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General information

Structure

� Game Theory: 36h course + 12h practice

� Industrial Organization: Prof. Juha Tolvanen.

� Independent courses, two exams but in one session.

Schedule for Game Theory

� Course: Monday, Tuesday, Wednesday (6 weeks).

� Practice session: Thursday (6 weeks).
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General information

Material

� Course: Slides (Course webpage).

� Practice sessions: Problem sets (all solutions will be provided).

References

� Gibbons, R. (1992), Game theory for applied economists, Princeton
University Press

� Osborne, M.J., 2004. An introduction to game theory (Vol. 3, No. 3).
New York: Oxford university press.

� (advanced) Martin J. Osborne and Ariel Rubinstein (1994), A course in
game theory, MIT Press

� Tadelis S. (2013), Game Theory: An Introduction, Princeton University
Press
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Outline of the course

The course is divided in four parts:

1. Static games of complete information.

2. Dynamic games of complete information.

3. Static games of incomplete information.

4. Dynamic games of incomplete information.

Each new part will build on the previous ones.

� A good understanding of the first part is crucial to all the
others.
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What is game theory?

The very first question is: What is a game?

Let us start with what you usually call a game:

� Card games: War, Poker, Bridge, . . .

� Board games: Chess, Checkers, Go, . . .

� Rock-paper-scissors, dice game, . . .

� Sports: Football, handball, . . .

What are the common features of all those examples?
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What is game?

1. Multiple players

� At least two players interact.

2. A set of rules

� A description of which actions players can choose.

3. Identified outcomes

� A description of the consequences of players’ actions.

4. Conflict of interests

� Most of the time players prefer different outcomes.

� Not always true (see PS1)!
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Strategies

When you play a game against/with other players your formulate
strategies.

You try to anticipate what other players might do:

� According to their own interests and as a response of what
you might do.

And you try to find the best way to respond to their actions.

Example. In rock-paper-scissors, two players:

� For instance, if you play R the other wants to play P.

� But then you want to play S .

� But now the other wants to play R . . .

Game Theory: Static Games of Complete Information 8 / 174



Strategic interactions

The key idea is that players are aware of strategic interactions.

You know that other players anticipate or react to what you
choose to do and vice versa.

Another example. In Chess,

� When you consider moving the bishop to D4 or to E5.

� You try to anticipate how the other will play in each scenario,
according to their own interest.

� And you choose the scenario that seems the most favorable
to you.
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So what is game theory?

Game theory is a toolbox to describe and analyze games in a
systematic way.

It relies on a formal language to precisely define what is

� A game;

� Strategies;

� An equilibrium.

Mathematical formalism is helpful to

� Describe a wide range of possible games/results;

� Rely on rigorous logical reasoning.
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Why is game theory relevant to economics?

What does economics have to do with Chess, Poker or
Rock-Paper-Scissors?

Most economic problems involve several players who interact
and affect each other:

� Firms competing by choosing their price.

� States deciding on pollution regulation policies.

� Bargaining over the sale of a car.

� . . .
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Game theory and economics

Game theory is pervasive in modern economic theory.

A vast majority of fields heavily rely on game theory such as

� Industrial organization

� Auction theory

� Behavioral economics

� Political Economy

� . . .
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A brief look at standard microeconomics

Consider the following topics:

� Consumer theory

� Firm theory

� Market equilibrium

Several players interact with each other and take actions.

� How is that different from a game?
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A brief look at standard microeconomics

Recall for instance that in standard micro, a consumer solves

max
x1,...,xn

u(x1, , . . . , xn)

s.t.
n∑

i=1

pixi ≤ R.

The consumer takes prices p1, . . . , pn and the revenue R as given.

� It is solely a decision problem.

� The agent does not consider their effect on the rest of the
economy.
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A brief look at standard microeconomics

And a firm solves

max
z1,...,zp

pf (z1, , . . . , zn)−
p∑

i=1

wizi .

The firm takes the market price p and the input prices w1, . . . ,wp

as given.

� Also a simple decision problem.

� The firm acts as if producing more had no impact on the
market price.
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A brief look at standard microeconomics

In standard micro, all agents are atomistic.

None of them take into account their impact on the aggregate
demand/supply.

Maybe a reasonable assumption in a large economy.

But is it still reasonable when you have few players?

� Network providers.

� Supermarkets.

� Airlines.
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Goal of the course

Provide you with the basic toolbox to analyze games.

� Static and dynamic games of (in)complete information.

Some concrete applications like Cournot, Bertrand and
Stackelberg oligopolies.

But it is beyond the scope of the course to provide you with a
wide range of economic applications of game theory.

You will apply game theory to more concrete problems in the
Industrial Organization course.
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Our first game: Informal description

Two friends, 1 and 2, have planned to hang out.

� Our players.

But they have not decided where to meet and 1’s phone is dead.

They usually meet either at Pigneto or at San Giovanni.

� Their possible actions.

If they meet at the same place, they are happy, otherwise they are
sad.

� Their preferences associated with each action profile.
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Our first game: Players

Let us introduce a more formal language to describe this game.

1. Players

We call N := {1, 2} the set of players.

� Describes who is participating in the game.
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Our first game: Actions

2. Actions

We call Ai := {Pigneto, San Giovanni} the set of actions of player
i = 1, 2.

� Describes what each player can do in the game.

� Here, they have the same action space (not always the case).

Let (a1, a2) ∈ A1 × A2 be an action profile.

� For instance (P,P) means both players chose Pigneto.

� And (P, S) means player 1 chose Pigneto and player 2 San
Giovanni.
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Our first game: Payoffs (1)

3. Preferences/Payoffs

We have to describe players’ preferences over each action
profile.

Let ui : A1 × A2 → R be player i ’s utility.

� For instance, u1(P,P) tells us how much player 1 values the
situation in which they both went to Pigneto.
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Our first game: Payoffs (2)

We want to represent the fact that players are happy if they meet
at the same place and unhappy otherwise.

� The way to do this is not unique.

For instance, we could choose for i = 1, 2:

ui (P,P) = ui (S ,S) = 1

ui (P,S) = ui (S ,P) = 0.

That is, they get 1 if they go the same place and 0 otherwise.
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Our first game: Payoffs (3)

For games with discrete action spaces it is useful to introduce the
payoff matrix:

1 \ 2 Pigneto San Giovanni

Pigneto 1, 1 0, 0

San Giovanni 0, 0 1, 1

The first column (resp. row) represents player 1’s actions (resp.
player 2).

The first number in each cell represents player 1’s payoff for that
action profile. The second number is that of player 2.
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Normal-form representation

What we have just done with our first game was to define its
normal-form representation.

� 1. Players

� 2. Action spaces

� 3. Payoffs

Notice two important things:

� Players know everything about the game: Complete
information.

� Only one period: Static game.

Let us now define more generally what we call a game.
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Definition: Normal-form game

Definition. The normal-form representation of a static game of
complete information specifies

� 1. A set of players: N := {1, . . . , n}.

� 2. An action space for each player: Ai for each i ∈ N.

