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• Introduce one-period model with finite number of states 
and the basic asset-pricing terminology 

• Formulate hedging problem and try to solve it 
• Explain the concepts of complete and incomplete markets 
• Explain the role of matrix inverse in hedging and pricing 
• Introduce “state prices” and discuss two different 

methods for asset pricing:  
 

1) by replication 
2) using a pricing kernel  
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• There are four assets available
1) Uncertain stock price – 3 scenarios

– Stock value tomorrow = 3, 2, or 1 with probability 1/2, 1/6,1/3

2) Risk-free asset with value 1 tomorrow
3) Two derivative securities – options on the stock

3.1) Call option #1 struck at K = 1.5
3.2) Call option #2 struck at K = 1

• Task: sell option #2, and to reduce risk exposure
construct a hedging portfolio consisting of stock and risk-
free asset
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• Two dates: today and tomorrow
• Value of all securities known today
• The tomorrow’s payoffs are uncertain
• Organization of uncertainty:

– Finite number of scenarios
– Each scenario known in detail today
– Probability of each scenario known today
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Uncertainty in one-period 
model 
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• Model stock and derivative payoffs
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• Risk free asset :   𝑎𝑎1 =
1
1
1

• Stock : 𝑎𝑎2 =
3
2
1

• Options : 𝑎𝑎3 =
1.5
0.5
0

, 𝑎𝑎4 =
2
1
0
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Payoffs as vectors 
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• Payoffs in state-space form
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Graphical representation 
of the payoffs 
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a1 = ones(3,1) or a1=[1;1;1]; 
a2 = [3;2;1]; 
a3 = [1.5;0.5;0]; 

     a4 = [2;1;0]; 
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Create vectors in Matlab 
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• Scalar multiplication: Leverage
– Example: Buy two units of option #1

2𝑎𝑎3 = 2
1.5
0.5
0

=
3
1
0

– Matlab command: 2 ∗ 𝑎𝑎3
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Operation on 
securities/vectors 
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• Addition: Portfolios
– Example: Buy two units of option #1, sell one unit of option #2

2𝑎𝑎3 − 𝑎𝑎4 =
2 ∗ 1.5 − 2
2 ∗ 0.5 − 1
2 ∗ 0 − 0

=
1
0
0

• Matlab command : 2 ∗ 𝑎𝑎𝑎 − 𝑎𝑎𝑎
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• It is common to work with several vectors at once and it is
natural to form a matrix

 Vectors: 𝑎𝑎1 =
1
1
1

 𝑎𝑎2 =
3
2
1

 𝑎𝑎3 =
1.5
0.5
0

 𝑎𝑎4 =
2
1
0

 A matrix: 
1 3 1.5 2
1 2 0.5 1
1 1  0  0

• Matlab command: A = [a1 a2 a3 a4]
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Matrix as a collection of 
securities/vectors 
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• Sometimes we need a row vector rather than a column
vector .

• Achieved by transposition of a column vector

𝑥𝑥 =

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛

, 𝑥𝑥∗ = 𝑥𝑥1 𝑥𝑥2 ⋯ 𝑥𝑥𝑛𝑛

• Conversely, transposition of a row vector gives a column
vector
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Matrix operation: 
Transposition 
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• Matrix notation:  𝑀𝑀 ∈ ℝ𝑚𝑚 ×𝑛𝑛

– Where m is the number of rows and n is the number of
columns

• The element in the i-th row and j-th column is
denoted 𝑀𝑀𝑖𝑖𝑖𝑖

• The entire j-th column  is denoted  𝑀𝑀⋅𝑗𝑗 
• The entire i-th row  is denoted  𝑀𝑀𝑖𝑖⋅
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Matrix notation 
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• 𝑀𝑀 ∈ ℝ𝑚𝑚 ×𝑛𝑛

