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The Multiple Regression Model

The basic assumptions of the multiple regression model are that:

E(Y |X ) = β0 +

p∑
j=1

Xjβj ,

and the conditional distribution Y |X has finite 2nd and 4th moments.

Suppose to have N observations of both the target variable Y and
each of the predictor Xj in the training set. We can write the model
in the matrix format:

y = Xβ + ε

where y is the N−vector of outputs, X is the N × (p + 1) matrix with
each row an input vector (with a 1 in the first position), ε is the
N−vector of (unobservable) errors, and β = [β0, ..., βp ]′.
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Ordinary Least Squares

We can get a consistent estimate of the coeffi cient vector β by
minimizing the following quadratic loss function:

RSS(b) = (y − Xb)′(y − Xb)

where b is a generic (p + 1)−vector.
The solution of this minimization problem is the Ordinary Least
Squares (OLS) estimator:

β̂ = (X′X)−1X′y

The fitted values of the training inputs are

ŷ= Xβ̂ = Hy

where the "hat" matrix H is equal to X(X′X)−1X′.
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OLS (cont’d)

The residuals are defined as

e = y − ŷ = (IN −H)y = My

where M =(IN − X(X′X)−1X′).
Geometric interpretation: the matrices H and M respectively project
the input vector y into the space spanned by the columns of X and
into its null space.

Algebraic implication: the fitted value and the residual vectors are
orthogonal each other, that is ŷ′e = 0.

Note: β̂ cannot be computed when the matrix X′X is not invertible.
This occurs when p > N. Moreover, numerical problems in inverting
X′X arise when either p approaches N or the input variables are
highly correlated each other.
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OLS (cont’d)
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Statistical properties

Under the previously given assumptions and treating X as fixed, β̂ is
an unbiased and consistent estimator of β , that is

E(β̂) = β

β̂
p→ β as N →∞

If we additionally assume that Var(ε) = σ2IN then

Var(β̂) = σ2(X′X)−1

√
N(β̂ − β)

d→ N
(
0, σ2S−1XX

)
where X′X/N → SXX

If we further assume that ε ∼ N(0, σ2IN ) then

β̂ ∼ N
(
β, σ2(X′X)−1

)
Moreover, β̂ is the maximum likelihood estimator of β.
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Measures of fit

We compute the Residual Standard Error

RSE =

√
RSS

N − p − 1 =

√
e′e

N − p − 1

where RSS denotes the Residual Sum of Squares.
R-squared or fraction of variance explained is

R2 = 1− RSS
TSS

= 1− e′e
(y − y1N )′(y − y1N )

where y is the average of Y in the training sample, 1N is a N−vector
of ones and TSS denotes the Total Sum of Squares.
Since R2 is a non decreasing function of p, when comparing models
with a different number of predictors we use the adjusted R-squared

R2A = 1− RSS/(N − p − 1)

TSS/(N − 1)
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Testing

To test the hypothesis that βj = 0, we use the t−test statistics or
Z−scores

zi =
β̂j

RSE√υj
where υj is j−th diagonal element of (X′X)−1. Under H0, we have

zi
d→ N (0, 1) and, under normality, zi ∼ tN−p−1.

To test for the significance of q(≤ p) coeffi cients simultaneously, we
use the F−statistic

F =
(RSS0 − RSS)/q
RSS/(N − p − 1)

where RSS0 = e′0e0, and e0 is the residual vector of the model with
(p − q) predictors. Under H0, qF

d→ κ2(q) and, under normality,
F ∼ F (q,N − p − 1).
Heteroskedasticity and autocorrelation robust versions of these tests
should be used when Var(ε) 6= σ2IN .
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Ridge

The ridge coeffi cients minimize a penalized residual sum of squares

(y − Xb)′(y − Xb) + λb′b = RSS(b) + λb′b

where λ(> 0) is defined as the tuning parameter.

The solution of this minimization problem is the ridge estimator:

β̂r = (X′X+ λIp)−1X′y

Note: given that the ridge solution is not invariant to changes of scale
and that there is no need to shrink the intercept term, the inputs are
demeaned and standardized and, consequently, β0 is dropped from β
in applications.

Note: β̂r can be computed even when X′X is singular!

Gianluca Cubadda Università di Roma "Tor Vergata" () Linear Regression 2nd February 2018 9 / 19



Ridge (cont’d)

Under the classical assumptions on linear regression, β̂r is a biased
but consistent estimator of β , that is

E(β̂r ) = (X′X+ λIp)−1X′Xβ

β̂r
p→ β as N →∞

Moreover, we have

Var(β̂r ) = σ2(X′X+ λIp)−1X′X(X′X+ λIp)−1

Notice: there exists a λ such that MSE(β̂r ) < MSE(β̂). However, the
optimal choice of λ depends on unknown parameters.

Assuming Gaussian errors, t−tests and F−tests can be used on the
ridge estimator (formulae are messy!). They have the same
distributions as in the OLS case.
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Orthogonal inputs

The eigen-decomposition of X′X is

X′X = VD2V′

where D2 is the diagonal p × p−matrix of the (ordered) eigenvalues
(d21 ≥ d22 ≥ ... ≥ d2p ), and V is p × p−matrix with columns being the
eigenvectors such that VV′ = Ip .
The principal components of X are defined as

Z = XV

and their variance-covariance matrix (remember that the X′s are
centered, so the Z′s are) is

Z′Z/N = D2/N

Interpretation: The j−th principal component zj = Xυj , where υj is
the j−th eigenvector, has variance d2j /N, subject to being orthogonal
to the other ones. The 1−st principal component z1 has the largest
variance amongst all normalized linear combinations of the X′s.
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Orthogonal inputs (cont’d)

We can rewrite the model into is canonical form

y = Zθ + ε

where θ = V′β. Notice that the inputs in Z are uncorrelated each
other.