� Let A := ×i∈NAi .

� 3. Preferences of each player over action profiles:
ui : A → R for each i ∈ N.

Let us call this game G := ⟨N, (Ai )i∈N , (ui )i∈N⟩.
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Normal-form: Some examples

Rock-paper-scissors. Consider the 2-player game.

� 1. Players: N := {1, 2}.

� 2. Action spaces: Ai = {R,P,S} for i = 1, 2.

� 3. Preferences:

1 \ 2 R P S

R 0, 0 −1, 1 1,−1

P 1,−1 0, 0 −1, 1

S −1, 1 1,−1 0, 0
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Normal-form: Some examples

Prisoner’s dilemma. Very famous example.

� 1. Players: N := {1, 2}.

� 2. Action spaces: Ai = {Confess,Stay silent} for i = 1, 2.

� 3. Preferences:

1 \ 2 C S

C −5,−5 0,−10

S −10, 0 −1,−1
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Normal-form: Some examples

Cournot oligopoly. n firms compete by choosing how much
quantity they produce.

� 1. Players: N := {1, . . . , n}.

� 2. Action spaces: Ai = R+, i.e. each firm chooses qi ≥ 0.

� 3. Preferences: Profits (see later for details).
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Solution concept

Now we know how to represent a wide range of possible games
with a concise and precise notation.

The next step is to solve those games.

� That is, find what players will play and what will be the
outcome of the game.

There is no unique way to solve a game, it depends on our choice
of a solution concept.

Here we will explore two of them:

� Iterated Elimination of Strictly Dominated Strategies (IESDS).

� Nash equilibrium: The most important one.
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Iterated Elimination of Strictly Dominated Strategies

We begin with a very natural solution concept: IESDS.

The idea is the following:

� We look at each player’s possible actions and their outcome.

� We identify what actions of this player are strictly
dominated.

� We eliminate those actions for this player.

� We repeat the process.

For now, the words action and strategy are used interchangeably.

Game Theory: Static Games of Complete Information 32 / 174



Strictly dominated strategies: Example 1

Consider the following game:

1 \ 2 L R

U 2, 2 3, 1

D 0, 3 1, 4

� When P2 plays L: P1 is better-off playing U than D (2 > 0).

� When P2 plays R: P1 is better-off playing U than D (3 > 1).

No matter what P2 is doing, playing D is always strictly
dominated by U for P1.
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Strictly dominated strategies: Example 2

Consider the following game:

1 \ 2 L M R

U 1, 0 1, 2 0, 1

D 0, 3 0, 1 2, 0

� When P1 plays U: P2 is better-off playing M than R (2 > 1).

� When P1 plays D: P2 is better-off playing M than R (1 > 0).

No matter what P1 is doing, playing R is always strictly
dominated by M for P2.
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Definition: Strictly dominated strategies

Let us define formally what is a strictly dominated strategy.

Definition. Consider the game G = ⟨N, (Ai )i∈N , (ui )i∈N⟩. For
player i , we say that strategy s i ∈ Ai is strictly dominated by
strategy si ∈ Ai if

ui (si , s−i ) > ui (s i , s−i ),

for all s−i ∈ A−i .

Note 1: The notation −i means ”all players except player i”. Hence if we have
three players, A−2 = A1 × A3.

Note 2: The vector (si , s−i ) is just a convenient way to write player i ’s strategy
and all other players’ strategies. The order of the arguments is implicitly not
changed.
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Strictly dominated strategies

Let us apply the definition to the second example.

1 \ 2 L M R

U 1, 0 1, 2 0, 1

D 0, 3 0, 1 2, 0

Let s2 = R and s2 = M, we have that

u2(U, s2) = 2 > u2(U, s2) = 1,

u2(D, s2) = 1 > u2(D, s2) = 0,

which satisfies our definition of a strictly dominated strategy.
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Strictly dominated strategies

Why are we interested in this type of strategies?

It is clear that if some player i has a strictly dominated strategy,
then they will surely never use it.

Hence, we could eliminate this strategy from the game as if it did
not exist because no rational player would ever use it.

Repeating this process could help up identify what players will
do in the end.
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IESDS: Example 1 (1)

Let us solve the first example with IESDS.

1 \ 2 L R

U 2, 2 3, 1

D 0, 3 1, 4

We have seen that strategy D is strictly dominated by strategy U
for P1.

Let us eliminate strategy D.
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IESDS: Example 1 (2)

Eliminating D we now have the following game.

1 \ 2 L R

U 2, 2 3, 1

Only player 2 has to play now.

Clearly, R is strictly dominated by L for P2 now (1 < 2).

� Be careful, this was not true before we eliminated D.

Hence, we can eliminate R for P2.
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IESDS: Example 1 (3)

Eliminating R we finally obtain

1 \ 2 L

U 2, 2

Hence IESDS predicts that the solution of the game is the couple
of strategies (U, L).

We will comment more on that later.
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IESDS: Example 2 (1)

Let us solve the second example with IESDS.

1 \ 2 L M R

U 1, 0 1, 2 0, 1

D 0, 3 0, 1 2, 0

We have seen that strategy R is strictly dominated by strategy
M for P2.

Let us eliminate strategy R.
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IESDS: Example 2 (2)

After elimination of R we obtain:

1 \ 2 L M

U 1, 0 1, 2

D 0, 3 0, 1

Notice that now D is strictly dominated by U for P1.

Let us eliminate strategy D.
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IESDS: Example 2 (3)

After elimination of D we obtain:

1 \ 2 L M

U 1, 0 1, 2

Finally, it is clear that P2 will choose M over L.

Hence, we end up with

1 \ 2 M

U 1, 2
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IESDS: Comments

It seems that our first solution concept, IESDS, works quite well.

� We were able to find a unique solution in both examples.

� These solutions are rational for each player as we have
eliminated strategies that they would never want to play.

� Each player’s choice is based only on their own payoff, it
requires neither knowledge nor understanding of what the
other player could do.

Unfortunately, it was a mere artifact of the chosen examples.
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IESDS: Not always satisfactory (1)

Consider the following example:

1 \ 2 L M

U 2, 0 2, 3

D 0, 4 4, 2

� When P1 plays U, P2 is better-off playing M than L.

� When P1 plays D, P2 is better-off playing L than L.

Hence, no strictly dominated strategy for P2.
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IESDS: Not always satisfactory (2)

1 \ 2 L M

U 2, 0 2, 3

D 0, 4 4, 2

� When P2 plays L, P1 is better-off playing U than D.

� When P2 plays M, P1 is better-off playing D than U.

Hence, no strictly dominated strategy for P1.
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IESDS: Not always satisfactory (3)

There is no strictly dominated strategy to eliminate in this
game.

As a result, IESDS predicts nothing more than the initial game
itself.

1 \ 2 L M

U 2, 0 2, 3

D 0, 4 4, 2

Game Theory: Static Games of Complete Information 47 / 174



IESDS: Conclusion

IESDS offered us a first look at player’s optimal choices.

But the concept is too strict.

