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Introducing example

Consider the following game inspired by Selten (1975):
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Player 2 observes whether player 1 played L or not.

▷ But cannot distinguish M from R
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Introducing example

It can be seen as a dynamic game of imperfect information.
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1\2 A B

L 1,3 1,3

M 0,2 0,1

R 2,1 0,0
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Introducing example

There are two pure-strategy Nash Equilibria in this game:

▷ (L,B) and (R,A)
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L 1,3 1,3
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Introducing example

Do you find the pure-strat. NE (L,B) satisfactory?
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In (L,B), P2 threatens P1 to play B if the latter chooses M or R.

▷ B is a non-credible threat

▷ If P1 plays M or R instead, P2 would prefer A in both cases
(dominant strat)
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Introducing example

(L,B) is a well-defined pure-strategy NE but we do not really like
it.

▷ Seems implausible

▷ It is not sequentially rational

But it is a dynamic game.

▷ We have already seen that NE is not a satisfactory equilibrium
concept for dynamic games.

That is why we introduced the notions of subgames and
subgame-perfect NE.

▷ Let us apply this concept in the example!
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Introducing example

1
x0

x1
1, 3

L

x2

x4
0, 2
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x5
0, 1
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M
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x6
2, 1
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x7
0, 0

B

R

2

Extensive form:

� N = {1, 2}

� A1 = {L,M,R}, A2 = {A,B}

� X1 = {x0}, X2 = {x2, x3}

� I1 = {{x0}}, I2 = {{x2, x3}}

� r = {x0}

� T = {x1, x4, x5, x6, x7}
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Introducing example
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x0

x1
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Extensive form:

� N = {1, 2}

� A1 = {L,M,R}, A2 = {A,B}

� X1 = {x0}, X2 = {x2, x3}

� I1 = {{x0}}, I2 = {{x2, x3}}

� r = {x0}

� T = {x1, x4, x5, x6, x7}

⇒ Only one subgame:
▷ The game itself!
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Introducing example

Applying the refinement of subgame perfection to this game:

▷ Subgame-perfect NE ⇔ Nash Equilibrium

It means that the subgame perfection refinement has no bite in
this example.

▷ Applying it does not help removing the unsatisfactory Nash
equilibrium (L,B).

We have to create another refinement to tackle this issue.

▷ It will be the Perfect Bayesian Equilibrium
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Preliminaries
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We would like to get rid of (L,B).

The idea
is to restore the notion of non-credible
threat to improper subgames.

We
must then find a way for P2 to distinguish
one node from another even when
their information set does not allow it.

Beliefs are the key.

▷ We will allow P2 to
form beliefs on the probability that
M and R have been played by P1.

▷ And therefore to have a strategy
that depends on those beliefs.
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Preliminaries

For instance, assume that if P1 does not play L.

▷ P2 believes that M occurs with probability µ ∈ [0, 1] and R
with probability 1− µ.
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Preliminaries
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P2’s expected payoff when playing:

▷ A: µ · 2 + (1− µ) · 1 = µ+ 1

▷ B: µ · 1 + (1− µ) · 0 = µ

For any µ ∈ [0, 1]:

▷ P2 prefers to play A

Whatever P2’s the belief,
B is not a best-response anymore.

This is enough to get rid of (L,B)
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Preliminaries

Allowing P2 to have beliefs on indistinguishable nodes of their
information set “solves” our problem of non-credible threats.

Natural questions:

1. Is it reasonable to assume that players have beliefs on
indistinguishable nodes?

2. Where are those beliefs coming from?

Both questions will be answered by the new equilibrium concept.

▷ Key-feature: Beliefs will now be considered part of the
equilibrium.

▷ Beliefs will emerge endogenously together with strategies.
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Beliefs and sequential rationality

Previous example: Useful to identify the failure of subgame
perfection when the information set of a player is not a singleton.

Our goal is to define a setting in which we can say things like:

▷ “Player i is not sequentially rational”

▷ At every node where i plays, even if the information set is not
a singleton

And then apply this refinement to Bayesian Nash equilibria of
the game to remove unreasonable ones.

▷ As we did with subgame perfection: Take all the NE of the
game and keep only those surviving subgame perfection (i.e.
that are sequentially rational).
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Methodology

We want to refine the concept of BNE.

To this end, we are going to impose

▷ four requirements on beliefs.

Finally, we will impose those requirements on BNE strategy
profiles.

