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Changes in variance, or volatility, over time can be modelled using the approach based on 
autoregressive conditional heteroscedasticity (ARCH). However, the generalizations to multivari- 
ate series can be difficult to estimate and interpret. Another approach is to model variance as an 
unobserved stochastic process. Although it is not easy to obtain the exact likelihood function for 
such stochastic variance models, they tie in closely with developments in finance theory and have 
certain statistical attractions. This article sets up a multivariate model, discusses its statistical 
treatment and shows how it can be modified to capture common movements in volatility in a very 
natural way. The model is then fitted to daily observations on exchange rates. 

1. INTRODUCTION 

Many financial time series, such as stock returns and exchange rates, exhibit changes in 
volatility over time. These changes tend to be serially correlated and in the generalized 
autoregressive conditional heteroscedasticity, or GARCH model, developed by Engle (1982) 
and Bollerslev (1986), such effects are captured by letting the conditional variance be a 
function of the squares of previous observations and past variances. Since the model is 
formulated in terms of the distribution of the one-step ahead prediction error, maximum 
likelihood estimation is straightforward. A wide range of GARCH models have now 
appeared in the econometric literature; see the recent survey by Bollerslev et al. (1992). 

An alternative approach is to set up a model containing an unobserved variance 
component, the logarithm of which is modelled directly as a linear stochastic process, such 
as an autoregression. Models of this kind are called stochastic volatility models or stochastic 
variance (SV) models. They are the natural discrete-time versions of the continuous-time 
models upon which much of modern finance theory, including generalizations of the Black- 
Scholes result on option pricing, has been developed; see, for example, Hull and White 
(1987) and Taylor (1993). Their principal disadvantage is that they are difficult to estimate 
by maximum likelihood. However they do have other compensating statistical attractions; 
for example their properties are easily obtained from the properties of the process generat- 
ing the variance component. Furthermore, they generalize to multivariate series in a very 
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natural way. The main aim of this article is to show how multivariate stochastic variance 
models can be handled statistically and to explore how well they fit real data. 

Section 2 reviews some of the basic ideas of univariate GARCH and SV models and 
compares their properties. The estimation of SV models by a quasi-maximum likelihood 
procedure is then discussed. In Section 3 it is shown how multivariate SV models can be 
formulated, and how they compare with multivariate GARCH models. The way in which 
they can handle common movements in volatility in different series is described in Section 
4 and this is related to ideas of co-integration in variance. Section 5 presents an example 
in which the model is fitted to four sets of exchange rates, and Section 6 generalizes 
the methods so as to handle heavy tailed distributions. The conclusions are given in 
Section 7. 

2. UNIVARIATE MODELS 

Let the series of interest be made up of a Gaussian white noise process, with unit variance, 
multiplied by a factor a,, the standard deviation, that is 

Y,=t,t,, t=l, . .. , T, E, - NID(O, 1). (1) 

In the GARCH(1, 1) model, 

art=y+ay,_I+f3au_h, y>O, a+,B<1. (2) 

This may be generalized by adding more lags of both the squared observations and the 
variance. All GARCH models are martingale differences, and if the sum of the a and /B 
coefficients is less then one, they have constant finite variance and so are white noise. 
However, obtaining the general conditions under which o2 is positive and y, is stationary 
is not straightforward; see, for example, Nelson and Cao (1992) and Bollerslev and Engle 
(1993). Similarly, although it can be shown that y, exhibits excess kurtosis, the necessary 
restrictions for fourth moments to exist are not easy to derive. 

The dynamics of a GARCH model show up in the autocorrelation function (ACF) 
of the squared observations. In the GARCH(1, 1) case, the ACF is like that of an 
ARMA(1, 1) process. If the sum of a and /3 is close to one, the ACF will decay quite 
slowly, indicating a relatively slowly changing conditional variance. This has often been 
observed to happen in practice, and GARCH(1, 1) models with a + /3 close to unity are 
quite common with real data. 

If a+ /3 is set to one in the GARCH(1, 1) model, it is no longer weakly stationary 
since it does not have finite variance. However, Ay2 is stationary and has an ACF like 
that of an MA(1) process, indicating an analogy with the ARIMA(O, 1, 1) process. This 
model is called integrated GARCH, or IGARCH; see Engle and Bollerslev (1986). It does 
not follow, though, that y2 will behave like an integrated process in all respects, and, in 
fact, Nelson (1990) has shown that o2 is strictly stationary. 

