deviations for the whole game.

We are not going to change the concept of unilateral deviation
but we are going to break the game into subgames to account for
rational behavior at every stage.
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Subgames

The notion of subgames is simple.

In a dynamic game, the game does not necessarily end after a
player has taken an action.

If there are remaining stages to be played.

� We can see those remaining stages as a game itself.

� Namely, as subgames of the original game.

Game Theory: Dynamic Games of Complete Information 50 / 96



Subgames: An example

Consider the following game.

1

2

3, 1

L

1, 2

R

U

2

2, 1

L

0, 0

R

D

What could we call a subgame here?
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Subgames: An example

� At node x1 starts a subgame
in which only player 2 has to
play.

� Same at node x2.

� And at node x0 starts a
subgame which is the game
itself.

1
x0

2
x1

3, 1

L

1, 2

R

U

2
x2

2, 1

L

0, 0

R

D
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Subgames: Another example

Subgames:

� The game itself at x0.

� One at x1.

� One at x2.

� One at x5.

� One at x6.

1
x0

2
x1

0, 2

x3
O

1
x5

−1,−1

x7
F

1, 1

x8
A

E

C

2
x2

0, 2

x4
O

1
x6

−2, 0

x9
F

−1, 1

x10
A

E

W
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Subgames: Definition

A subgame of an extensive-form game is therefore a game that
starts at a decision node of some player.

All subgames of a given game can be identified by ∪i∈NXi .

� That is, the set of all decision nodes of all players.

Technically, we could say that there are also subgames starting at
terminal nodes.

� But those subgames are irrelevant because they represents
games in which players have no action at all.

Subgames of interest for us are those for which at least one
player still have an action to play.

Game Theory: Dynamic Games of Complete Information 54 / 96



Subgame: Sequential rationality

We can somewhat think about all those subgames independently.

Because at the start of each subgame, actions taken in the past
cannot be changed but are observed by players who still have to
play.

� Future actions cannot affect past actions.

� Subgames can be seen as independent games themselves.

Hence, it seems reasonable to think that each of those subgames
should be be played rationally by players.

� This is exactly the idea of Subgame-perfect Nash equilibrium.
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Subgame-perfect Nash Equilibrium

Definition. A Nash equilibrium is subgame-perfect if the players’
strategies constitute a Nash equilibrium in every subgame.

Remark: Notice that we still consider Nash equilibria but we
impose additional conditions on them, namely, subgame
perfection.

� We say that SPNE is a refinement of NE.

A SPNE is a NE, but a NE is not necessarily a SPNE.

� The set of SPNE is included in that of NE.
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Subgame-perfect Nash Equilibrium: An example

In this game we know that there are
two NE of the (sub)game starting at
x0.

They are (U,RR) and (D,RL).

1
x0

2
x1

3, 1

L

1, 2

R

U

2
x2

2, 1

L

0, 0

R

D
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Subgame-perfect Nash Equilibrium: An example

There are two other subgames, at x1
and at x2.

For the one starting at x1, only P2 has
to take an action.

� Clearly P2 prefers R to L.

� P2 playing R is a Nash
equilibrium of this subgame.

1
x0

2
x1

3, 1

L

1, 2

R

U

2
x2

2, 1

L

0, 0

R

D
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Subgame-perfect Nash Equilibrium: An example

For the one starting at x2, only P2 has
to take an action.

� P2 prefers L to R.

� P2 playing L is a Nash
equilibrium of this subgame.

1
x0

2
x1

3, 1

L

1, 2

R

U

2
x2

2, 1

L

0, 0

R

D
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Subgame-perfect Nash Equilibrium: An example

Consider the NE of the game (D,RL).

Players’ strategies are a Nash
equilibrium in every subgame.

� (D,RL) of the one starting at x0.

� R of the one starting at x1.

� L of the one starting at x2.

Hence (D,RL) is a SPNE of the
game.