� There exists another version in which you eliminate weakly
dominated strategies but it suffers from other problems (see
chapter 12.3 of Osborne if you are interested).

We can summarize IESDS as a solution concept in which you
eliminate strategies that players will never choose.
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Dominant strategies

A different but conceptually close idea to strictly dominated
strategies is the one of dominant strategy.

A strategy s i is said to be a dominant strategy for player i if,
regardless of what other players do, player i is always better-off
playing s i than any other of their strategies.
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Dominant strategies: An example

Recall the prisoner’s dilemma.

1 \ 2 C S

C −5,−5 0,−10

S −10, 0 −1,−1

P1 prefers C regardless of what the other player is doing.

� C is a dominant strategy for P1.

The same applies to P2.
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Dominant strategies: Definition

Definition. Consider the game G = ⟨N, (Ai )i∈N , (ui )i∈N⟩. We say
that strategy s i ∈ Ai is a strictly dominant strategy for player i if

ui (s i , s−i ) ≥ ui (si , s−i ),

for all si ∈ Ai , all s−i ∈ A−i , and at least one inequality is strict.

Notice that a dominant strategy is not defined with respect to
another strategy like it was the case for strictly dominated strategy.

A dominant strategy is better than all others regardless of
what other players do.
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Dominant strategies: Solution

Another possible solution concept can be derived with the notion
of dominant strategies.

If all players have a dominant strategy, then we can readily predict
the outcome of the game.

1 \ 2 C S

C −5,−5 0,−10

S −10, 0 −1,−1

(C ,C ) in the prisoner’s dilemma game.
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Dominant strategies: Drawbacks

Using dominant strategies as a way to solve the game is very
strict.

� If even one player has no dominant strategy, we cannot use it.

We are now going to investigate a more subtle solution concept, an
equilibrium concept.

� Namely, the Nash equilibrium solution concept.
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Nash equilibrium: Introduction

Nash equilibrium is the most famous solution concept for static
games of complete information.

”Nash” stands for the name of his creator, the mathematician
John Nash.

The important word is equilibrium.

� This solution concept will rely on a notion of stability of
players’ choices.

We will start with an informal description and some examples.
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NE: Best responses

With IESDS, we were focusing on a player’s strategies that were
always better regardless of what the other players were doing.

We will investigate a more subtle notion: best responses.

A player i formulates a best response to every possible strategy of
another player j .

Informally, player i makes a plan of what actions to play in
response to the other player’s actions.
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Best responses: An example

Recall the Rock-paper-scissors game with two players, 1 and 2.

For each player,

� R is a best response to S .

� S is a best response to P.

� P is a best response to R.

Be careful, it does not mean that one player is observing what
the other one is doing before playing.

Here, the concept of best response only captures the idea that
each player can think in advance about how they would act in each
possible scenario.
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Best responses: Another example

Consider the following game.

1 \ 2 L M

U 2, 2 0, 1

D 1, 1 3, 0

What are each player’s best responses?
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Best responses: Another example

1 \ 2 L M

U 2, 2 0, 1

D 1, 1 3, 0

For player 1,

� U is a best response to L.

� D is a best response to M.

For player 2,

� L is a best response to U.

� L is a best response to D.
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Best-responses functions

Let us now informally define what we call best-response
functions in a two-player game.

For player 1, BR1 : A2 → A1.

� BR1(·) is a function that says what player 1 wants to play for
each possible action of player 2.

� The function BR2 : A1 → A2 is defined symmetrically.

BRi (aj) = ai means that player i ’s best-response to aj is ai .
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Best-responses function: Example

1 \ 2 L M

U 2, 2 0, 1

D 1, 1 3, 0

For player 1,

� U is a best response to L.

� BR1(L) = U.

� D is a best response to M.

� BR1(M) = D.

For player 2,

� L is a best response to U.

� BR2(U) = L.

� L is a best response to D.

� BR2(D) = L.
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Best responses: Interpretations

As said previously, best responses help us identify how player i
optimally behaves for each possible choice of player j .

Once again, we do not assume that player i observes player j ’s
choice to formulate their best response.

Think about you playing rock-paper-scissors or some card game.

� You do not see what the other player is doing before you play
but you can still formulate best responses.
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Stability and deviations

Together with best responses, let us introduce the concepts of
stability and deviations.

We are investigating an equilibrium concept.

� Think about a physical object being in equilibrium.

� It is stable, it doesn’t fall.

Similarly, our notion of equilibrium will rely on the idea that we
have reached a stable point for each player.

� That is, at this point, no player is willing to move to another
point.

� We will say that, at this point, no player is willing to
deviate.
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Stability and deviations: Example (1)

Let us come back to our previous example.

1 \ 2 L M

U 2, 2 0, 1

D 1, 1 3, 0

Consider the point (or action profile) (D, L).

Is it stable?
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Stability and deviations: Example (2)

1 \ 2 L M

U 2, 2 0, 1

D 1, 1 3, 0

For player 2, it is stable.

� Indeed, if P2 thinks P1 plays D, it is better for them to play L
(1) than M (0).

� And remember we have already said that for player 2, L was a
best response to D.

We say that, at (D, L), player 2 has no incentive to deviate.

Game Theory: Static Games of Complete Information 66 / 174



Stability and deviations: Example (3)

1 \ 2 L M

U 2, 2 0, 1

D 1, 1 3, 0

For player 1, it is not stable.

� Indeed, if P1 thinks P2 plays L, it is better for them to play U
(2) than D (1).

� Remember that we had found that U was a best response to
L.

We say that, at (D, L), player 1 wants to deviate.
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Stability and deviations: Example (4)

1 \ 2 L M

U 2, 2 0, 1

D 1, 1 3, 0

Hence, the idea is that (D, L) is not stable.

� That is, if we were to start at this point it will ”fall” because
one player (P1) is not willing to remain at this point.

This point cannot be an equilibrium.
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Stability and deviations: Example (5)

What about (D,M)? Is it stable?

1 \ 2 L M

U 2, 2 0, 1

D 1, 1 3, 0

It is for P1.

But not for P2.

� P2 would like to deviate to L.
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Stability and deviations: Example (5)

What about (U,M)? Is it stable?

1 \ 2 L M

U 2, 2 0, 1

D 1, 1 3, 0

It is not for P1.

And neither it is for P2.
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Stability and deviations: Example (6)

What about (U, L)? Is it stable?

1 \ 2 L M

U 2, 2 0, 1

D 1, 1 3, 0

It is for P1 and it is for P2.

At (U, L), no player is willing to deviate.

� It is a stable point.

� And we will see it is what we call a Nash equilibrium.
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What have we learned?

The example illustrates some important aspects that we will see
over and over.

First, we have investigated each ”point” and look whether one of
the players was better-off deviating than ”sticking to the point”.

� You can think about finding the physical equilibrium of an
object once again.

� You would place it in a given position (a point) and see
whether it moves or stay put.

� Then you repeat the operation for other positions and see
which ones are stables.
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Best responses and stability

Second, notice that we can establish a link between stability and
best responses.