The IGARCH model is still a martingale difference, and so forecasts of all future 
observations are zero. If y is positive, the predicted variances increase with the lead time. 
On the other hand, if y is set to zero, Nelson (1990) shows that the IGARCH process 
has the rather strange property that, no matter what the starting point, a2 tends towards 
zero for most parameter values, so that the series effectively disappears. This leads him to 
suggest a model in which log U2 has the characteristics of a random walk; see Nelson 
(1991). This is an example of an exponential ARCH, or EGARCH, model. Such models 
have the additional attraction that they can be shown to be a discrete-time approximation 
to some of the continuous-time models of finance theory. 
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In a stochastic variance model for (1), the logarithm of Co2, denoted h,, is modelled 
as a stochastic process. As with EGARCH, working in logarithms ensures that a,iS 
always positive, but the difference is that it is not directly observable. A simple model for 
h, is the AR(1) process 

h, = y + ph,t_ + i,, Th,NID(0, UC2), (3) 

with q, generated independently of Es for all t, s. Equation (3) is the natural discrete-time 
approximation to the continuous-time Orstein-Uhlenbeck process used in finance theory. 
Dassios (1992) has shown that (1) and (3) is a better discrete-time approximation to the 
model used in Hull and White (1987) than an EGARCH model. More specifically, if a 

denotes the distance between observations, he shows that the density of the variance 
process converges to the density of the continuous-time variance process at rate 3, whereas 
in the case of EGARCH the convergence is at rate al/2. Similar convergence results hold 
for the joint moments of the observations. 

If I VI < 1, we know from standard theory that h, is strictly stationary, with mean 
Yh = y/( 1-) and variance Cr2 = r2 /( 1 - 2). Since y, is the product of two strictly station- 
ary processes, it must also be strictly stationary. Thus the restrictions needed to ensure 
stationarity of y,, both in the strict and weak sense, are just the standard restrictions 
needed to ensure stationarity of the process generating h,. 

The fact that y, is white noise follows almost immediately when the two disturbance 
terms are mutually independent. The odd moments of y, are all zero because s, is symmet- 
ric. The even moments can be obtained by making use of a standard result for the lognor- 
mal distribution, which in the present context tells us that since exp (h,) is lognormal, its 
j-th moment about the origin is exp {jyl, + ]jfcrh It follows almost immediately that the 
variance of y, is exp {Yh + +- U21 Similarly the kurtosis is 3 exp { a2}, which is greater than 
three when a,, is positive; see Taylor (1986, Chapter 3). Unlike a GARCH model, the 
fourth moment always exists when h, is stationary. 

The dynamic properties of the model appear most clearly in log y2. Since y,= 
e, exp (h,), 

lo 2= hr +log 2, t= 1, ... ., T. (4) 

The mean and variance of log ?2 are known to be -1I27 and ir2/2 = 4.93, respectively; see 
Abramovitz and Stegun (1970, p. 943). Thus log y2 is the sum of an AR(l) component 
and white noise and so its ACF is equivalent to that of an ARMA(1, 1). Its properties 
are therefore similar to those of GARCH(1, 1). Indeed, if a is small and/or p is close to 
one, yt2 behaves approximately as an ARMA(1, 1) process; see Taylor (1986, p. 74-5, 
1993). 

The model can be generalised so that h, follows any stationary ARMA process, in 
which case y, is also stationary and its properties can be deduced from the properties of 
h,. Alternatively ht can be allowed to follow a random walk 

ht=ht-,+ ltq, lt-NID(0, a 2). (5) 

In this case log y2 is a random walk plus noise, and the best linear predictor of the current 
value of h, is an exponentially weighted moving average (EWMA) of past values of 
log y2 . Thus there is a parallel with the IGARCH model where the conditional variance 
is also an EWMA. The crucial difference is that while the IGARCH conditional variance 
is known exactly, the variance generated by (5) is an unobserved component, and a better 
estimator can be obtained by making use of subsequent observations. 
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The SV model with h, following a random walk is clearly non-stationary, with 
log y being stationary after differencing. It is quite close 'to an EGARCH model in this 
respect. There is no need to introduce a constant term to prevent the kind of behaviour 
demonstrated for IGARCH by Nelson. As a result the model contains only one unknown 
parameter. 