▷ and we will obtain a new equilibrium concept: Perfect BNE.
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Decision nodes and information sets

Notation:

▷ Xi denote the set of player i ’s decision nodes

▷ Hi denote the set of player i ’s information sets

▷ It is a partition of Xi

Example: Assume that in some extensive-form game player i ’s
decision nodes are in Xi = {x1, x2, x4, x6}.

Hi can be any partition of Xi , for instance:

▷ Hi = {{x1}, {x2}, {x4}, {x6}}: All singletons

▷ Hi = {{x1, x2}, {x4}, {x6}}: x1 and x2 are not distinguishable

▷ Hi = {{x1, x2, x4}, {x6}}: only x6 or “not x6” is
distinguishable

▷ Hi = {{x1, x2, x4, x6}}: nothing is distinguishable
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System of beliefs

Definition: In an extensive-form game, a system of beliefs µ is a
probability distribution over decision nodes within each information set.

Formally, for every player i ∈ N, every information set h ∈ Hi and every
of its decision node x ∈ h, µ(x) ∈ [0, 1] is the probability that player i
assigns to decision node x when player i moves to information set h.

Where
∑

x∈h µ(x) = 1 for every h ∈ Hi , i ∈ N.

Example: Take Hi = {{x1, x2, x4}, {x6}}, h1 := {{x1, x2, x4}} and
h2 := {{x6}} then the system of beliefs may assign:

▷ µ(x1) = 2/3, µ(x2) = 1/6, µ(x4) = 1/6 ⇒
∑

x∈h1 µ(x) = 1

▷ µ(x6) = 1
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Beliefs: Requirement 1

Requirement 1: Every player has well-defined beliefs over their
decision nodes at every of their information set (singleton or not)

That is, the game is endowed with a complete system of beliefs
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Requirement 1: An Example

Consider the following game (Tadelis, 2013):

Nature

1

0, 2

O

−1,−1

F

1, 1
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E

C

[p]

1

0, 2
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A

E

W

[1− p]

2
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Requirement 1: An Example

Nature

1
x1

0, 2

O

x3

−1,−1

F

1, 1
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E

C

[p]

1
x2
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−2, 0

F

−1, 1

A

E

W

[1 − p]

2

A system of beliefs
must assign a probability
to x1, x2, x3 and x4.

We have

▷ µ(x1) = µ(x2) = 1

▷ µ(x3) ∈ [0, 1]

▷ µ(x4) ∈ [0, 1]

▷ µ(x3) + µ(x4) = 1
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Beliefs: Where do they come from?

We have imposed a system of beliefs but how are they
determined?

▷ Are they imposed by exogenous elements?

▷ Can players “choose” their beliefs?

We are going to allow for both in some way.

▷ Exogenously: Beliefs are partly determined by Nature.

▷ Endogenously: Beliefs are partly determined by players’
strategies.
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Beliefs: Consistency constraints

We impose some consistency constraints on beliefs.

▷ Exogenously: Beliefs must be consistent with Bayes’ rule (we
will be more specific later).

▷ Endogenously: Beliefs must be consistent with how we
anticipate other players’ strategies.

Reminder: Bayes’ rule

Let (Ω,F ,P) denote a probability space

For any two events A, B ∈ F such that P(B) ̸= 0 we have

P(A | B) = P(A,B)
P(B)
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Beliefs: Consistency constraints

Nature
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[1 − p]

2

Go back to the example

▷ Constraints on µ(x3)?

Assume P1 plays EO, i.e.:

▷ When P1 is C : chooses E

▷ When P1 is W : chooses O
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Beliefs: Consistency constraints

Nature
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2

Go back to the example

▷ Constraints on µ(x3)?

Assume P1 plays EO, i.e.

▷ When P1 is C : chooses E

▷ When P1 is W : chooses O

Belief consistency (endogenous):

▷ µ(x3) = P(P1 is C | E )

▷ 1− µ(x3) = P(P1 is W | E )
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Beliefs: Consistency constraints

Nature
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2

Therefore if P1 plays EO we must have:

▷ µ(x3) = 1.

▷ If P2 observes that the game reached
this stage, it must be that P1 is not
W .

P2’s beliefs must be consistent with

what P2 thinks P1 will play.
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Beliefs: Consistency constraints
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This also means that if P1 considers
playing EO

▷ Anticipates that µ(x3) = 1.