𝑀𝑀 =

𝑀𝑀11
𝑀𝑀21

𝑀𝑀12 … 𝑀𝑀1𝑛𝑛
𝑀𝑀22 … 𝑀𝑀2𝑛𝑛

⋮
𝑀𝑀𝑚𝑚𝑚

⋮ ⋱ ⋮
𝑀𝑀𝑚𝑚𝑚 … 𝑀𝑀𝑚𝑚𝑚𝑚

=

𝑀𝑀1∙
𝑀𝑀2∙
⋮

𝑀𝑀𝑚𝑚∙

= 𝑀𝑀∙1 𝑀𝑀∙2 … 𝑀𝑀∙𝑛𝑛
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Matrix notation (cont.) 
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• 𝑀𝑀 ≡ 𝑀𝑀𝑖𝑖𝑖𝑖  ⟶𝑀𝑀∗ ≡ 𝑀𝑀𝑗𝑗𝑗𝑗
• 𝑀𝑀 ∈ ℝ𝑚𝑚 ×𝑛𝑛 ⟶𝑀𝑀∗∈ ℝ𝑛𝑛 ×𝑚𝑚

Example 

1) 𝑥𝑥 =
1.5
0.5
0

, 𝑥𝑥∗ = 

2) 𝐴𝐴 =
1
1

3 1.5
2 0.5

1 1 0
, 𝐴𝐴∗ = 
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Matrix operation: 
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• 𝑈𝑈 ∈ ℝ𝑚𝑚 ×𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝑉𝑉 ∈ ℝ𝑘𝑘 ×𝑛𝑛 ⟶ 𝑈𝑈𝑈𝑈 ∈ ℝ𝑚𝑚 ×𝑛𝑛

 UV=

𝑈𝑈1∙
𝑈𝑈2∙
⋮
𝑈𝑈𝑚𝑚∙

𝑉𝑉∙1 𝑉𝑉∙2 … 𝑉𝑉∙𝑛𝑛 =

𝑈𝑈1∙𝑉𝑉∙1
𝑈𝑈2∙𝑉𝑉∙1

𝑈𝑈1∙𝑉𝑉∙2 … 𝑈𝑈1∙𝑉𝑉∙𝑛𝑛
𝑈𝑈2∙𝑉𝑉∙2 … 𝑈𝑈2∙𝑉𝑉∙𝑛𝑛

⋮
𝑈𝑈𝑚𝑚∙𝑉𝑉∙1

⋮ ⋱ ⋮
𝑈𝑈𝑚𝑚∙𝑉𝑉∙2 … 𝑈𝑈𝑚𝑚∙𝑉𝑉∙𝑛𝑛

• Example
𝑈𝑈 = 1 2

3 4 ,𝑉𝑉 = 1 2
3 4  𝑈𝑈𝑈𝑈 = ? 
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Matrix operation: 
Multiplication 
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• Not commutative
𝑈𝑈𝑈𝑈 ≠ 𝑉𝑉𝑉𝑉 

• Associative
𝑈𝑈𝑈𝑈 𝑊𝑊 = 𝑈𝑈(𝑉𝑉𝑉𝑉) 

• Transposition reverses order of multiplication !

𝑈𝑈𝑈𝑈 ∗ = 𝑉𝑉∗𝑈𝑈∗ 
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Properties of matrix 
multiplication 
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• Example: Suppose we sell 2 units of option #1, one unit
of option #2, buy two units of stocks and borrow one unit
of bond. What are the payoffs of this portfolio ?

Given: 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
1
1
1

, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
3
2
1

, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜#1 =
1.5
0.5
0

 and option#2 =
2
1
0

• Assuming prices of securities are 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 1, 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
3, 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜#1 = 1, 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜#2 = 2, what is the price of this
portfolio?
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• 𝐴𝐴𝐴𝐴 = 𝑏𝑏
– 𝐴𝐴 denotes payoff matrix of basis assets
– 𝑥𝑥  denotes portfolio of basis assets
– 𝑏𝑏 denotes payoff of a focus asset

• Bank wants to issue a security 𝑏𝑏
• To offset risk, it separately buys hedging portfolio 𝑥𝑥
• The risk is reduced to 𝐴𝐴𝐴𝐴 − 𝑏𝑏