The estimation of SV models has usually been carried out by variants of the method 
of moments; see, for example, Scott (1987), Chesney and Scott (1989), Melino and 
Turnbull (1990) and the references in Taylor (1993). The approach proposed here is a 
quasi-maximum likelihood method, computed using the Kalman filter. It was put forward 
independently by Nelson (1988). 

In order to estimate the parameters, p, y and c2, consider the following state-space 
model obtained from (3) and (4): 

logy= -1 27+h,+4, (6a) 

h, = y +(pht_ X + 71, (6b) 

where, 4, = log E2+ 1 27 and Var ( 4,) = fr2/2. The general form of the model allows for the 
possibility of the original disturbances in (1) and (3) being correlated. Nevertheless in (6), 
4, and , are uncorrelated; see Appendix A. The question of taking account of any 
correlation between the original disturbances is to be examined in a later paper. 

Although the Kalman filter can be applied to (6), it will only yield minimum mean 
square linear estimators (MMSLEs) of the state and future observations rather than 
MMSEs. Furthermore, since the model is not conditionally Gaussian, the exact likelihood 
cannot be obtained from the resulting prediction errors. Nevertheless estimates can be 
obtained by treating 4, as though it were NID(0, nr2/2) and maximizing the resulting quasi- 
likelihood function. Asymptotic standard errors, which take account of the specific form 
of the non-normality in 4, can be computed using the results established by Dunsmuir 
(1979, p. 502). The experiments reported in Ruiz (1994) suggest that his QML method 
works well for the sample sizes typically encountered in financial economics and is usually 
to be preferred to the corresponding method of moments estimator. A further attraction 
of applying QML to SV models is that the assumption of normality for ?, can be relaxed, 
in which case oj is estimated unrestrictedly; see Section 6. 

The Kalman filter approach is still valid when q is one. The only difference is that 
the first observation is used to initialize the Kalman filter, whereas when I p I < 1 the 
unconditional distribution of ht is available at t = 0. Once the parameters have been estima- 
ted, predictions of future volatility can be made from the predictions of log y2. A smoother 
can be used to estimate volatility within the sample period; this is also done by Melino 
and Turnbull (1990) and Scott (1987). 

3. MULTIVARIATE MODELS 

The multivariate GARCH model, set out in Bollerslev, Engle and Wooldridge (1988), 
can, in principle, be estimated efficiently by maximum likelihood. However, the number 
of parameters can be very large, so it is usually necessary to impose restrictions. For 
example, Bollerslev (1990) proposes a representation in which the conditional correlations 
are assumed to be constant. This assumption considerably simplifies estimation and infer- 
ence, and, according to the evidence in Baillie and Bollerslev (1990) and Schwert and 
Seguin (1990), it is often empirically reasonable. 
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Stochastic variance models generalize to multivariate series as follows. Let y, be an 
Nx 1 vector, with elements 

Yit = -'it(exp {hit} )1/2, i= II ... ., N, t- 1 I... ., T, (7) 

where Yi: is the observation at time t of series i, and E, = (s,, . . ., IN,)' is a multivariate 
normal vector with zero mean and a covariance matrix, X, in which the elements on the 
leading diagonal are unity and the off-diagonal elements are denoted as Pij. Following 
(3), the variances may be generated by AR(I) processes 

hit = yi+ pihit- I + nlit, i= 1, . . . , N, (8) 

where 77, = (77 it,..., i7Nt)' is multivariate normal with zero mean and covariance matrix 
Yl,. The model in (7) does not allow the covariances to evolve over time independently 
of the variances. Thus it is restricted in a similar way to the constant conditional correlation 
GARCH model.' 

Model (8) could be generalized so that the Nx 1 vector h, is a multivariate AR(1) 
process or even an ARMA process. Although the properties of such models could be 
derived relatively easily, generalizations of this kind are probably not necessary in practice. 
We will instead focus attention on the special case when h, is a multivariate random walk. 
Transforming as in (6) gives 

1v,= -1-27i +h,+ 4, (9a) 

h,t= ht- I + lt. (9b) 

where w, and 4, are Nx 1 vectors with elements wi, = log y , and 
X i= log e + 1*27, i = 1, . . . , N, respectively, and t is an N x 1 vector of ones; compare the 

seemingly unrelated time series equation (SUTSE) models described in Harvey (1989, 
Chapter 8). Treating (9) as a Gaussian state-space model, QML estimators may be 
obtained by means of the Kalman filter. As in the univariate model, 4, and ?, are uncorre- 
lated even if the original disturbances are correlated. 