1 \ 2 L M

U 2, 2 0, 1

D 1, 1 3, 0

Best responses:

� BR1(L) = U.

� BR1(M) = D.

� BR2(U) = L.

� BR2(D) = L.

What is the common features among all non stable points (D, L),
(D,M) and (U,M)?
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Best responses and stability

Second, notice that we can establish a link between stability and
best responses.

1 \ 2 L M

U 2, 2 0, 1

D 1, 1 3, 0

Best responses:

� BR1(L) = U.

� BR1(M) = D.

� BR2(U) = L.

� BR2(D) = L.

What is the common features among all non stable points (D, L),
(D,M) and (U,M)?

� There is always at least one player whose best response is
different from the chosen point.
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Best responses and stability

What about our stable point (U, L)?

1 \ 2 L M

U 2, 2 0, 1

D 1, 1 3, 0

Best responses:

� BR1(L) = U.

� BR1(M) = D.

� BR2(U) = L.

� BR2(D) = L.

� For P1, U is a best response to L.

� For P2, L is a best response to U.

The peculiar feature here is that each player’s strategy is a best
response to the other player’s strategy.
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Best responses and stability

Another way to think about this notion of ”stability” is the
following.

Recall the Rock-Paper-Scissors example and let Ri , Pi and Si
denote players’ strategies with indexes to keep track of the identity
of the player.

If we conceptually think about the cycle of players’ best responses
to each other, we have the following pattern:

R1 → P2 → S1 → R2 → P1 → S2 → R1 → P2 → . . .

You see that it is a never ending pattern in which players always
want to change their strategy.
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Best responses and stability

Now think about the same concept but in our last example. We
have

U → L → U → L → U → . . .

When P1 plays U, P2 wants to play L

� then P1 still wants to play U

� and then P2 still wants to play L

� . . .

Here it is stable as one player action reinforces the action of the
other player.
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Another example

Consider another example.

1 \ 2 C D

A 1, 1 0, 2

B 0,−1 2, 0

Identify best-response functions for each player and equilibria.
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Another example

Solution to the example.

1 \ 2 C D

A 1, 1 0, 2

B 0,−1 2, 0

We have BR1(C ) = A, BR1(D) = B, BR2(A) = D and
BR2(B) = D.

Only equilibrium is (B,D).
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Nash equilibrium

What we have presented informally as stable points are in fact
what we will call Nash equilibria from now on.

We will say that an action profile a∗ = (a∗1, . . . , a
∗
n) ∈ A is a Nash

equilibrium if no player i has an incentive to deviate and play
some ai ̸= a∗i given that all other players play a∗−i .

The central idea is that of unilateral deviation.

To identify an equilibrium point we fix the strategy of all j ̸= i and
we investigate only the incentive to deviate of i .

� And we repeat for all i ∈ N.
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Nash equilibrium: Formal definition

Definition. Consider the game G = ⟨N, (Ai )i∈N , (ui )i∈N⟩. We say
that the action profile a∗ = (a∗1, . . . , a

∗
n) ∈ A is a pure-strategy

Nash equilibrium of the game G if

ui (a
∗
i , a

∗
−i ) ≥ ui (ai , a

∗
−i ),

for all ai ∈ Ai and for all i ∈ N.

Note 1: For each player i , we fix all other players’ actions to a∗−i and we only
investigate whether a∗i does better than any other ai .

Note 2: Forget about the term ”pure-strategy” for now, we will see later that
there exists other types of Nash equilibria, namely ”mixed-strategy” NE.
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NE: Example in a two-player game

Consider a two-player game and say that (a∗1, a
∗
2) is a Nash

equilibrium of this game.

Using the definition of a Nash it means that the following
inequalities hold:

u1(a
∗
1, a

∗
2) ≥ u1(a1, a

∗
2) for all a1 ∈ A1

u2(a
∗
1, a

∗
2) ≥ u2(a

∗
1, a2) for all a2 ∈ A2.

They say that

� P1 is better-off playing a∗1 than any other a1 when P2 plays a∗2.

� P2 is better-off playing a∗2 than any other a2 when P1 plays a∗1.
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NE: Example in a two-player game

You can also think about the definition of a Nash equilibrium in
terms of best responses.

The inequality for player 1

u1(a
∗
1, a

∗
2) ≥ u1(a1, a

∗
2) for all a1 ∈ A1,

says that a∗1 is a best response to a∗2.
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NE: Example in a two-player game

The inequality for player 2

u2(a
∗
1, a

∗
2) ≥ u2(a

∗
1, a2) for all a2 ∈ A2,

says that a∗2 is a best response to a∗1.

Hence we come back to our previous informal discussion:

a∗1 → a∗2 → a∗1 → a∗2 → . . .
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NE: Another interpretation

It is useful to interpret the Nash equilibrium condition in another
way.

For player i , the equilibrium condition is that

ui (a
∗
i , a

∗
−i ) ≥ ui (ai , a

∗
−i ),

for all ai ∈ Ai and given a∗−i .

In more mathematical terms what does ui (a
∗
i , a

∗
−i ) represents for

player i?
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NE: Another interpretation

Given actions a∗−i , the action a∗i is the action that maximizes
player i ’s utility.

In other words, a∗i solves,

max
ai∈Ai

ui (ai , a
∗
−i ),

or, we can also write

a∗i = argmax ui (ai , a
∗
−i ).

� This last notation is not entirely correct (the ”=” sign in
particular), but we will see later why.
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NE: Example in a two-player game

Let us apply our definition to our previous example:

1 \ 2 L M

U 2, 2 0, 1

D 1, 1 3, 0

We have that

u1(U, L) = 2 ≥ u1(D, L) = 1

u2(U, L) = 2 ≥ u2(U,M) = 1.
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NE: Example in a two-player game

But for other action profiles it is not the case.

1 \ 2 L M

U 2, 2 0, 1

D 1, 1 3, 0

For instance, for (D, L)

u1(D, L) = 1 < u1(U, L) = 2

u2(D, L) = 1 ≥ u2(D,M) = 0.

Player 1’s inequality is not satisfied.
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NE: Example in a two-player game

But for other action profiles it is not the case.

1 \ 2 L M

U 2, 2 0, 1

D 1, 1 3, 0

For instance, for (D,M)

u1(D,M) = 3 ≥ u1(U,M) = 0

u2(D,M) = 0 < u2(D, L) = 1.

Player 2’s inequality is not satisfied.
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NE: A trick to solve simple games

Now that we know how NE works, here is a useful trick to solve
games presented in the payoff matrix form.

Consider the following game.

1 \ 2 L M

U 2, 2 0, 1

D 1, 1 3, 0

For each player, we are going to spot their best responses and
underline the corresponding payoff.
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NE: A trick to solve simple games

For instance, we know that for player 1, D is a best response to M.

Hence we will underline the corresponding payoff for this player,
3 in that case.