1
x0

2
x1

3, 1

L

1, 2

R

U

2
x2

2, 1

L

0, 0

R

D
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Subgame-perfect Nash Equilibrium: An example

Consider now (U,RR).

As before,

� R is the NE of the subgame
starting at x1.

� L is the NE of the subgame
starting at x2.

It means that (U,RR) does not satisfy
the SPNE requirements.

� Playing R in the subgame starting
at x2 is not a NE of this
subgame.

1
x0

2
x1

3, 1

L

1, 2

R

U

2
x2

2, 1

L

0, 0

R

D
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SPNE: Noncredible threats

In the previous example, there is only one of the two NE which
is also a SPNE.

The SPNE solution concept allows us to eliminate the NE in
which P2 had a noncredible threat.

Imposing NE in every subgame eliminates moves that are not
sequentially rational.
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SPNE: Backward induction

For the types of dynamic games we consider, there is a practical
way to solve for the SPNE of the game.

Instead of looking for a NE in every subgame, we can also start
from each terminal history of the game and go backward while
checking for optimal moves.

This is what we call backward induction.

� It is not another solution concept.

� It is a practical way to find SPNE.
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Backward induction: Example 1

Consider once again this example.

1
x0

2
x1

3, 1

L

1, 2

R

U

2
x2

2, 1

L

0, 0

R

D
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Backward induction: Example 1

Starting from the end, we find the best choice of P2 in the
subgames starting at x1 and x2, respectively.

1
x0

2
x1

3, 1

L

1, 2

R

U

2
x2

2, 1

L

0, 0

R

D
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Backward induction: Example 1

Then, we go backward, to x0 and we determine P1 best choice
given the future choices of P2.

1
x0

2
x1

3, 1

L

1, 2

R

U

2
x2

2, 1

L

0, 0

R

D
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Backward induction: Example 1

Backward induction yields that (D,RL) is a SPNE.

The other Nash equilibrium, (U,RR) did not survive the
subgame-perfect refinement.

� It is the case because R is not a NE of the subgame starting
at x2.

Once again, it is important to include all strategies in the
description of the SPNE (D,RL).

� Knowing that P2 plays R after U is as important as knowing
that they play L after D.
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Backward induction: Example 2

Consider this more complicated example.

1
x0

2
x1

1, 2

x3
O

1
x5

−1,−1

x7
F

1, 1

x8
A

E

C

2
x2

0, 2

x4
O

1
x6

−2, 0

x9
F

−1, 1

x10
A

E

W
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Backward induction: Example 2

Step 1 of using backward induction yields:

1
x0

2
x1

1, 2

x3
O

1
x5

−1,−1

x7
F

1, 1

x8
A

E

C

2
x2

0, 2

x4
O

1
x6

−2, 0

x9
F

−1, 1

x10
A

E

W
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Backward induction: Example 2

Step 2 of using backward induction yields:

1
x0

2
x1

1, 2

x3
O

1
x5

−1,−1

x7
F

1, 1

x8
A

E

C

2
x2

0, 2

x4
O

1
x6

−2, 0

x9
F

−1, 1

x10
A

E

W
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Backward induction: Example 2

Step 3 of using backward induction yields:

1
x0

2
x1

1, 2

x3
O

1
x5

−1,−1

x7
F

1, 1

x8
A

E

C

2
x2

0, 2

x4
O

1
x6

−2, 0

x9
F

−1, 1

x10
A

E

W
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Backward induction: Example 2

Step 3 of using backward induction yields:

1
x0

2
x1

1, 2

x3
O

1
x5

−1,−1

x7
F

1, 1

x8
A

E

C

2
x2

0, 2

x4
O

1
x6

−2, 0

x9
F

−1, 1

x10
A

E

W
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Backward induction: Example 2

Collecting all the strategies that we have identified in each
subgame yields that:

The strategy profile (CAA,OO) is a SPNE of the game.