It is shown in Appendix B that the ij-th element of the covariance matrix of 4,, 
denoted 14, is given by ('r2/2)pJ, where p, 1 and 

P= 7r 2 En -l (n1/2)n p2fl i #Aj, i, j= 1,5.. ., N, (10) 

where (x)n = x(x +1) ... (x + n - 1). Thus the absolute values of the unknown parameters 
in Se, namely the pij's, the cross-correlations between different ei,'s, may be estimated, but 
their signs may not, because the relevant information is lost when the observations are 
squared. However, estimates of the signs may be obtained by returning to the untrans- 
formed observations and noting that the sign of each of the pairs eiej, i,j= I, ... , N, will 
be the same as the corresponding pair of observed values yiy1. Thus the sign of pij is 
estimated as positive if more than one-half of the pairs yiyj are positive. 

1. If the state space form for the log y2,'s were Gaussian, the conditional covariance between any two 
observations, y1, and yjt, at time t - 1, divided by their conditional standard deviations, would give the conditional 
correlation py exp {(2pj. ,l, - I p.,I-I -pj,, 1-- i)/8}, provided the Ej,'s and t11,'s are mutually independent. The 
terms Pij.I ,I ,- denote the ij-th elements of the covariance matrix of the filtered estimators of the hi,'s at time t, 
and since these are constant in the steady state, the conditional correlations are also constant. 
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4. COMMON FACTORS 

In the K-factor GARCH model proposed by Engle (1987) the conditional covariance 
matrix depends on the conditional variances of K orthogonal linear combinations of y,. 
Although the model can, in principle, be estimated by maximum likelihood, researchers 
often encounter computational difficulty with a large number of parameters. Engle, Ng 
and Rothschild (1990) suggest a simpler two-stage procedure. Bollerslev and Engle (1993) 
give conditions for covariance stationarity of K-factor GARCH models and show how 
multivariate IGARCH models allow for the possibility of co-persistence in variance. How- 
ever, as in the univariate case, there is some ambiguity about what constitutes persistence. 

An alternative multivariate model, which is not nested within multivariate GARCH, 
is the latent factor model of Diebold and Nerlove (1989). The model is a relatively parsi- 
monious one in which the common movements in volatility are ascribed to a single unob- 
served latent factor subject to ARCH effects. However, this latent factor gives rise to 
similar common movements in the levels and for many purposes the levels and volatility 
effects need to be modelled separately. 

Common factors can be incorporated in multivariate stochastic variance models very 
easily by following the literature on common factors in unobserved components time- 
series models; see Harvey (1989, Chapter 8, Section 5) for a review and Harvey and Stock 
(1988) for an application to U.S. data on income and consumption. We will concentrate 
on the case where there are persistent movements in volatility, modelled by a multivariate 
random walk. Thus (9) becomes 

w,=-1 27i+Oh,+h+,, (lla) 

h,-ht_, + tlt, Var (q,) =Ell (Illb) 

where 0 is an N x k matrix of coefficients with k<N, h, and i, are k x 1 vectors, ZQ is a 
k x k positive definite matrix and h is a N x 1 vector in which the first k elements are zeroes 
while the last N-k elements are unconstrained. The logarithm of variance for the i-th 
series is the i-th element of Oh,+ h. If k<N, the w,'s are co-integrated in the sense of 
Engle and Granger (1987). In the context of (11) this implies that there are N-k linear 
combinations of the w,'s which are white noise. 

As it stands model (11) is not identifiable. An identifiable model may be set up by 
requiring that the elements of 0 are such that Oij=0 for j> i, i= 1, ... , N, j= 1, .. , kg 
while E., is an identity matrix. These restrictions are easily imposed, and the model may 
be estimated by QML using the Kalman filter to compute the prediction errors. Once this 
has been done, it may be worthwhile considering a rotation of the common factors to get 
a model with a more useful interpretation. If R is a k x k orthogonal matrix, the factors 
h*=Rh, are still driven by mutually uncorrelated disturbances with unit variances, while 
the factor loading matrix becomes 0*= OR'. 