▷ Can therefore anticipate
that P2 will play A following E .

Then when P1 considers a deviation
from EO.

▷ P1 could try to play E when W .

▷ P2 would wrongly believe
that P1 is C and would play A.

▷ P1 therefore knows that this
deviation would not be profitable
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Beliefs: Consistency constraints

The above example illustrates an endogenous consistency
requirement.

▷ When a player reaches a decision node for which the
information set is not a singleton it must form a belief for
each decision node that is consistent with the other players’
strategies.

But it must also be consistent with exogenous elements such as
Nature draw.

▷ We do not see it in the previous example

▷ See next slide
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Beliefs: Consistency constraints

Consider the following case: P2 thinks that P1 of type

▷ C : chooses E with probability σC ⇔ P(E | C ) = σC

▷ W : chooses E with probability σW ⇔ P(E | W ) = σW

What should be µ(x3)?

▷ Assume P2 observes that P1 played E.

▷ Then, P2 must then infer how likely it is that P1 is C given
that they played E .

Formally,

µ(x3) = P(Nature has chosen C | P1 played E ).
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Beliefs: Consistency constraints

Using Bayes’ rule we have that:

µ(x3) = P(Nature has chosen C | P1 played E )

=
P(Nature has chosen C AND P1 played E )

P(P1 played E )
.

With lighter notations:

µ(x3) =
P(C AND E )

P(E )
.
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Beliefs: Consistency constraints

Using Bayes’ rule once again and the law of total probability we have:

µ(x3) =
P(C AND E )

P(E )

=
P(E | C )P(C )

P(E | C )P(C ) + P(E | W )P(W )

=
σC · p

σC · p + σw · (1− p)

Reminder:

▷ P(A,B) = P(A | B)P(B) for any two A, B ∈ F

▷ P(A) =
∑

i P(A | Bi )P(Bi ) where (Bi )
m
i=1 is a partition of F
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Beliefs: Consistency constraints

Notice that the belief

µ(x3) =
σC · p

σC · p + σw · (1− p)
,

depends both on

▷ P1’s strategy: Endogenous consistency

▷ Nature’s draw: Exogenous consistency

Rational players form their beliefs using both of these elements.

Notice also that if we set σC = 1 and σW = 0.

▷ P1 chooses E when C and O when W with certainty.

▷ Then µ(x3) =
1 · p

1 · p + 0 · (1− p)
= 1.
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Equilibrium path: On and off

We are almost ready to state our second and third requirements
on beliefs.

But first, consider the following definition.

Definition (Tadelis, 2013): Let σ∗ = (σ∗
1, . . . σ

∗
n) be a Bayesian

Nash Equilibrium profile in a game of incomplete information. We
say that an information set is on the equilibrium path if given σ∗

and given the distribution of types, it is reached with positive
probability.

By opposition, an information set is said to be off the equilibrium
path if given σ∗, it is reached with zero probability.
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Equilibrium path: Example

Nature

1

0, 2
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x3
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E
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[1 − p]

2

Example:
Consider first that P1 chooses EO.

▷ With prob. p, P1 is C and plays E .

▷ With
prob. 1− p, P1 is W and plays O.

⇒ The information set h1 = {x3, x4}
is reached with positive probability p.

If EO
were part of a BNE, we would say that
h1 is on the equilibrium path of this BNE.
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Equilibrium path: Example
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Example: Consider now that P1 chooses
OO

▷ With prob. p, P1 is C and plays O.

▷ With
prob. 1− p, P1 is W and plays O.

⇒ The information set h1 = {x3, x4}
is never reached with positive probability.

If OO were part of a BNE, we would
say that
h1 is off the equilibrium path of this BNE.
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Equilibrium path: On and off

Whether an information set is on or off the equilibrium path is
not exogenous.

▷ It is determined by the players’ actions.

We are now ready to state our second and third requirements
on beliefs.

▷ One for beliefs on the equilibrium path.

▷ One for beliefs off the equilibrium path.
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Beliefs: Requirement 2

Requirement 2 (Tadelis, 2013): For any BNE strategy profile
σ∗, in all information sets that are on the equilibrium path, beliefs
must be consistent with Bayes’ rule.

That is, players must form their beliefs using both the

▷ exogenous constraints (nature);

▷ and the endogenous constraints (other players’ strategies).
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When Bayes is off path

What about information sets that are off the equilibrium path?