– If 𝐴𝐴𝐴𝐴 − 𝑏𝑏 = 0, then the bank’s position is perfectly hedged

• The bank will price the security at 𝑆𝑆∗𝑥𝑥 + overheads and
risk premium. 
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Hedging Problem 
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• Example:
Given: 

𝑏𝑏 =
2
1
0

,𝑎𝑎𝑎 =
1
1
1

,𝑎𝑎𝑎 =
3
2
1

,𝑎𝑎𝑎 =
1.5
0.5
0

Your client wants to buy a security with payoff 𝑏𝑏, knowing 
there are assets 𝑎𝑎𝑎,𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎 traded in the markets. What 
is the strategy that gives you a perfect hedge? And how 
much you would charge the client if 𝑆𝑆𝑎𝑎𝑎 = 1

1.05
 𝑎𝑎𝑎𝑎𝑎𝑎𝑆𝑆𝑎𝑎2 = 2? 
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Hedging Problem (cont.) 
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Solution: 
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Hedging Problem (cont.) 
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• If inverse of 𝐴𝐴 exists: 𝑥𝑥 = 𝐴𝐴−1𝑏𝑏 is a perfect hedge and the
solution is also unique

• Now consider
1 3 2
1 2 1
1 1 0

𝑥𝑥 =
1.5
0.5
0

– No solution, Inverse does not exist

• Consider 
1 3
1 2
1 1

𝑥𝑥 =
2
1
0

• Solution exists, inverse does not
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• Some complications in the hedging problem are
caused by redundant assets

• An asset is redundant if it can be replicated by
other assets

• Securities 𝐴𝐴∙1, … ,𝐴𝐴∙𝑛𝑛 are linearly  independent if
none of them is a portfolio payoff of the
remaining n-1 securities
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Linear independence and 
redundant assets 
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• Marketed subspace = all portfolio payoffs Ax generated
by all possible basis assets x
– Mathematically 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐴𝐴∙1, … ,𝐴𝐴∙𝑛𝑛)

• Each linearly independent asset adds a new dimension
to the marketed subspace

• Maximum number of lin. ind. assets = dimension of
marketed subspace

• Dimensionality Theorem: The lin. ind. assets can be
chosen in many ways, but their number is always the
same = dimension
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Dimension of marketed 
subspace 
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• Complete market  ⟺
# of linearly independent basis assets = # of states 

• Theorem:
Suppose we have m states and a complete market with m basis assets. 
Then the payoff matrix is invertible and the hedging portfolio for any 
focus asset b is given by 

𝑥𝑥 = 𝐴𝐴−1𝑏𝑏 
Suppose prices of basis assets are stored in vector S. Under frictionless 
trading the only possible price of the focus asset equals 

𝑆𝑆∗𝑥𝑥 = 𝑆𝑆∗𝐴𝐴−1𝑏𝑏 
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Hedging in a complete market 
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• Concepts
– Suppose 𝐴𝐴∙1, … ,𝐴𝐴∙𝑘𝑘 are linearly independent. Then

either 𝐴𝐴∙𝑘𝑘+1 is redundant or 𝐴𝐴∙1, … ,𝐴𝐴∙𝑘𝑘+1 are linearly
independent

– With m states, there cannot be more than m linearly
independent assets.

• How we do it
– Sort securities into two baskets

• Linearly independent
• Redundant
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Find dimension of 
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• Which of the following assets are linearly independent
and redundant assets? Is this market complete?

𝐴𝐴∙1 =
1
1
1

,𝐴𝐴∙2 =
3
2
1

,𝐴𝐴∙3 =
1.5
0.5
0

,𝐴𝐴∙4 =
2
1
0
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Example 

28 



• Maximum number of linearly independent columns in a
matrix A is called rank, r(A)

• If A is a payoff matrix of basis assets then r(A) =
dimension of marketed subspace