The finite-sample properties of the QML estimator of model (11) have been studied 
by carrying out several Monte Carlo experiments. These are reported in Ruiz (1992) and 
confirm that the method works well for moderate sample sizes. The number of unknown 
parameters in 0 is (N- k)k + 2jk(k + 1), while there are a further IN(N- 1) in 1. Numerical 
optimization must be carried out with respect to these unknown parameters. We used the 
quasi-Newton algorithm, E04 AZF, in the NAG library. 

5. EMPIRICAL APPLICATION: DAILY EXCHANGE RATES 

In this section, the stochastic variance model is fitted to four exchange rates: Pound/ 
Dollar, Deutschmark/Dollar, Yen/Dollar and Swiss-Franc/Dollar. The data consist of 
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TABLE 1. 

Box-Ljung Q-statistics, based on ten lags, for daily exchlange rates, p,, 
of various currencies against the dollar 

A log p, (A log p,)2 log (A logp,)2 

Pound 11 19 128 25 45 47 
DM 10 03 67 79 64 20 
Yen 16 92 109 79 64 67 
Swiss Franc 32 67 343 09 57-94 

TABLE 2 

Estimation results for univariate stochastic volatility models: (a) AR( 1); (b) random walk 

$/Pound $/DM $/Yen $/SF 

(a) A 0 9912 0 9646 0 9948 0 9575 
(0 0069) (0 0206) (0.0046) (0 0024) 
0 0069 0 0312 0 0048 0 0459 

(0.0050) (0-0219) (0 0034) (0-0291) 
y -0 0879 -0 3556 -0 0551 -0 4239 
log L -1212 82 -1232 26 -1272 64 -1288 51 

(b) 6 0 0042 0 0161 0-0034 0-0194 
(0 0023) (0 0063) (0. 0019) (0.0072) 

log L -1214-02 -1237-58 -1273 46 -1294 22 
Q(10) 3 52 11 41 8 45 8 68 

daily observations of weekdays close exchange rates from 1/10/81 to 28/6/85. The sample 
size is T= 946. Table 1 shows Box-Ljung statistics for several transformations of the 
exchange rates. The chi-square 5% critical value for ten degrees of freedom is 18 3. With 
the possible exception of the Swiss Franc, the logarithms of the exchange rates appear to 
be random walks. The important point is that there is strong evidence of nonlinearity in 
the statistics for the squared differences and their logarithms. 

Univariate models were fitted to the differences of the logarithms of each of the 
exchange rates, with the mean subtracted, that is 

yi,=A logpi,-( A log pi,)/T, i= 1, . ., N, t=1, ... ., T. 

Subtracting the mean ensures that there are no yi,'s identically equal to zero; this could 
create difficulties when logarithms of y2 are taken. The QML estimates of the parameters 
qp and T2 in the stationary AR(1) volatility model, (3), are shown in Table 2. The estimates 
of qp are all close to one and the random walk specification, (5), fits almost as well. 
Asymptotic standard errors, based on Dunsmuir (1979, p. 502), are shown in parentheses, 
though it should be noted that they cannot be used to test whether a 2 is significantly 
different from zero; see Harvey (1989, pp. 212-3). The Box-Ljung Q-statistics give no 
indication of residual serial correlation. Figure 1 shows the absolute values, I y, I for the 
Pound/Dollar series, together with the estimated standard deviation, exp (UA,1 T), where 
n' IT iS the MMSLE of the volatility level, h,, as given by a smoothing algorithm. 

The augmented Dickey-Fuller test applied to log y2, with nine lags and a constant 
included, rejects the hypothesis of a unit root at the 1% level for all the series; see Table 
3. The significance point, for 500 observations, is -3 43 and so the rejection is quite 
decisive; using a smaller number of lags gave test statistics even further from the critical 
value. However, the reliability of unit root tests in this situation is questionable. The 
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FIGURE I 

Absolute values of first differences of logged dollar-pound exchange rate and smooth estimates of standard 
deviation 

reason is that the reduced form of (6) is 

log (y2) = y* + q log (y2_1) + V,-Ov,, ( 12) 

where v, is white noise and y* = (y-1 27)/(1 - q). Since the variance of 4, typically domi- 
nates the variance of q,, the parameter 0 will be close to unity for values of q close to 
one. For example for the Dollar/Pound exchange rate, where the estimated q value is 
0 99, the implied 0 is -0 97. As shown in Pantula (1991) and Schwert (1989), when the 
moving-average parameter is very close to one, unit root tests reject the null hypothesis 
of a unit root too often since the model is difficult to distinguish from white noise. 

