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1 Show that A ⊥ B ⇒ AC ⊥ BC .

Solution
We have to show that AC ⊥ BC , that is

P(AC ∩BC) = P(AC) P(BC).

Left hand side:

P(AC ∩BC) = P(A ∪B)C = 1− P(A ∪B) = 1− P(A)− P(B) + P(A ∩B) =

= 1− P(A)− P(B) + P(A) P(B),

where in the first equality we use the De Morgan’s law (A ∪ B)c = Ac ∩ Bc, in the
third equality we use the Law of Total Probability, and in the last one the hypothesis.
Right hand side:

P(AC) P(BC) = (1− P(A))(1− P(B)) = 1− P(A)− P(B) + P(A) P(B),

therefore the equality is verified.

2 Define the events
A = ill
B = smoker,
and define the probabilities

P(B) = 0.4

P(A | B) = 0.25

P(A | BC) = 0.07.
What is the probability of being ill?
What is the probability of being smoker given that you are ill?

Solution

P(A) = P(A ∩B) + P(A ∩BC) = P(A | B) P(B) + P(A | BC) P(BC) =

= (0.25)(0.4) + (0.07)(0.6) = 0.142.

P(B | A) = P(A ∩B)

P(A)
=

(0.25)(0.4)

0.142
= 0.704.
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3 Given a package with three balls, define X=number of broken balls in a package,
and p = 0.2 the probability of a ball to be broken. (We are assuming that the fact
that a ball is broken is independent on the state of the other balls). Which is the
probability that the number of broken balls is less than one?

Solution
Since

X ∼ B(3, 0.2),

we have that

P (X ≤ 1) = P (X = 0) + P (X = 1) =

�
3
0

�
0.20(0.8)3 +

�
3
1

�
0.21(0.8)2 = 0.896.

4 28 people booked a flight. The probability that each passenger is coming at the
check-in is 0.7. Which is the probability that more than 25 passenger come at the
check-in? (We are assuming that each passenger is independent from the others).

Solution
Since

X ∼ B(28, 0.7),

we have that

P (X ≥ 25) =
28�

x=25

�
28
x

�
0.7x0.328−x =

=

�
28
25

�
0.7250.33 +

�
28
26

�
0.7260.32 +

�
28
27

�
0.7270.31 +

�
28
28

�
0.7280.30 = 0.0157.

5 Compute the second moment and the variance of a r.v. T distributed ad a
Geometric with parameter p ∈ (0, 1].

Solution
If T ∼ Ge(p), then P (T = n) = pqn−1, where q = 1− p.

E(T 2) =
∞�

n=1

n2P (T = n) =
∞�

n=1

n2pqn−1 =

2



= p

� ∞�

n=1

n2qn−1

�
= p




∞�

n=1

(n2 − n)qn−1 +

∞�

n=1

nqn−1

� �� �
first derivative of power series



 =

= p

� ∞�

n=1

n(n− 1)qn−1 +
1

(1− q)2

�
= p



q

∞�

n=1

n(n− 1)qn−2

� �� �
second derivative of power series

+
1

(1− q)2



 =

= p

�
q

2

(1− q)3
+

1

(1− q)2

�
= p

�
q
2

p3
+

1

p2

�
=

2q + p

p2
=

q + 1

p2
.

Var(T ) = E(T 2)− (E(T ))2 =
q + 1

p2
− 1

p2
=

q

p2
.

6 Compute the second moment and the variance of a r.v. X distributed as a Poisson
with parameter λ > 0.

Solution
If X ∼ Poisson(λ), then P (X = k) = e−λλk

k! .

E(X2) =
∞�

k=0

k2P (X = k) =
∞�

k=0

k2
e−λλk

k!
= e−λ

∞�

k=1

kλk

(k − 1)!
= λe−λ

∞�

k=1

kλk−1

(k − 1)!
.

Consider only the summation

∞�

k=1

kλk−1

(k − 1)!
=

∞�

k=1

(k − 1)
λk−1

(k − 1)!
+

λk−1

(k − 1)!
=

=
∞�

k=2

λk−1

(k − 2)!
+

∞�

k=1

λk−1

(k − 1)!
=

define k − 1 = m

= λ
∞�

k=2

λk−2

(k − 2)!
+

∞�

m=0

λm

m!
=

define k − 2 = j

= λ
∞�

j=0

λj

j!
+ eλ = eλ + λeλ = eλ[1 + λ],
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where we used the fact that
∞�

n=0

xn

n!
= ex. Therefore

E(X2) = λe−λ
∞�

k=1

kλk

(k − 1)!
= λe−λeλ[1 + λ] = λ(1 + λ) = λ+ λ2.