• Facts about rank
– 𝑟𝑟 𝐴𝐴∗𝐴𝐴 = 𝑟𝑟 𝐴𝐴
– 𝑟𝑟 𝐴𝐴𝐴𝐴 ≤ min 𝑟𝑟 𝐴𝐴 , 𝑟𝑟 𝐵𝐵
– 𝑟𝑟 𝐴𝐴 = 𝑟𝑟(𝐴𝐴∗)
– If 𝐴𝐴 is 𝑚𝑚 × 𝑛𝑛 then 𝑟𝑟 𝐴𝐴 ≤ min 𝑚𝑚,𝑛𝑛  

• When 𝑟𝑟 𝐴𝐴 = min 𝑚𝑚,𝑛𝑛 , we say A has full rank
• Square matrices with full rank are invertible (non-singular

matrices)
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Dimension and matrix 
rank 
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• Arrow-Debreu (elementary) security for state j,
denoted 𝑒𝑒𝑗𝑗, has payoff 1 in state j and payoff zero
in all other states

• With m scenarios stacking all elementary
securities into a matrix gives an m x m identity
matrix
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Identity matrix and Arrow-
Debreu securities 
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• For every square matrix A with full rank there is a
matrix 𝐵𝐵 such that 𝐴𝐴𝐴𝐴 =  𝐵𝐵𝐵𝐵 =  𝐼𝐼

• Matrix 𝐵𝐵 is unique, it is called the inverse to
matrix 𝐴𝐴 and it is commonly denoted by 𝐴𝐴−1

• Facts:
– If 𝐶𝐶,𝐷𝐷 are invertible then (𝐶𝐶𝐶𝐶)−1=  𝐷𝐷−1𝐶𝐶−1

– (𝐴𝐴−1)−1 = 𝐴𝐴
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• Interpretation of inverse matrix
• Let split 𝐴𝐴𝐴𝐴−1 = 𝐼𝐼 by columns:
• This looks like 𝐴𝐴𝐴𝐴 = 𝑒𝑒𝑗𝑗 
• Therefore 𝑗𝑗 − 𝑡𝑡𝑡 column of  𝐴𝐴−1 gives replicating portfolio

to Arrow-Debreu security 𝑒𝑒𝑗𝑗 

• Example: if 𝐴𝐴 =
1
1

3 1.5
2 0.5

1 1 0
 and knowing that 

𝐴𝐴−1 =
1
−1

−3 3
3 −2

2 −4 2
, show that Arrow-Debreu security 𝑒𝑒𝑗𝑗 can be 

replicated by portfolio 
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Inverse matrix and 
hedging portfolios 
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• State price j (𝜓𝜓𝑗𝑗) is the price of an Arrow-Debreu security 𝑒𝑒𝑗𝑗 
• Vector 𝜓𝜓 is called the “state price vector”
• Assuming complete market and no redundant assets

– State price vector
𝜓𝜓 ∗ = 𝑆𝑆∗𝐴𝐴−1, 

where 𝑆𝑆 is the vector of prices of the basis assets and A is the matrix 
of the payoffs of the basis assets 

Proof :  
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State prices 
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• Suppose A is invertible (square, full rank)
• Complete market, no redundant basis assets
• Perfect hedge  𝐴𝐴𝐴𝐴 = 𝑏𝑏
• Two ways to find the price of focus asset b

1. By replication:
Focus asset price = 𝑺𝑺∗𝒙𝒙 

2. Using state price (pricing kernel):
 Focus asset price = 𝝍𝝍∗𝒃𝒃 

Proof of the second formula:  
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Pricing formulae 
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• What is the price of 𝑏𝑏 =
2
1
0

 given basis assets 𝐴𝐴 =
1
1

3 1.5
2 0.5

1 1 0
 with 

prices S=
1
2

0.6

- By replication: 

– By state price:
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Example 
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• Explain how to compute replicating portfolios in
an incomplete market
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Aims of this section 
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• r(A) = n < m, fewer assets than states
  Ax = b    (1) 

• multiply by A*  from the left
 A*Ax = A*b   (2) 

• A*A is square with full rank, it has an inverse
 x = (A*A)-1 A*b    (3) 

• x solves (2) but does it solve (1)?
• Hedging error = Ax-b = A(A*A)-1 A*b-b
• If hedging error = 0 then solution exists and is given by

(3), otherwise there is no solution
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Hedging formula for incomplete 
markets, no redundant basis assets 
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• Is there a perfect hedge of a focus asset b 
considering that we can trade portfolio A ? 