We obtain:

1 \ 2 L M

U 2, 2 0, 1

D 1, 1 3, 0
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NE: A trick to solve simple games

If we repeat the process to find all best responses, this is what we
obtain:

1 \ 2 L M

U 2, 2 0, 1

D 1, 1 3, 0

Notice that the cell in which both players’ payoffs are underlined is
our Nash equilibrium (U, L).

� Consistent with the fact that a NE corresponds to the
situation in which each player’s best response ”reinforce”
themselves.
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NE: Example 1

Find all pure-strategy Nash equilibria of this game.

1 \ 2 Pigneto San Giovanni

Pigneto 1, 1 0, 0

San Giovanni 0, 0 1, 1
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NE: Example 1

Find all pure-strategy Nash equilibria of this game.

1 \ 2 Pigneto San Giovanni

Pigneto 1, 1 0, 0

San Giovanni 0, 0 1, 1

There are two (pure-strategy) Nash equilibria, (P,P) and (S ,S).
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NE: Example 2

Find all pure-strategy Nash equilibria of this game.

1 \ 2 L M R

U 1, 0 1, 2 0, 1

D 0, 3 0, 1 2, 0

There is one (pure-strategy) Nash equilibrium, (U,M).
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NE: Example 2

Find all pure-strategy Nash equilibria of this game.

1 \ 2 L M R

U 1, 0 1, 2 0, 1

D 0, 3 0, 1 2, 0

There is one (pure-strategy) Nash equilibrium, (U,M).
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NE: Example 3

Find all pure-strategy Nash equilibria of this game.

1 \ 2 R P S

R 0, 0 −1, 1 1,−1

P 1,−1 0, 0 −1, 1

S −1, 1 1,−1 0, 0
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NE: Example 3

Find all pure-strategy Nash equilibria of this game.

1 \ 2 R P S

R 0, 0 −1, 1 1,−1

P 1,−1 0, 0 −1, 1

S −1, 1 1,−1 0, 0

There is no (pure-strategy) Nash equilibrium in this game.

� We will see later than there is one in mixed strategy.
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NE: Remarks

Multiplicity: Sometimes, there is more than one Nash equilibrium.

� In that case, our solution concept leaves us with multiple
solutions.

No pure-strategy NE: Sometimes, there is no NE in
pure-strategy (rock-paper-scissors).

� Hopefully, there are theorems that ensure that there always
exists a NE (possibly in mixed strategies) in finite games
(finite action spaces).
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More on best responses

Earlier, we have defined best responses as functions.

For two players we have defined:

BR1 : A2 → A1

BR2 : A1 → A2.

By definition, a function f : X → Y is a mapping that assigns to
every element of X , one element in Y .

Our best response function BRi assigns to every action of player j ,
one action of player i .

Game Theory: Static Games of Complete Information 100 / 174



More on best responses

Is it reasonable to do so? Consider the following game.

1 \ 2 L R

U 1, 0 0, 1

D 1, 1 0, 0

� P1’s best response to L is U.

� But D is also P1’s best response to L.

So, what is BR1(L)?

� BR1(L) = U?

� BR1(L) = D?
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More on best responses

The problem in defining best responses as functions is that we do
not know what to do in the previous case.

This is not just a technical point.

� Sometimes players are indifferent between two or more actions.

� We must take this into account otherwise we may miss some
equilibria.

If we consider that BR1(L) = U in the previous example, then we
would miss the pure-strategy NE: (D, L).
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Best-response correspondences

The solution is to think best responses as correspondences and
not functions.

In a two-player game, we define

BR1 : A2 ⇒ A1

BR2 : A1 ⇒ A2.

The symbol ⇒ says that BRi is a mapping that assigns every
element in A−i to a subset of Ai .

� That is, a best response to aj may not be unique.

In the example, we would have BR1(L) = {U,D}.
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Best responses as maximizers

Now that we understood that BR could be nonunique, it is useful
to come back to our other interpretation of the NE conditions.

Recall that

max
ai∈Ai

ui (ai , a
∗
−i ).

Hence

a∗i ∈ argmax ui (ai , a
∗
−i ),

where the ”∈” sign indicates that a∗i is one among possibly other
best responses against a∗−i .

Indeed argmax ui (ai , a
∗
−i ) is a set.

� The set of all actions that are BR to a∗−i .
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Best responses as maximizers

We can go even a bit further because it will be helpful later on.

In general, for any action profile a−i , we can set the best response
correspondence of player i as being

ai (a−i ) = argmax ui (ai , a−i ).

That is, ai (a−i ) gives us the set of all actions of player i that are
best responses to a−i .
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A note on Pareto optimality

It is worth investigating Pareto optimality and equilibria in games.

Pareto optimality can be defined as a situation in which no
individual can be made better off without making at least another
individual worst off.

Formally, let X be the set of possible allocations and assume ui (x)
represents the utility of individual i ∈ N when the allocation is
x ∈ X .

We say that x̂ ∈ X is Pareto optimal if there exists no x ∈ X such
that ui (x) > ui (x̂) for some i ∈ N and uj(x) ≥ uj(x̂) for all j ̸= i .
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Pareto optimality: An example

Consider the previous game:

1 \ 2 L M

U 2, 2 0, 1

D 1, 1 3, 0

Find the Pareto optimal allocations (here, an allocation is an
action profile).
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Pareto optimality: An example

Start with (U, L).

1 \ 2 L M

U 2, 2 0, 1

D 1, 1 3, 0

At (U, L), both players get a payoff of 2.

If we try to move to any other action profile, it is clear that at
least one agent is made worst off.

Hence (U, L) is Pareto optimal.
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Pareto optimality: An example

Consider now (U,M).

1 \ 2 L M

U 2, 2 0, 1

D 1, 1 3, 0

At (U,M) it is clear that moving to either (U, L) or (D, L)
improves the utility of at least one player without making the other
worse off.

Hence, (U,M) is not Pareto optimal as there exists some Pareto
improvement.
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Pareto optimality: An example

Consider now (D, L).

1 \ 2 L M

U 2, 2 0, 1

D 1, 1 3, 0

At (D, L) we can move to (U, L) and make both players better off.

Hence, (D, L) is not Pareto optimal.
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Pareto optimality: An example

Finally, consider (D,M).

1 \ 2 L M

U 2, 2 0, 1

D 1, 1 3, 0

At (D,M), player 1 gets there maximal possible payoff.

Hence, even though we could strictly improve player 2’s payoff by
moving to any other point, this would make player 1 worse off.

(D,M) is therefore Pareto optimal.
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Pareto optimality: An example

1 \ 2 L M

U 2, 2 0, 1

D 1, 1 3, 0

In this example we therefore have two Pareto optimal points,
namely (U, L) and (D,M).

And one of them, (U, L), is also our Nash equilibrium.

Should we conclude that Nash equilibria are Pareto optimal?

� Certainly not.
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Pareto optimality: Another example

Consider now the prisoner’s dilemma.

1 \ 2 C S

C −5,−5 0,−10

S −10, 0 −1,−1

Find Pareto optimal points and compare them to the Nash
equilibrium of the game.
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Pareto optimality: Another example

Recall that the unique Nash of this game is (C ,C )

1 \ 2 C S

C −5,−5 0,−10

S −10, 0 −1,−1

We have three Pareto optimal points: (S ,C ), (C , S) and (S , S).