TABLE 3 

Augmented Dickey-Fuller test statistics for the logarithtms of squared 
differ ences of logarith?ms of daily exchtange rates 

$/Pound $/DM $/Yen $/SF 

't-stat' -7-42 -7 50 -7 63 -7-44 

Since unit root tests based on autoregressive approximations are unreliable in the 
present context, there is little point in trying to determine the number of common trends 
on the basis of co-integration tests such as the one described in Johansen (1988). Instead 
we estimate the unrestricted multivariated local level model, (9), and make a judgement 
as to the number of possible common trends on the basis of a principal component analysis 
of the estimate of L, . 
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QML estimation of (9), with the diagonal elements of the matrix 14 set to r2/2, gives: 

[1.00 0 404 0X278 003470 
Al72 1-000 0-400 0-541 

2 1-000 0-362 

and 

9-65 1142 3 97 12.071 

20-43 5-44 21-09 

t15 45 7-08 

22 311 

the value of the maximized quasi-log-likelihood for the multivariate model, -4621-64, is 
substantially greater than the sum of -4963 06 for the four univariate models. The number 
of additional parameters in the multivariate model is 12, and so the value of 682 8 taken 
by the (quasi-) likelihood ratio test statistic, is highly significant if judged against a Xl2 

distribution. 
From (10), the implied covariance (correlation) matrix for c, is 

1.00 0-84 0 74 0.801 

1 00 0-84 0-92 

1-00 0-81 

1s00 

Estimating the signs of the cross correlations in Ye from the signs of pairs of y,'s indicated 
they were all positive. The correlation matrix corresponding to the estimate of YEl is 

1.00 0 81 0 55 0.82 

1.00 0-51 0-99 
Corr ( ') =10006 _- 1 100 0 

It is interesting to note that the correlations between the elements of E, are uniformly high 
for all four exchange rates, while for q, the correlations involving the Yen are much lower 
than the European currencies. 

The results of a principal components analysis of Y,l and its correlation matrix appear 
in Table 4. The units of measurement are not relevant since logarithms have been taken, 
but differences appear in the results for the covariance and correlation matrices, primarily 
because the Yen shows much less variation than the other three exchange rates. The two 
first components account for 94% or 95% of the total variance of the disturbance q7,, i= 
1, 2, 3, 4. The second component is relatively more important when the correlation matrix 
is analysed, with a fairly high loading on the Yen. Table 5 shows the first two eigenvectors 
multiplied by the square roots of the corresponding eigenvalues. For the analysis of the 
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TABLE 4 

Principal components analysis of (a) X,7 and (b) co)rresponding cor relation matrix 

(a) Eigenvalues 0 0515 0 0037 0 0027 1 4281 x 10-6 

Eigenvectors 0 3781 -0 1443 0 9144 -0 0139 
0 6205 0 3749 -0 1873 0-6629 
0 2066 -0 9156 -0 2260 0 2605 
0 6553 00170 -0 2789 -0 7018 

Percentage of variance 88 98 6 43 4 58 0 00 

2b) Eigenvalues 3 1933 0 5703 0 2363 7 02x 10-5 
Eigenvectors 0 5033 0 2102 0 8381 -0 0095 

0-5290 0 3476 -0 3973 0 6644 
0 4097 -0 9020 -00182 0 1348 
0-5468 0 1460 -0-3733 -0 7350 

Percentage of variance 79 83 14-26 5 91 0 00 

TABLE 5 

Pritncipal comiiponents analysis: First two eigenvectols multiplied by 
square roots of corresponding eigenvalues for (a) correlation matrix, and 

(b) covar iance matrix 

Series (a) (b) 

1 0 8994 01587 00858 -00088 
2 0 9453 02625 01408 00229 
3 0-7321 -0 6812 0 0469 -0 0558 
4 0 9771 01103 01487 0*0010 

correlation matrix these figures give the correlations between the principal components 
and the disturbances Qij, i= 1, 2, 3, 4. In this case, the first component can perhaps be 
interpreted as a general underlying factor, strongly correlated with the European exchange 
rates, but less so with the Yen, while the second component is correlated most strongly 
with the Yen. The loadings for the first component in the analysis of the covariance matrix 
invite a similar interpretation, but the Yen is not dominant in the second component. 