▷ Can’t we apply Bayes’ rule as well?

▷ Not always!

Recall that if P1’s strategy is OO.

▷ Then h1 = {x3, x4} is never reached.

Assume that P2 believes that P1 plays OO.

▷ But surprisingly observes that h1 = {x3, x4} is reached!

Trying to apply Bayes’ rule gives: µ(x3) =
0 · p

0 · p + (1− p) · 0
=

0

0
!
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When Bayes is off path

Clearly, applying Bayes’ rule fails as µ(x3) =
0

0
is undefined.

But you might wonder: Why should we care?

▷ It never happens at equilibrium, so why is that a problem?
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When Bayes is off path

To see why, assume P2 believes that P1 plays OO so that Bayes’
rule does not apply to assign beliefs to h1 = {x3, x4}.

▷ P1 will compute their payoff with OO knowing that P2 will
believe that h1 is never reached.

▷ But if P1 wants to see if they could deviate from that and
play EO for instance.

▷ Then, h1 would be reached with positive probability.

▷ But as it is unexpected for P2, µ(x3) is not defined by Bayes’
rule.

▷ So that P1 is unable to know what will happen and to
compute their payoff if they play E .
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When Bayes is off path

Therefore, if µ(x3) is undefined, we are unable to fully compute
how P1 could deviate from OO.

That is why we will impose that there also exists beliefs over nodes
of information sets that are off the equilibrium path.

We can now state our third requirement.
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Beliefs: Requirement 3

Requirement 3 (Tadelis, 2013): At information sets that are off the
equilibrium path, any belief can be assigned to which Bayes’ rule does
not apply.

In other words:

▷ If Bayes’ rule can be applied: Apply it!

▷ Otherwise: µ(x) can be anything in [0, 1] for x at an off
equilibrium path information set.

Notice that there is room for some arbitrary choices here.

▷ We might obtain different solutions if we choose different beliefs
off the equilibrium path!
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Beliefs: Requirement 4

We can finally state our fourth requirement on beliefs.

Requirement 4 (Tadelis, 2013):Given their beliefs, players’
strategies must be sequentially rational. That is, in every
information set players will play a best response to their beliefs.

With this requirement, we restore the possibility to evaluate
whether a move is sequentially rational or not at every
information set, including those that contain more than one
decision node.
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Perfect Bayesian Nash Equilibrium: Definition

Finally, we can define what is a Perfect Bayesian Nash
Equilibrium.

Definition: A Perfect Bayesian Nash Equilibrium consists of a
Bayesian Nash Equilibrium profile σ∗ = (σ∗

1, . . . , σ
∗
n) together with

a system of beliefs µ that satisfy Requirements 1,2,3 and 4.

In other words, a PBNE is a BNE such that players are
sequentially rational at every information set.
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PBNE: Beliefs and strategies

In BNE, beliefs were purely exogenous.

▷ Strategies depended on beliefs.

▷ But beliefs were independent of strategies.

The fundamental feature of PBNE is that beliefs and strategies are both
part of the equilibrium outcome.

▷ Strategies depend on beliefs

▷ Beliefs depend

{
on Nature (what is given)

on strategies (what other players might do)

Beliefs emerge endogenously.
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Perfect Bayesian Nash Equilibrium: An example

PBNE of this game with p = 0.5.

First, let us find the BNEs.

▷ We can compute the merged
payoff matrix as follows.

1 \2 F A

EE (−1,−2) ;− 1
2 (1,−1) ; 1

EO (−1, 0) ; 1
2 (1, 0) ; 3

2

OE (0,−2) ; 1 (0,−1) ; 3
2

OO (0, 0) ; 2 (0, 0) ; 2

Nature

1

0, 2

O

x3

−1,−1

F

1, 1

A

E

C

[p]

1

0, 2

O

x4

−2, 0

F

−1, 1

A

E

W

[1 − p]

2
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PBNE: An example

PBNE of this game with p = 0.5

First, let us find the BNEs

▷ We can compute the merged
payoff matrix as follows

1 \2 F A

EE (−1,−2) ;− 1
2 (1,−1) ; 1

EO (−1, 0) ; 1
2 (1, 0) ; 3

2

OE (0,−2) ; 1 (0,−1) ; 3
2

OO (0, 0) ; 2 (0, 0) ; 2

Nature
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x3

−1,−1

F

1, 1

A

E

C

[p]

1

0, 2

O

x4

−2, 0
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−1, 1

A

E

W

[1 − p]

2
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PBNE: An example

Two BNE: (OO,F ) and (EO,A).