We can check that this strategy profile contains strategies that are
NE in every subgames.
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Backward induction: Example 2

Let us start with the game itself.

1 \2 OO OE EO EE

CFF 1, 2 1, 2 −1,−1 −1,−1

CFA 1, 2 1, 2 −1,−1 −1,−1

CAF 1, 2 1, 2 1, 1 1, 1

CAA 1, 2 1, 2 1, 1 1, 1

WFF 0, 2 −2, 0 0, 2 −2, 0

WFA 0, 2 −1, 1 0, 2 −1, 1

WAF 0, 2 −2, 0 0, 2 −2, 0

WAA 0, 2 −1, 1 0, 2 −1, 1
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Backward induction: Example 2

Underlining best responses:

1 \2 OO OE EO EE

CFF 1, 2 1, 2 −1,−1 −1,−1

CFA 1, 2 1, 2 −1,−1 −1,−1

CAF 1, 2 1, 2 1, 1 1, 1

CAA 1, 2 1, 2 1, 1 1, 1

WFF 0, 2 −2, 0 0, 2 −2, 0

WFA 0, 2 −1, 1 0, 2 −1, 1

WAF 0, 2 −2, 0 0, 2 −2, 0

WAA 0, 2 −1, 1 0, 2 −1, 1
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Backward induction: Example 2

We have 8 NE.

All of them lead to the same outcome but we know that 7 of them
have some strategies that are not sequentially rational.

Let us investigate now the subgame starting at x1 in normal-form:

1 \2 O E

F 1, 2 −1,−1

A 1, 2 1, 1
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Backward induction: Example 2

Hence we obtain the following NE:

1 \2 O E

F 1, 2 −1,−1

A 1, 2 1, 1

And if we check at the tree, we see that playing F in the subgame
starting at x5 is not a NE of this subgame.

Hence, only (A,O) is a SPNE of the subgame starting at x1.
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Backward induction: Example 2

We can go the same for the subgame starting at x2:

1 \2 O E

F 0, 2 −2, 0

A 0, 2 −1, 1

For the subgame starting at x6, F is not a NE of this subgame.

Hence, only (A,O) is a SPNE of the subgame starting at x2.
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Backward induction: Example 2

In the two subgames starting at x1 and x2, only (A,O) is a SPNE.

Then the only NE that survives subgame perfection is
(CAA,OO).

It is the same strategy profile as the one we have found using
backward induction.
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Stackelberg duopoly

We now investigate the Stackelberg duopoly setting.

Consider two firms, 1 and 2, producing an homogeneous good.

Firms choose how much quantity of the good they produce.

� Let q1 and q2 denote those quantities.

� The market price is defined by P(q1 + q2) with P ′ < 0 and P
continuously differentiable.

Each firm has a marginal cost of production equal to ci .
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Stackelberg : Normal form

Let us write this game using the normal-form representation.

� 1. Players: Firms, N = {1, 2}.

� 2. Actions: Each firm chooses its quantity qi ∈ R+.

� Hence the action space of firm i is Ai = R+.

� 3. Payoffs: Profits πi (qi , qj) =
(
P(qi + qj

)
− ci )qi .

So far, identical to the Cournot setting.
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Stackelberg duopoly: Dynamics

The difference between the Cournot and the Stackelberg
settings is the following.

In Stackelberg, we assume that one firm, say 1, plays first and set
q1. The second firm observes q1 and then decide how much to
produce, q2.

We say that firm 1 is the leader while firm 2 is the follower.

Hence, the Stackelberg duopoly is a dynamic game.
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Stackelberg duopoly: Backward induction

We proceed by backward induction to solve this problem.

That is, we start in the subgame in which firm 1 has already
set its quantity to q1 and we find firm 2’s best-response function
to that q1.

Once we have firm 2’s best-response function, we go back to the
first period of the game and we determine firm 1’s optimal choice
of q1 given firm 2’s best-response function.
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Stackelberg duopoly: Backward induction

Assume that the price is given by P(q1 + q2) = a− b(q1 + q2).