That is, the only non Pareto optimal point is precisely the Nash
equilibrium.
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Pareto optimality: Discussion

Can we conclude anything between the relationship between Nash
equilibria, Pareto optimality and an intuitive notion of “a good
outcome”?

No, we cannot.

Nash equilibria describe what players will do in a game.

Pareto optimality describes points at which we cannot move
without hurting at least one player.

� But it’s not necessarily a “good outcome”.

� Neither it should coincide with any equilibria.

We can only say that the fact a Nash equilibrium is not necessarily
Pareto optimal sheds light on possible inefficiencies when players
choose to play non cooperatively.
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Duopoly and competition

Now that we are equipped with the very first tool of game theory,
Nash equilibrium, we are going to investigate more concrete
applications.

We want to study competition in a duopoly setting.

Two firms produce an homogeneous good and compete for
consumers.

It is reasonable to assume that firms have market power.

� They are not price takers.

� They are aware that their choices affect demand/price and the
other competitor.
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Bertrand and Cournot competition

There are two standard settings for oligopolistic competition in
static games.

� Bertrand: Price competition.

� Cournot: Quantity competition.

We will see a third setting after introducing dynamic games:
Stackelberg oligopoly.
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Bertrand duopoly

We start with the Bertrand duopoly setting.

Consider two firms, 1 and 2, that produce an homogeneous good.

Firms choose the price at which they sell the good.

� Let p1 and p2 denote those prices.

Both firms have a marginal cost of production equal to c .
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Bertrand duopoly: Demand (1)

Consumers always buy to the firm that sets the lowest price.

When pi is the lowest price, firm i faces demand Q(pi ).

� With Q ′ < 0.

If p1 = p2 then consumers split equally between the two firms.

If pi is the highest price, firm i faces zero demand.
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Bertrand duopoly: Demand (2)

Hence we can write the demand faced by firm i as follows:

Qi (pi , pj) =


Q(pi ) if pi < pj ,
1
2Q(pi ) if pi = pj ,

0 if pi > pj .

The profit (payoff) of firm i is given by

πi (pi , pj) = (pi − c)Qi (pi , pj).

Notice that the profit of firm i depends on both prices.
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Bertrand: Normal form

Let us write this game using the normal-form representation.

� 1. Players: Firms, N = {1, 2}.

� 2. Actions: Each firm chooses its price pi ∈ R+.

� Hence the action space of firm i is Ai = R+.

� 3. Payoffs: Profits πi (pi , pj) = (pi − c)Qi (pi , pj).

It is a strategic game because each firm is aware that its choice of
price affects the other firm’s profits and thus its choice of price as
well.
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Bertrand: Nash equilibrium

How do we find the Nash equilibrium of this game?

We cannot use a payoff matrix to find best responses as we did for
finite games.

Hence, we will have to think otherwise.

� This is where the best response reasoning will be helpful
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Bertrand: Nash equilibrium

First, how do we formally define a Nash equilibrium of this
game?

A Nash equilibrium is a couple of prices (p∗1 , p
∗
2) such that no firm

is willing to change its price given the price of the other firm.

That is, prices (p∗1 , p
∗
2) must be such that

π1(p
∗
1 , p

∗
2) ≥ π1(p1, p

∗
2) for all p1 ∈ R+,

π2(p
∗
1 , p

∗
2) ≥ π2(p

∗
1 , p2) for all p2 ∈ R+.

Once again, this means that p∗1 must be a best response to p∗2 and
vice versa.
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Bertrand: Best response functions

We are going to construct best response functions of each firm.

� Sometimes called reaction functions.

Let BRi (pj) denote firm i ’s best response to firm j ’s price.

Let us first try to determine a lower and a upper bound on the
price set by firm i .

� That is, prices that firm i will never find it optimal to set.
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Bertrand: Lower bound on prices

A clear lower bound for firm i ’s profit can be easily found by
inspecting its profit function:

πi (pi , pj) = (pi − c)Qi (pi , pj).

It is clear that setting pi < c would entail negative profits if this
price were to attract consumers to firm i .
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Bertrand: Upper bound on prices

Finding an upper bound is a bit more subtle.

For that matter, we have to think about what firm i would do, if it
were a monopolist?

If firm i were the only firm, it would choose its price, pm, so as to
solve

max
p≥0

(p − c)Q(p).

And then, it is clear that firm i would never set pi > pm even if it
were to attract all consumers.
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Bertrand: Best-response function (1)

Now let us think about firm i ’s best response to pj .

First assume that pj ∈ [0, c].

In that case, if firm i wants to attract any consumer, it has to set
price below pj and thus below c .

But we have seen that this would entail negative profits.

Hence, the best firm i could do is to set pi = c and makes zero
profit.

� Actually, firm i could set any price pi > pj , but we assume it
chooses pi = c for simplicity.
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Bertrand: Best-response function (2)

Now assume that pj ∈ (pm,+∞).

Then firm i can choose pi = pm, attract all consumers and achieve
the highest possible profits, the monopoly profit.

It is important to understand that setting pm < pi < pj is not
optimal for firm i .

� Because setting pi > pm is suboptimal for firm i , by definition
of the monopoly price.
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Bertrand: Best-response function (3)

Finally assume that pj ∈ (c , pm].

In that region, firm i can make positive profits by setting
c < pi < pj and thus attract all consumers.

Also, as pj < pm, firm i would like to increase pi as close as
possible to pj but always arbitrarily lower so as to attract all
consumers.

Informally, we could say that firm i is willing to set pi = pj − ϵ
with ϵ > 0 and as small as possible.

� Note: Formally, it is not a very well-defined problem but we
will ignore this for simplicity.
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Bertrand: Best-response function (4)

To summarize, the best response function of firm i could be
written as follows:

BRi (pj) =


c if pj ≤ c ,

pj − ϵ if pj ∈ (c , pm],

pm if pj > pm.

The two firms’ best-response functions are the same as firms are
symmetric (same marginal cost).
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Bertrand: Nash equilibrium

We know that, at a Nash equilibrium, each firm’s BR must be a
BR to the other firm’s BR.

That is BRi (BRj(pi )) = pi for i = 1, 2 and i ̸= j .

In our case, the best is to draw the best-response functions in the
space (p1, p2) to see things more clearly.
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Bertrand: Plotting BR

c pm

c

pm
p1 = p2

BR1(p2)

BR2(p1)

p1

p2
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Bertrand: Nash equilibrium

To find the Nash equilibrium, we have to find where the best
responses intersect.

Be careful, it may seem that they intersect all along the interval
(c , pm].

But remember that each firm’s best response in this interval is to
undercut its competitor by setting a price that is slightly lower to
get the whole demand.
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Bertrand: Nash equilibrium

There is only one intersection point, when p1 = p2 = c .

We can check that no firm wants to deviate:

� Let pj = c .