Consider (OO,F ):

▷ The information set h1 = {x3, x4} is off the equilibrium
path.

▷ It means that µ(x3) can be anything in [0, 1] (Requirement 3).

However, assume that for some reason P2 observes E ⇒ h1 is
reached.

For any µ(x3) ∈ [0, 1], P2’s expected payoff is:

▷ µ(x3) · (−1) + (1− µ(x3)) · 0 = −µ(x3) if P2 plays F

▷ µ(x3) · 1 + (1− µ(x3)) · 1 = 1 if P2 plays A
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PBNE: An example

▷ µ(x3) · (−1) + (1− µ(x3)) · 0 = −µ(x3) if P2 plays F

▷ µ(x3) · 1 + (1− µ(x3)) · 1 = 1 if P2 plays A

Then it is clear that P2 will play A for any value of µ(x3).

In other words, (OO,F ) is such that

▷ P2 is not sequentially rational (Requirement 4).

The BNE profile (OO,F ) does not survive the PBNE refinement.
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PBNE: An example

Consider now (EO,A):

▷ The information set h1 = {x3, x4} is on the equilibrium
path.

▷ Belief µ(x3) = 1 as only C chooses E .

P2 is then certain that observing E means that P1 is C .

So if P2 reaches h1.

▷ Best response is A.

Are we done?
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PBNE: An example

Are we done?

▷ Not yet, we also have to verify that EO is a best response
to A and belief µ(x3) = 1.

Fix A and µ(x3) = 1.

1. P1 deviates to EE

▷ P2 would always believe that P1 is C .

▷ P2 would then always play A.

Not sequentially rational for P1.

▷ When reaching x2, P1 knows that P2 will play A.

▷ Better playing O
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PBNE: An example

Still fix A and µ(x3) = 1.

2. P1 deviates to OE

If P1 reaches x1 and plays O.

▷ Not sequentially rational

▷ Would be better to play E so that P2 plays A

If P1 reaches x2 and plays E .

▷ P2 will believe that P1 is C

▷ P2 will play A

▷ Not sequentially rational for P1 to play E at x2
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PBNE: An example

Still fix A and µ(x3) = 1.

3. P1 deviates to OO

If P1 reaches x1 and plays O.

▷ Not sequentially rational

▷ Would be better to play E so that P2 plays A
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PBNE: An example

Therefore:

• (EO,A) and µ(x3) = 1 is the only PBNE of the game.

• The other BNE profile is not sequentially rational according to
our requirements.
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PBNE: Introducing Example solution

Let us go back to the introducing
example.

Recall: Two BNE.

▷ (L,B)

▷ (R,A)

We have found that for any
µ ∈ [0, 1].

▷ A is a dominant strategy if
we reach P2’s information
set.

1

1, 3

L

[µ]

0, 2

A

0, 1

B

M

[1− µ]

2, 1

A

0, 0

B

R

2
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PBNE: Introducing Example solution

Consider (L,B).

▷ Information set is off the
equilibrium path.

▷ Belief µ can be anything
(requirement 3).

▷ But for any µ, A is a
dominant strategy.

Then B is not sequentially
rational.

▷ (L,B) is not a PBNE.

1

1, 3

L

[µ]

0, 2

A

0, 1

B

M

[1− µ]

2, 1

A

0, 0

B

R

2
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PBNE: Introducing Example solution

Consider (R,A).

▷ Information set is on the
equilibrium path.

▷ A is a dominant strat.

▷ P1 prefers R to M.

▷ Belief must be µ = 0.

P1 can play:

▷ L and obtain 1.

▷ R and obtain 2 (better).

Therefore, (R,A) and µ = 0
is a PBNE.

1

1, 3

L

[µ]

0, 2

A

0, 1

B

M

[1− µ]

2, 1

A

0, 0

B

R

2
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Other refinements

There exists other refinements of BNE.

For instance, “sequential equilibrium” is the most famous other
one.

▷ Due to Kreps and Wilson (1982)

Sequential equilibrium is stronger than PBNE.

▷ Essentially a PBNE with more requirements on beliefs that
are off the equilibrium path .

▷ Every sequential equilibrium is a PBNE, but the reverse does
not hold.

In many applications, the two are equivalent.