© Imperial College Business School 

Example: Incomplete markets 
without redundant basis assets  
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• Redundant basis assets do not affect existence of a
solution, they merely add free parameters to the
solution

• A = A1 | A2 , A2 = A1C , r(A)=r(A1), x = x1|x2
– If A1 is square, market is complete

x1 = (A1)-1b – Cx2

– If A1 is not square, market is not complete
x1 = (A1

*A1)-1A1
*b – Cx2

– Hedging error  = A1 (A1
*A1)-1A1

*b – b
– x2 represents the free parameters in the solution

• Example 2.3 pp. 28-29
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Hedging problem with redundant 
basis assets 
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• In practice most markets are incomplete 𝑟𝑟 𝐴𝐴 = 𝑛𝑛 < 𝑚𝑚,
fewer assets than number of states

• This means we cannot always find a perfect hedge
(replication) for a focus asset 𝑏𝑏 ⟶  mathematically,
𝐴𝐴𝐴𝐴 = 𝑏𝑏 cannot always be solved.

• Instead, we would like to find the best approximate hedge
according to some criterion
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The Least-Squares Hedge 
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• Replication error : 𝜀𝜀 = 𝐴𝐴𝐴𝐴 − 𝑏𝑏
• Criterion: Minimize the Sum of Squared Replication

Errors

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜀𝜀12 + 𝜀𝜀22 + ⋯+ 𝜀𝜀𝑚𝑚2 

• Optimal hedge = least-squares hedging portfolio

𝒙𝒙 = (𝑨𝑨∗𝑨𝑨)−𝟏𝟏𝑨𝑨∗𝒃𝒃 
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The Least-Squares Hedge 
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– Focus asset  𝑏𝑏∗= 1 2 3
– Basis assets: 𝐴𝐴⋅1∗ = 1 1 0  𝑎𝑎𝑎𝑎𝑎𝑎  𝐴𝐴⋅2∗ = 0 1 0
What is the least-squares hedge of the focus asset? 
Solution:  
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Least Squares Hedge – 
Example 

43 



• Optimal criteria
– Minimize 𝜀𝜀∗𝜀𝜀

(square length of vector 𝜀𝜀) 

• Point of minimal distance
 of  𝐴𝐴𝐴𝐴 from 𝑏𝑏: 
- 𝜀𝜀 must be orthogonal to  
all vectors in marketed subspace A 
- Mathematically 𝐴𝐴∗𝜀𝜀 = 0 
-  𝐴𝐴∗ 𝑏𝑏 − 𝐴𝐴𝐴𝐴 = 0 ⟹ 

𝒙𝒙 = (𝑨𝑨∗𝑨𝑨)−𝟏𝟏𝑨𝑨∗𝒃𝒃 
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Least squares hedge - 
Geometry 
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• Not all scenarios are equally likely:  we need criterion
putting more weight on likely scenarios:

𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑝𝑝1𝜀𝜀12 + 𝑝𝑝2𝜀𝜀22 + ⋯+ 𝑝𝑝𝑚𝑚𝜀𝜀𝑚𝑚2 

• The optimal hedge is :

𝒙𝒙� = (𝑨𝑨�∗𝑨𝑨�)−𝟏𝟏𝑨𝑨�∗𝒃𝒃�

where 𝐴̃𝐴𝑖𝑖∙ ≡ 𝑝𝑝𝑖𝑖𝐴𝐴𝑖𝑖∙  and   𝑏𝑏�𝑖𝑖 ≡ 𝑝𝑝𝑖𝑖𝑏𝑏𝑖𝑖 
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Minimizing the Expected 
Squared  Replication Error 

(ESRE) 
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• Proof
– Transform ESRE into SSRE
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Working out the minimal 
ESRE hedge 
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