� Then if firm i chooses pi < pj = c , it makes negative profits.

� If otherwise firm i chooses pi > pj = c , it makes zero profits.

� While if firm i chooses pi = pj = c , it makes positive profits
(gets half the demand).

Hence, we can conclude that p1 = p2 = c is the Nash equilibrium
of this Bertrand duopoly game.
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Bertrand: Remarks
This result is sometimes called the Bertrand paradox. Why?

It suggests that moving from one firm (monopoly) to only two
firms is enough to fully restore the competitive equilibrium
(price = marginal cost).

� However, this result relies on some extreme assumptions:

� Firms have the same marginal costs;

� Consumers strictly prefer the lowest price firm;

� Firm can serve all consumers at any demand level.

Another important remark: In Bertrand, we say that prices are
strategic complements.

� Best-response functions are increasing.

� If firm j sets a higher price, firm i best responds by increasing
its own price as well.
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Cournot duopoly

We now investigate the Cournot duopoly setting.

Consider two firms, 1 and 2, that produce an homogeneous good.

Firms choose how much quantity of the good they produce.

� Let q1 and q2 denote those quantities.

� The market price is defined by P(q1 + q2) with P ′ < 0 and P
continuously differentiable.

Each firm has a marginal cost of production equal to ci .
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Cournot: Normal form

Let us write this game using the normal-form representation.

� 1. Players: Firms, N = {1, 2}.

� 2. Actions: Each firm chooses its quantity qi ∈ R+.

� Hence the action space of firm i is Ai = R+.

� 3. Payoffs: Profits πi (qi , qj) =
(
P(qi + qj

)
− ci )qi .

Each firm’s choice of quantity affects the market price P(·) and
thus affects both firms’ profits.

� Realistic? Models should never be taken literally.

� See Kreps and Scheinkman (1983).

Game Theory: Static Games of Complete Information 139 / 174



Cournot: Nash equilibrium

How do we formally define a Nash equilibrium of this game?

A Nash equilibrium is a couple of quantities (q∗1 , q
∗
2) such that no

firm has an incentive to deviate.

That is, quantities (q∗1 , q
∗
2) must be such that

π1(q
∗
1 , q

∗
2) ≥ π1(q1, q

∗
2) for all q1 ∈ R+,

π2(q
∗
1 , q

∗
2) ≥ π2(q

∗
1 , q2) for all q2 ∈ R+.
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Cournot: Best-response functions

As in the Bertrand case, we are going to work with best-response
functions to identify our Nash equilibrium.

Our profit functions πi (qi , qj) =
(
P(qi + qj

)
− ci )qi are

differentiable in qi .

� We can use calculus to determine best responses.

Firm i ’s best response to a given qj is the qi that solves

max
qi≥0

(
P(qi + qj

)
− ci )qi .
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Cournot: Best-response functions

Notice that the problem maxqi≥0

(
P(qi + qj

)
− ci )qi will give a

different qi for each possible qj .

Alternatively, we can write that

qi (qj) = argmax
qi≥0

(
P(qi + qj

)
− ci )qi .

That is, qi (qj) will tell us what is the best qi firm i can set against
each qj .

� In other words, it’s firm i ’s best response function.
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Cournot: Linear demand

We are not going to provide a general solution to the Cournot
problem.

We will simply focus on the linear demand case.

� P(qi + qj
)
= a− b(q1 + q2), where (a, b) ∈ R2

+.

Once again, notice that the market price is determined by the
choice of quantity of both firms. Each of them is aware of the
impact of their choice.
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Cournot: Best responses

Firm i ’s best response to a given qj is the qi that solves

max
qi≥0

πi (qi , qj) =
(
a− b(qi + qj)− ci

)
qi .

The first-order condition of this problem writes

a− b(qi + qj)− ci − bqi = 0.

Solving for qi we get

qi =
a− ci − bqj

2b
.
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Cournot: Best responses

We could also write, for clarity,

qi (qj) =
a− ci − bqj

2b
.

This is the best-response function of firm i to firm j ’s quantity.

� Notice that qi (qj) is a decreasing function of qj .

� We say that quantities are strategic substitutes.

Also notice that we could write that

qi (qj) = argmax
qi≥0

(
a− b(qi + qj)− ci

)
qi .
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Cournot: Nash Equilibrium

We have our best-response functions for each firm,

qi (qj) =
a−ci−bqj

2b .

A Nash equilibrium (q∗1 , q
∗
2) will be such that each firm’s best

response corresponds to the other firm’s best response.

We could write it as follows:

q1(q2(q
∗
1)) = q∗1 ,

q2(q1(q
∗
2)) = q∗2 .

The first equality reads: The best response of firm 1 to the best
response of firm 2 against q∗1 is q∗1 itself.
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Cournot: Plotting BR

a−c1
2b

a−c2
b

a−c2
2b

a−c1
b

BR1(q2)

BR2(q1)

q1

q2
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Cournot: Plotting BR

q∗1
a−c1
2b

a−c2
b

q∗2

a−c2
2b

a−c1
b

BR1(q2)

BR2(q1)

q1

q2
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Cournot: Nash Equilibrium

Recall that our equilibrium quantities must solve

q1(q2(q
∗
1)) = q∗1 ,

q2(q1(q
∗
2)) = q∗2 .

Using the expression for BR, it can be rewritten as:

a− c1 − bq∗2
2b

= q∗1 ,

a− c2 − bq∗1
2b

= q∗2 .

This is simply a linear system, with two equations and two
unknowns, q∗1 and q∗2 .

� Solving it will give us the intersection point of the plot.
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Cournot: Nash Equilibrium

Start with

a− c1 − bq∗2
2b

= q∗1 ,

a− c2 − bq∗1
2b

= q∗2 .

We can for instance, plug the first equation into the second
one:

a− c2 − b
a−c1−bq∗2

2b

2b
= q∗2 .

And now that this equation only depends on q∗2 , solving it for q∗2
will give us the equilibrium quantity of firm 2.
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Cournot: Equilibrium quantities

We have

a− c2 − b
a−c1−bq∗2

2b

2b
= q∗2 ,

that simplifies to

a− c2
2b

− a− c1 − bq∗2
4b

= q∗2 ,

and finally, solving for q∗2 :

q∗2 =
a+ c1 − 2c2

3b
.
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Cournot: Equilibrium quantities

Now plugging q∗2 = a+c1−2c2
3b into the first equation we get

q∗1 =
a+ c2 − 2c1

3b
.

Hence, we have found the two equilibrium quantities.

We could also write that

q∗i =
a+ cj − 2ci

3b
.

for i = 1, 2 and i ̸= j .
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Cournot: Equilibrium profits

We can also compute the equilibrium profits.

Recall that πi (qi , qj) =
(
a− b(qi + qj)− ci

)
qi .