Var(X) = E(X2)− (E(X))2 = λ+ λ2 − λ2 = λ.

7 Consider a random variable U with a density given by

fU (x) = 2
lnx

x
1[1,c](x), c ≥ 1.

a. Compute c.

b. Compute E(U2) and P (0 < U < 1).

Solution

a.

1 =

�

R
fU (x)dx =

�

R
2
lnx

x
1[1,c](x)dx =

� c

1
2
lnx

x
dx =

= (lnx)2 |c1= (ln c)2 − (ln 1)2 = (ln c)2.

(ln c)2 = 1 ⇒ ln c = ±1 ⇒ c = e,
1

e
.

Since c ≥ 1, this implies c = e .

b.

E(U2) =

�

R
x2fU (x)dx =

� e

1
x22

lnx

x
dx =

� e

1
2x log x dx =

= x2 lnx |e1 −
� e

1

x2

x
dx = e2 − x2

2
|e1=

1

2
(e2 + 1).

Finally

P (0 < U < 1) =

� 1

0
fU (x)dx =

� 1

0
0 dx = 0.
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8 V ∼ Poisson(2). Order the following three numbers from the smallest to the
biggest.

2

9
2FV (0) P (|V − 2| ≥ 3)

Solution
Recall that if X ∼ Poisson(λ) then Var(X) = E(X) = λ.
Cebicev inequality says that

P (|V − E(V )| ≥ a) ≤ Var(V )

a2
∀ a > 0.

Therefore

P (|V − 2| ≥ 3) ≤ 2

9
.

On the other hand

2FV (0) = 2P (V ≤ 0) = 2P (V = 0) = 2e−2 2
0

0!
=

2

e2
>

2

9
.

It follows that

P (|V − 2| ≥ 3) ≤ 2

9
< 2FV (0).

9 Let X ∼ N(0, 1) and let Z be the Random Sign, namely Z is a r. v. with
distribution given by

P(Z = 1) = P(Z = −1) =
1

2
.

Suppose that X and Z are independent and define Y := ZX. Prove that

a. Y ∼ N(0, 1),

b. X + Y is not gaussian.

Solution

a. We show that X and Y have the same distribution.

P(Y ∈ A) = P(ZX ∈ A) = P(Z = 1 ∩X ∈ A)∪̇P(Z = −1 ∩ −X ∈ A) =

= P(Z = 1)P(X ∈ A) + P(Z = −1)P(−X ∈ A) =

=
1

2
P(X ∈ A) +

1

2
P(−X ∈ A) = P (X ∈ A),

where we used the fact that X and −X have the same distribution.
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b. X + Y cannot be gaussian, indeed

P(X + Y = 0) = P(X + ZX = 0) = P((1 + Z)X = 0) =

P(1 + Z = 0) ∪ P(X = 0) =

= P(1 + Z = 0) + P(X = 0)− P(1 + Z = 0) ∩ P(X = 0) =
1

2
+ 0− 0 =

1

2
.

10 Prove that

E(X|Y ) = E(X) ⇒ Cov(X,Y ) = 0,

but not vice versa.
Solution

Cov(X,Y ) = E(X,Y )− E(X) E(Y ) = E[E(XY | Y )]− E(X) E(Y ) =

= E[Y E(X | Y )]− E(X) E(Y ) = E(Y ) E(X)− E(X) E(Y ) = 0,

where in the second equality we used the Law of Iterated Expectations, and in the
fourth one the hypothesis.

To show that the vice versa is not true we use a counterexample.
Consider a random variable X such that P (X = i) = 1

3 , i = −1, 0, 1 and X3 = X.
Define Y := X2. We have

E(XY ) = E(X3) = E(X) = 0,

and
E(X) E(Y ) = 0E(Y ) = 0,

therefore
Cov(X,Y ) = 0.

However
E(Y |X) = E(X2|X) = X2 �= E(Y ),

because

E(Y ) = E(X2) = 0P (X = 0) + 1P (X = 1) + 1P (X = −1) =

=

�
1

3
+

1

3

�
=

2

3
.
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