Exercises 3^{rd} Week

Maura Mezzetti

Exercise 1

Let X_1, \ldots, X_n be iid r.v. distributed as continuous uniform distribution on $[0, \theta]$. The probability distribution function of X_i for each *i* is:

$$f(x|\theta) = \begin{cases} \theta^{-1}, & 0 \le x \le \theta\\ 0, & otherwise \end{cases}$$

Consider $T = max(X_1, X_2, ..., X_n)$, discuss whether is an unbiased estimator for θ .

Exercise 2

Let (X_1, \ldots, X_n) be independent identically distributed random variables with p.d.f.

$$f(x) = \theta^2 x \exp(-\theta x)$$
 $x > 0$

Is $T(X_1, \ldots, X_n) = 1/X_1$ an unbiased estimator of θ ?

Exercise 3

Let (X_1, \ldots, X_n) be independent identically distributed random variables with $E(X) = \mu$, $Var(X) = \sigma^2$, Are the following estimators unbiased estimator for σ^2 ?

$$T_1(X_1, \dots, X_n) = \frac{(X_1 - X_2)^2}{2}$$
$$T_2(X_1, \dots, X_n) = \frac{(X_1 + X_2)^2}{2} - X_1 X_2$$

Exercise 4

Let (X_1, \ldots, X_n) be a random sample of i.i.d. random variables with expected value μ and variance σ^2 . Consider the following estimator of μ :

$$T_n(a) = a \times X_n + (1-a) \times \bar{X}_{n-1}$$

where X_n is the n - th observed random variable and \bar{X}_{n-1} is the sample mean based on n - 1 observations.

- 1. Find value of a such that $T_n(a)$ is an unbiased estimator for μ
- 2. Find value of $a \star$ such that $T_n(a \star)$ is the most efficient estimator for μ within the class $T_n(a)$?