In principal components analysis, the covariance matrix is decomposed as qtl = EDE, 
where E is the matrix of eigenvectors and D is a diagonal matrix of eigenvalues. The 
principal components, E'w,, have covariance matrix D. Noting that ED'12DY 12E' is an 
identity matrix, the model in (9) may be written as 

w,= -1-27i+ Oh* + (I (3a) 

h,*= h,* + 7,*, Var (q *) =I (I13b) 

where h,*-D-"12E'h, and 0 = ED"12. This provides a useful link with model (I 1) when k = 

N, the necessary restrictions on 0 coming from the properties of standardised eigenvectors 
rather than by setting elements above the leading diagonal to zero. If the estimate of 1?7 

were of rank k, then 0 would be an N x k matrix. Note that in the present application, 
the first two columns of 0 are given by the entries in Table 5. 

The principal components analysis suggests that two factors might be enough to 
account for the movements in volatility. Estimating (11) with k = 2, and the restrictions 
012= 0 and S = I gives: 

log (91,)=-1-27+0 108 hI, 

log (92, )=-1-27+0- 102 hIt,+0014 h2, 
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log (93 )=-1 27+0 016 h/,+0 054 h2,- 742 

log (4, )=-[127+0*095 hIl,+0023 h2,- [138 

and 

-00 0-382 0-271 0.3341 

[2 1.00 0-390 0539 

4 2 100 0-358 

1*00 

with a quasi-log-likelihood of -4626-48. The implied correlation matrix for ?, is 

[1.00 0083 073 0.79 

1300 0-83 0792 

100 

L I ~~.00j08 

Again, estimating the signs of the cross-correlations in ? from the signs of pairs of y,'s 
indicates that they are all positive. 

Factor rotation was carried out using the orthogonal matrix 

[cos A - sin 2] 
RI= 

Lsin cos A 

and a graphical method; see Schuessler (1971). For clockwise rotation, setting the angle, 
A, to 16- 230 gives a loading of zero for the first factor on the third series, the Yen; see 
Figure 2 and Table 6. Setting the angle to 352.480 gives a loading of zero for this second 
factor on the DM and very small loadings on the other two European currencies. The 
first rotation therefore has the dominant factor, the first common trend hi,, related only 
to the European exchange rates, while the second common trend, h2,, is a general trend 
which underlies the volatility of all the exchange rates including the Yen. In the second 
rotation, which is actually quite close to the original when the movement is in an anti- 
clockwise direction, the first common trend affects the European exchange rates to a 
similar extent, but leads to smaller movements in the Yen. The second common trend has 
its effect almost exclusively on the Yen; compare the results for the principal components 
analysis of the correlation matrix as given in Table 4. The message in the two rotations 
is essentially the same and which one is adopted is really a matter of taste. The standard 
deviations implied by the two common trends for the second rotation, exp (Y;,l T), j= 

TABLE 6 

Loadings after rotations 

A= 16 230 A-=352.480 

Pound/Dollar 0.103 0.030 0107 -0O014 
DM/Dollar 0 095 0 042 0O103 0 
Yen/Dollar 0 0 056 0 023 0 051 
SF/Dollar 0 085 0 048 0-097 0010 
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02 

\ 0.10 .- 

01 
_-9/ ~~~0.05 ) .10 

FIGURE 2 

Factor rotation 

1, 2, are plotted in Figure 3. The standard deviations estimated from the univariate models 
for the Deutschmark and Yen are shown for comparison. 

6. HEAVY-TAILED DISTRIBUTIONS 

The GARCH model may be generalized by letting e, have a Student t-distribution; see 
Bollerslev (1987). This is important because the kurtosis in many financial series is greater 
than the kurtosis which results from incorporating conditional heteroscedasticity into a 
Gaussian process. A similar generalization is possible for the SV model. Once again it can 
be shown that when h, is stationary, y, is white noise and it follows immediately from the 
properties of the t-distribution that the formula for the unconditional variance generalizes 
to {v/( v-2)} exp ( yh + I h 2). 

