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The score vector

Important results for the score vector:

Let θ̂MLE be the MLE for θ

u(θ̂MLE ) = 0

Under some regular conditions (see Casella Berger):

E [u(θ)] = 0

under some regular conditions (see Casella Berger):

E [u2(θ)] = E

[(
∂logL(θ|x)

∂θ

)2
]
= −E

[
∂2logL(θ|x)

∂θ2

]
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Score Function

u(θ) =
∂logL(θ|x)

∂θ

The first derivative of the log-likelihood function is called Fisher’s
score functio

Expected Fisher Information In(θ) = Eθ

(
− δ2logL(θ)

δ2θ

)
In(θ) = E

(
∂

∂θ
log(L(x ; θ)

)2
)

In(θ) = var (u(θ))
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Central Limit Theorem

Theorem Let X1,X2, . . . be a sequence of IID r.v. with
expectation µ and variance σ2. Then, the random variable:

Zn =
Sn − nµ

σ
√
n

=

√
n

σ
(Mn − µ)

converge in law to a standard normal N(0, 1).
The Law of Large Numbers and the Central Limit Theorem require
specific integrability assumptions: finite expectation for the Law of
Large Numbers, and finite variance for the Central Limit Theorem.
When these assumptions are not satisfied, the conclusions may not
be true.
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Reminder: Taylor Expansion

Taylors Theorem

If f is a function continuous and n times differentiable in an
interval [x , x + h], then there exists some point in this interval,
denoted by x + λh for some λ ∈ [0, 1], such that

f (x + h) = f (x) + hf ′(x) +
h

2
f ′′(x) + . . .+

hn−1

(n − 1)!
f (n−1)(x) +

+ . . .+
hn

n!
f (n)(x + λx)
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Bernoulli distribution

f (x |θ) = θx(1− θ)1−x x ∈ 0, 1

f (x1, . . . , xn|θ) = θ
∑
xi (1− θ)n−

∑
x i x ∈ 0, 1

L(θ|x) = θ
∑
xi (1− θ)n−

∑
x i x ∈ 0, 1

log (L(θ|x)) =
∑
i

xi logθ + (n −
∑
i

xi )log(1− θ)

dl(x , θ)

dθ
=

x

θ
− 1− x

1− θ

d2l(x , θ)

dθ2
= − x

θ2
− 1− x

(1− θ)2

I (θ) =
θ

θ2
+

1− θ

(1− θ)2
=

1

θ(1− θ)

In(θ) =
n

θ(1− θ)
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