The equilibrium profit of firm i is given by

πi (q
∗
i , q

∗
j ) =

(
a− b(q∗i + q∗j )− ci

)
q∗i

=
(
a− b

2a− ci − cj
3b

− ci
)a+ cj − 2ci

3b

=
(a+ cj − 2ci )

2

9b
.
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Cournot: Equilibrium price

We can also compute the equilibrium price P(q∗1 , q
∗
2). We have

P(q∗1 , q
∗
2) = a− b(q∗1 + q∗2)

= a− b
2a− ci − cj

3b

=
a+ ci + cj

3
.
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Cournot: Comments

Under quantity competition, firms make positive profits.

We do not reach a competitive outcome like it is the case in
Bertrand.

Assume c1 = c2 to allow for comparison. It is possible to show
that the joint production of Cournot firms is higher than the
quantity a monopolist would choose.

� The presence of an additional firm creates some
competition.

� But there is still market power.
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Pure and mixed strategies

Before introducing the notion of mixed strategy, let us define more
precisely the one we have used implicitly: Pure strategy.

So far, we said that players were choosing an action ai ∈ Ai to play
in the game.

The implicit assumption here is that we assumed that players had
to choose one and only one action to play in the game.

What if player i could randomize over their possible actions?
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Mixed strategies

Now it becomes important to make the distinction between
actions and strategies.

Because now, a mixed strategy will be a different object from an
action.

Assume that Ai = {L,R}.

� Then L and R are actions.

� But “playing L half of the time and R the other half” is a
(mixed) strategy.
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Mixed strategies: Definition

Definition. Consider the game G = ⟨N, (Ai )i∈N , (ui )i∈N⟩. A
mixed strategy for player i is a probability distribution
(p1, p2, . . . , p|Ai |) over the possible actions of player i . By

definition, each pk ∈ [0, 1] and
∑|Ai |

k=1 pk = 1

Example. Assume Ai = {R,P, S}. Then we write that
(p1, p2, p3) = (0.5, 0.5, 0) is a mixed strategy such that player i
plays R and P with probability 0.5 and never plays S .

We could also say that the mixed-strategy (p1, p2, p3) = (0, 1, 0)
corresponds to the pure-strategy “playing P”.
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Mixed strategies: An example

Let us try to find an equilibrium such that players choose mixed
strategies.

Consider the following game.

1 \ 2 H T

H −1, 1 1,−1

T 1,−1 −1, 1

Notice that there is no NE in pure strategy.
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Mixed strategies: Randomizing

First, notice that it is clear that if P1 were sure that P2 would play
H (resp. T ) then they would play T (resp. H) for sure, i.e., a pure
strategy.

Hence, if we want P1 to randomize over their actions, it must be
the case that P2 also randomizes over their actions.

Let us call q ∈ [0, 1] and 1− q, the probabilities that P2 plays H
and L respectively.
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Mixed strategies: Payoffs

Given q, we can compute P1’s expected payoff when playing H
and T :

ν1(H, q) = −1q + 1(1− q) = 1− 2q,

ν1(T , q) = 1q + (−1)(1− q) = 2q − 1.

What can we say about P1’s strategy when ν1(H, q) > ν1(T , q)?

� That against q, P1 strictly prefers H to L.

� Symmetric reasoning for ν1(H, q) < ν1(T , q).

But we know that if P1 plays a pure strategy then P2 will want to
play a pure strategy as well.
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Mixed strategies: Payoffs

Hence, the only possibility is that P1 is indifferent between H and
T .

That is, we must have

ν1(H, q) = ν1(T , q)

⇔ 1− 2q = 2q − 1

⇔ q =
1

2
.

By symmetry, the same applies to P2.

� P2 is indifferent between H and T if and only if P1 plays each
of their action with probability 1

2 .
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Mixed strategies: An example

Hence, there exists one mixed-strategy Nash equilibrium of this
game:

1 \ 2 H T

H −1, 1 1,−1

T 1,−1 −1, 1

And it is when both players randomize equally over their
actions.
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Mixed strategies: Another example

Consider now the following game.

1 \ 2 L R

U 2, 1 0, 0

D 0, 0 1, 2

Let p and q denote the probabilities that P1 plays U and P2 plays
L, respectively.
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Mixed strategies: Another example

When is player 1 indifferent between playing U and D?

Let us compute

ν1(U, q) = 2q + 0(1− q) = 2q,

ν1(D, q) = 0q + 1(1− q) = 1− q.

Hence P1 is indifferent whenever 2q = 1− q which corresponds to

q =
1

3
.
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Mixed strategies: Another example

When is player 2 indifferent between playing L and R?

Let us compute

ν2(p, L) = 1p + 0(1− p) = p,

ν2(p,R) = 0p + 2(1− p) = 2− 2p.

Hence P2 is indifferent whenever p = 2− 2p which corresponds to

p =
2

3
.
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Mixed strategies: Another example

Hence for the game:

1 \ 2 L R

U 2, 1 0, 0

D 0, 0 1, 2

There exists a mixed-strategy Nash equilibrium such that

� P1 plays U with probability 2
3 and D with probability 1

3 .

� P2 plays L with probability 1
3 and R with probability 2

3 .

Game Theory: Static Games of Complete Information 168 / 174



Mixed strategies: Remarks

Notice that it is not always the case that both players randomize.

Consider the following example.

1 \ 2 L R

U 2, 1 0, 0

D 2, 3 1, 0
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Mixed strategies: Remarks

1 \ 2 L R

U 2, 1 0, 0

D 2, 3 1, 0

First, notice that L is a dominant strategy for P2.

Second, notice that P1 is indifferent between U and D when P2
plays L.

Hence, what could be a strategy for P1?
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Mixed strategies: Remarks

1 \ 2 L R

U 2, 1 0, 0

D 2, 3 1, 0

P1 could play U for sure, or D for sure and get a payoff of 2 in
both cases.

But P1 could choose to randomize and play U with any
probability p ∈ [0, 1], they would also get a payoff of 2.

Hence, here P2 is playing a pure-strategy meanwhile P1 could play
any mixed or pure strategy.
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Mixed strategies: Remarks

Consider the slightly modified game:

1 \ 2 L R

U 2, 0 0, 1

D 2, 3 1, 0

The difference is that now L is not anymore a dominant strategy
for P2.

Can we still have an equilibrium in which P2 plays L with
probability one while P1 randomizes between U and L?
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Mixed strategies: Remarks

1 \ 2 L R

U 2, 0 0, 1

D 2, 3 1, 0

Let us denote by p the probability that P1 plays U.

The expected payoffs of P2 when playing L and R are, respectively:

ν2(p, L) = 0p + 3(1− p) = 3− 3p,

ν2(p,R) = 1p + 0(1− p) = p.
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Mixed strategies: Remarks

Hence from,

ν2(p, L) = 0p + 3(1− p) = 3− 3p,

ν2(p,R) = 1p + 0(1− p) = p,

we have that P1 strictly prefers L to R if ν2(p, L) > ν2(p,R) or
equivalently

3− 3p > p ⇔ p <
3

4
.

It means that P2 will play L for sure against (p, 1− p) only if P2
does not play U too often.

Because for P2, playing L when P1 plays U is worse than playing R
now but playing L against D is better than R.
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