▷ We will restrict to those cases
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Signaling games

A very important type of dynamic games of incomplete
information:

▷ Signaling games.

They have some distinguishable features, which are, informally:

▷ P1 privately knows payoff-relevant information for P2

▷ No way to certify the information

▷ P1 will try to signal their information through their action

▷ Signaling is possible when actions are credible signals

Examples: Education, advertising, war games and sometimes even
biological evolution!
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Signaling games: Main Setting

The main setting for (two-player) signaling games is as follows:

1. Nature chooses a type. Only P1 learns it. But both P1 and
P2’s payoff depends on it;

2. P1 has at least as many actions as they have types (rich
action space). Each action has some cost;

3. Timing: P1 plays first. P2 observes P1’s action (but not
type) and responds to it;

4. P2 updates their beliefs about P1’s type thanks to their belief
about P1’s strategy and the observed action.
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Signaling games: Classes of PBE

There are two important classes of PBE in signaling games.

1. Pooling equilibria

▷ All types of P1 choose the same action, i.e., P1 pools
together all their types in the same action.

▷ P2 cannot infer anything about P1’s type as their action is
non-revealing.

▷ P2 must then best respond using only exogenous
information about P1’s type.
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Signaling games: Classes of PBE

The other class is

2. Separating equilibria

▷ Each of P1’s type chooses a different action.

▷ P2 can perfectly infer P1’s type from their action.

▷ P2 can then respond as if they were perfectly informed about
P1’s type.

In that case, we say that P1’s action reveals their type
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Signaling games: Pooling and Separating

Separating equilibria seem very powerful.

▷ P1 cannot provide hard proof of their type but can only send
a signal.

▷ Yet, P2 becomes perfectly informed.

▷ All information is revealed!
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Signaling games: Pooling and separating

Separating seems too good to be true. What could go wrong?

▷ Recall that both P1 and P2’s payoff depend on P1’s type

▷ Maybe they do not have aligned interests?

▷ When P2 learns the information, they may take an action that
does not please P1

▷ P1 might then have an incentive to lie/manipulate
information so that P2 responds in a way that P1 prefers

▷ But a rational P2 will anticipate this possibility

▷ So if P1 has an incentive to lie, P2 should not believe that
P1’s action reveals their type
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Signaling games: Pooling and Separating

The existence of a separating equilibrium therefore relies on the
credibility of P1’s signal.

If both players’ interests are aligned.

▷ P1’s signal is always credible.

If both players’ interests are not aligned.

▷ We must check that P1 does not want to manipulate
information.

▷ This will crucially rely on whether sending wrong signals is
costly enough for P1.
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Separating and Pooling: Previous example

In the previous example:

The BNE: (OO,F ) is a pooling
equilibrium.

▷ Choice of P1 gives no
information of their type.

The PBNE: (EO,A) is a separating
equilibrium.

▷ If P1 plays E : P2 can perfectly
infer that P1 is C .

▷ If P1 plays O: P2 can perfectly
infer that P1 is W .

Nature

1

0, 2

O

x3

−1,−1

F

1, 1

A

E

C

[p]

1

0, 2

O

x4

−2, 0

F

−1, 1

A

E

W

[1 − p]

2
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A famous game: Education as a signal

Famous signaling game: Education game proposed by Spence (1973).

Spence’s idea is that education is a signal of productivity.

▷ Job recruiters cannot observe workers’ productivity.

▷ An individual can spend time and effort studying to get a diploma.

▷ It is less costly to get the diploma for more productive individuals.

Additional assumption: Education has no effect on productivity.

▷ i.e., education is nonproductive, only a loss of time and efforts.

▷ seems unrealistic but not a problem, assuming education is productive
would not change the result.
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A famous game: Education as a signal

Big picture:

▷ Investing in education is very costly for individuals with a low
level of productivity.

▷ We expect that only highly productive individuals invest in
education.

▷ Therefore, education signals productivity.

The obvious problem to this reasoning is

▷ Low types must not be incentivized to get the diploma to
pretend they are high types.
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A famous game: Education as a signal

Setting (Tadelis, 2013, p.319):

Nature draws P1’s type: With probability p, P1 is of type t1 = H
(High); otherwise P1 is t1 = L (Low) with probability 1− p.