The OLS of estimator of θ is

θ̂ = (Z′Z)−1Z′y = D−2Z′y

whereas the ridge estimator is

θ̂r = (Z′Z+λIp)−1Z′y = (D2+λIp)−1Z′y = (D2+λIp)−1D2θ̂
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Orthogonal inputs (cont’d)

Hence, the j−th element of θ̂r is given by

θ̂r ,j = θ̂jd2j /(d2j + λ).

where θ̂j is the j−th element of θ̂.
Interpretation: θ̂r ,j shrinks θ̂j toward 0. Moreover, ridge regression
shrinks low-variance principal components (small dj ) more than it
does high-variance ones (large dj ).

Note: the conclusions above hold for the canonical form. We can
transform back by setting

β̂r = Vθ̂r

but β̂r may not shrink every component of β̂. However, what we can
say is that

β̂′r β̂r = θ̂′r θ̂r < θ̂′θ̂ = β̂′β̂

for λ > 0, so that β̂r is a shrinkage estimator.
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Lasso

The Lasso (Least Absolute Shrinkage and Selection Operator)
minimizes a penalized residual sum of squares

(y − Xb)′(y − Xb) + λ1′p |b| = RSS(b) + λ1′p |b|
where λ > 0, and 1p is a p−vector of ones
Note: the Lasso penalization makes the solutions nonlinear in the y,
and there is no closed form expression as in ridge regression. An
algorithm for estimation is discussed later.
Suppose that the X′s are orthonormal: X′X = Ip (this can be
achieved by transforming the inputs into XVD−1). Then we have

β̂r ,j = β̂j/(1+ λ)

β̂l ,j =

{
0, if |β̂j | ≤ λ
β̂j − λsign(β̂j ), otherwise

where β̂l ,j is the Lasso estimator of βj . Matters are more complicated
in the general case but still Lasso sets small coeffi cients exactly to 0.
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Lasso (cont’d)

The Lasso enjoys the so-called oracle property, i.e. it is consistent in
both parameter estimation and variable selection.

However, no standard errors are available for the Lasso estimator.
Hence, no testing is possible.

Lasso performs well when the coeffi cient vector β is indeed sparse, i.e.
it contains many zeros, and the X′s are not highly correlated.
Ridge performs best when β contains many small coeffi cients, and in
the presence of high correlation amongst the X′s.
An effi cient algorithm for Lasso estimation is the LAR (Least-Angle
Regression) Lasso. It provides with the entire Lasso path, i.e. the
sequence of β̂l ,j according to the value of λ.

Gianluca Cubadda Università di Roma "Tor Vergata" () Linear Regression 2nd February 2018 15 / 19



LAR-Lasso

1 Center and standardize the X′s. Start with the residual vector
r = y − y1N and [β1, ..., βp ]′ = 0.

2 Find the predictor xj most correlated with r.
3 Move βj from 0 toward the OLS coeffi cient of r on xj until some xk
has as much correlation with the current residual as does xj .

4 Update r, and move βj and βk toward the OLS coeffi cients of r on
[xj , xk ] until some xl has as much correlation with the current
residual.

5 Continue in this way until all p predictors have been entered. This is
the OLS solution.

A simple modification of LAR provides the entire Lasso path: If a
non-zero coeffi cients hits zero, drop its variable from the active set of
predictors and recompute the current joint least squares direction.
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Principal Component Regression

PCR (Principal Component Regression) consists in a OLS regression
of y on the first M(< p) principal components

ZM = [z1, ..., zM ]

This regression gives the coeffi cient vector

θ̂1:M = (Z′MZM )−1Z′My = D−2M Z
′
My = D−2M V

′
MX
′y

where D2M is the diagonal matrix of the largest M eigenvalues and
ZM is the matrix of the associated eigenvectors.

The corresponding estimate of β is obtained as

β̂pcr = VM θ̂1:M
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Partial Least Squares

The PLS (Partial Least Squares) factors FM = [f1, ..., fM ] are
orthogonal linear combinations of the X′s that maximize their
covariances with the target variable y. They are iteratively computed
as follows

U(0) = X (centered and standardized),

U(j) = U(j−1) − fjφ′j = X−
j∑

m=1
fmφ′m , j = 1, ...,M

fj = U(j−1)ωj ,

ωj = U′(j−1)y,

φ′j = (f ′j fj )
−1f ′jU(j−1)

The fitted values of the PLS regression are obtained as

ŷpls = FM (F′MFM )−1F′My
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PCR vs. PLS

The closed form solution of the PLS estimator is

β̂pls = ΩM (Ω′MX
′XΩM )−1Ω′MX

′y

where ΩM = [ω1, ..., ωm ]′, which is similar to

β̂pcr = VM (V′MX
′XVM )−1V′MX

′y

Differently from the principal components, the PLS factors take into
account of the co-variability between the target and the predictors.
Both PCR and PLS are consistent under the so-called Helland &
Almoy condition, i.e. Cov(X , y) is a linear combination of M
eigenvectors of Var(X ) (not necessarily those associated with the
largest eigenvalues). This implies that the eigenvalues of X′X offer no
guidance on the choice of the principal components to use in PCR.
Whereas β̂pcr is a linear estimator, β̂pls is not. Indeed the PLS weights
ΩM depend on both X and y, whereas the eigenvectors VM depend
on X only. This considerably complicates inference for PLS regression.
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