Let us start in the subgame after which firm 1 has chosen to
produce q1.

Firm 2 takes q1 as given and chooses q2 so as to solve

max
q2

π2(q1, q2) = (a− b(q1 + q2)− c2)q2.

Notice that this is the exact same problem faced by firm 2 in
the Cournot setting.
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Stackelberg duopoly: Backward induction

Hence, we expect firm 2’s best-response function to q1 to be
exactly the same as in the Cournot setting, that is,

q2(q1) =
a− c2 − bq1

2b
.

The subtle difference with the Cournot case is that this
best-response function is actually the best-response to what firm
2 observes.
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Stackelberg duopoly: Backward induction

Now we can go back to the first stage, when firm 1 plays.

Firm 2 perfectly anticipates that if it produces q1, then firm 2 will
produce q2(q1).

Firm 1 has no doubt about it because by definition q2(q1) is the
best thing firm 2 can do when facing q1.
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Stackelberg duopoly: Backward induction

Hence, firm 1 does not consider q2 as given, but consider firm 2’s
quantity to explicitly depends on q1 through q2(q1).

Firm 1’s problem therefore writes as follows:

max
q1

π1(q1, q2) =
(
a− b

(
q1 + q2(q1)

)
− c1

)
q1.

This maximization problem shows that firm 1 completely
internalizes firm 2’s best response.

Firm 1’s problem depends only on q1 (not on q2), hence solving
it will give us the equilibrium quantity q∗1 directly.
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Stackelberg duopoly: SPNE

In practice, you replace firm 2’s best-response function q2(q1) by
its expression and you obtain the following problem for firm 1:

max
q1

π1(q1, q2) =
(
a− b

(
q1 +

a− c2 − bq1
2b

)
− c1

)
q1.

Solving this problem (use the FOC) we directly obtain firm 1’s
equilibrium quantity:

q∗1 =
a+ c2 − 2c1

2b
.
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Stackelberg duopoly: SPNE

To obtain firm 2’s equilibrium quantity, we only have to plug q∗1
into firm 2’s best-response function:

q∗2 = q2(q
∗
1) =

a− cj − bq∗1
2b

=
a− c2
2b

− 1

2

a+ c2 − 2c1
2b

=
a+ 2c1 − 3c2

4b
.

We can say that (q∗1 , q
∗
2) is the SPNE of the Stackelberg duopoly.
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Stackelberg duopoly: Remarks

One can compute the total equilibrium quantity and equilibrium
price in Stackelberg.

Total quantity appears to be larger in Stackelberg than in
Cournot.

And so the market price is lower in Stackelberg than in Cournot.

Finally, the leader obtains a higher profit than the follower in
Stackelberg.

� Sometimes called the first-mover advantage.
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Observability in dynamic games

The extensive form can also be used to represent static games.

What really defines a static game is not the absence of dynamic
but the inability for players to observe the action taken by the
other players.

Consider a game with two players in which player 1 “physically”
plays before player 2.

� If player 2 does not observe the action taken by player 1, it
is as if the two players were playing simultaneously.

� In other words, it is as if the game were a static game.
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Dynamics without observability

Consider the following static game of complete information.

1 \2 L R

U 1, 3 3, 2

D 4, 0 2, 2

So far, we have interpreted this game as players simultaneously choosing
an action.

But this game could also be interpreted as follows:

� 1. Player 1 first secretly chooses U or D.

� 2. Player 2 chooses L or R.
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Extensive form of a static game

We could represent this static game with in extensive form.

1

1, 3

L

3, 2

R

U

4, 0

L

2, 2

R

D

2

Where the dashed line represents player 2’s inability to distinguish
at which node their are when playing.
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Extensive form of a static game

Notice that we could also change the order in which players choose
their action and still represent the same static game.

2

1, 3

U

4, 0

D

L

3, 2

U

2, 2

D

R

1
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