P1 plays first (after Nature):

▷ P1 is the future employee

▷ P1 can choose to study for an undergraduate degree U only or
to continue studying to obtain a graduate degree D

▷ To obtain U: Individual cost is normalized to 0

▷ To obtain D: It costs cH = 2 and cL = 5 to type H and L,
respectively
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A famous game: Education as a signal

P2 observes a1 ∈ A1 = {U,D} but not t1

▷ P2 is the employer, plays after observing a1 ∈ A1 = {U,D}

▷ P2 must assign the employee to one of two possible tasks:
a2 ∈ {S ,S}

▷ S is less skilled task than S : The market wage for performing S is
w = 6 and the one for S is w = 10

▷ P2’s net profit depends on the following task-productivity
assignment (independent of U and D):

S S

H 10 5

L 0 3
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A famous game: Education as a signal

Nature

1

µU

10, 10

S

6, 5

S

U

µD
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S
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D
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p

1

1− µU

10, 0

S

6, 3

S

U

1− µD

5, 0

S

1, 3

S
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1− p

2 2
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A famous game: Education as a signal

P2 observes a1 ∈ A1 = {U,D} but not t1

▷ P2 is the employer, plays after observing a1 ∈ A1 = {U,D}

▷ P2 must assign the employee to one of two possible tasks:
a2 ∈ {S ,S}

▷ S is less skilled task than S : The market wage for performing S is
w = 6 and the one for S is w = 10

▷ P2’s net profit depends on the following task-productivity
assignment (independent of U and D):

S S

H 10 5

L 0 3
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A famous game: Education as a signal

We define a system of beliefs:

▷ µU : P2’s belief that P1 is H after observing U.

▷ µD : P2’s belief that P1 is H after observing D.

They will be determined both by

▷ Nature

▷ P1’s strategy
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A famous game: Education as a signal

First, let us find the BNEs when p = 1
4 .

There are two pure-strategy BNE:

▷ (UU, SS) (Pooling)

▷ (DU,SS) (Separating)

The proof is left as an exercise

▷ See Tadelis (2013), p.322
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A famous game: Education as a signal

Consider the separating equilibrium (DU, SS)

▷ All information sets are on the equilibrium path

µU = P(H | U) =
P(U | H)P(H)

P(U | H)P(H) + P(U | L)P(L)

=
0 · p

0 · p + 1 · (1− p)

= 0

When P2 observes U, they believe that P1 is L with certainty
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A famous game: Education as a signal

Now for µD

µD = P(H | D) =
P(D | H)P(H)

P(D | H)P(H) + P(D | L)P(L)

=
1 · p

1 · p + 0 · (1− p)

= 1

When P2 observes D, they believe that P1 is H with certainty
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A famous game: Education as a signal

For beliefs µU = 0 and µD = 1, it is clear that

▷ S is a BR to D (10 > 5)

▷ S is a BR to U (3 > 0)

For beliefs µU = 0, µD = 1 and SS :

▷ P1 of type H: Prefers D to U (8 > 6)

▷ P1 of type L: Prefers U to D (6 > 5)

Therefore (DU,SS) is a (separating) PBNE
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A famous game: Education as a signal

Consider the pooling equilibrium (UU,SS)

▷ The information set for nodes after D is off the equilibrium
path

For the one on the equilibrium path

▷ µU = p = 1
4

▷ that is, this belief for P2 is only constituted by the exogenous
information

▷ Because P1 reveals nothing by playing U for each of their
type
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A famous game: Education as a signal

Consider the pooling equilibrium (UU,SS)

▷ Information set for nodes after D: off the equilibrium path

▷ Information set for nodes after U: on the equilibrium path

For the one on the equilibrium path

▷ µU = p = 1
4

▷ that is, this belief for P2 is only constituted by the exogenous
information

▷ Because P1 reveals nothing by playing U for each of their
type
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A famous game: Education as a signal

For the one off the equilibrium path:

▷ µD can be anything between [0, 1].

Let us compute P2’s best response to observing D for belief
µD ∈ [0, 1]

▷ Playing S : 10µD + 0(1− µD) = 10µD

▷ Playing S : 5µD + 3(1− µD) = 2µD + 3

Therefore P1 prefers

{
S if µD ≥ 3

8

S if µD ≤ 3
8
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A famous game: Education as a signal

Therefore, for S to be a BR for P2 it must be the case that

µD ≤ 3

8

This means that (UU,SS) is a PBNE only if beliefs off the
equilibrium path µD ∈ [0, 38 ]
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