Let s, in (1) be a t-variable written as 

Et= tlK 
1/2, t= 1, . .., T, (14) 

where ;, is a standard normal variate and VK, is distributed, independently of T,, as a x2 
with v degrees of freedom. Thus 

log s2 = log -logK,, (15) 

and it follows from Abramovitz and Stegun (1970, p. 943) that the mean and variance of 
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FIGURE 3(a) 

Smooth estimates of standard deviation for the first common trend with the corresponding estimates for the 
Deutschmark 

log K, are "'(v/2) - log (v/2) and "'(v/2) respectively, where V(*) and t'(*) are the 
digamma and trigamma functions respectively. The ACF of log y2 has the same form as 
before. 

The state-space model corresponding to (6) can be estimated for a given value 
of v. Alternatively the variance of log s2 can be treated as an additional unknown 
parameter. In both cases the asymptotic theory in Dunsmuir (1979, p. 502) applies 
since the required moments of log s2 exist even when v is one. Leaving the distribution 
of s, unspecified means that Yh is not identified since the expected value of log st is 
unknown. Similarly when h, follows a random walk its estimated values will include 
the expectation of log 02. Thus the level of volatility is not determined. However, if 
s, is assumed to have a t-distribution, the estimated variance of log s2 implies a value 
of v when set to 4 93 + Vr'(v/2), and this in turn enables the expectation of log se to 
be calculated. In the exchange rate application, the unrestricted estimates of the variance 
of log s2 imply that the distribution of s, is normal for the Pound and Deutschmark, 
that is v is infinity, while for the Yen and Swiss Franc v is approximately six. 

The generalization to the multivariate model can be made by assuming that (14) 
holds for i = 1, . . . , N with the Ti,'s following a multivariate normal distribution, with 
a correlation matrix as specified for st in (7), but with the Ki,'s mutually independent. 
The covariance matrix of the vector of log .2, variables, 14, is the sum of the covariance 
matrix of the log ;2 variables, defined as in (10), and a diagonal matrix in which the 
i-th diagonal element is the variance of log Ki,. Each diagonal element in the covariance 
matrix of st, 1, is equal to the variance of the corresponding t-distribution, that is 
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FIGURE 3(b) 

Smooth estimates of standard deviation for the second common trend with the corresponding estimates for 
the Yen 

Var (ei,) = vi/( vi - 2) for vi > 2 and i = 1, ... , N. As regards the off diagonal elements 

E(c? ?j)= E(K= E(K(KI 2)E&1j), i$j, i,j= 1 N. 

The last term is obtained from the corresponding covariance of log 2 and log g2 using 

(10), while 

E(K, I/2)= v'/22-1/2F{(vi- 1)/2}/F(vi/2), i= 1,... , N. 

Fitting the above multivariate model gave the following results 

1.00 0-411 0*303 0-380 0.000 

7r2 1.00 0-434 0*586 0 000 
=- 

~~~~~+ 4 2 100 0-419 0-406 

1000 0-510 

and 

8-69 10-25 2-92 10-241 

19 16 4 07 18&82 

4 02 5-21 

18 96 
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The maximized quasi-log-likelihood, -4618 06, is slightly higher than for the Gaussian 
model reported in Section 5. The implied degrees of freedom for the Yen and Swiss Franc 
are 5 86 and 4-84 respectively. 

The correlation matrix for ?, is 

1.00 0-85 0-88 0.99 

1-00 099 1-12 

1 52 1 18 

1 70 

The covariance matrix of , is not very different from the one reported for the Gaussian 
model, and the same is true of the correlation matrix 

1.00 0 79 0 49 0-80 

1-00 046 0 99 
Corr (i)= 6 

1-00 0-60 

As a result the common trends, and the implied groupings of exchange rates, are similar. 

7. CONCLUSION 

The multivariate stochastic variance model has a natural interpretation and is relatively 
parsimonious. The parameters can be estimated without too much difficulty by a quasi- 
maximum likelihood approach, and the movements in variance can be estimated by 
smoothing. The extension to heavier tailed distributions can be carried out very easily 
using the t-distribution.2 The model fits well to exchange rates, and is able to capture 
common movements in volatility. The volatility in the three European exchange rates 
depends primarily on one factor. This factor affects the Yen to a much lesser extent, and 
the Yen is primarily affected by a second factor. Other rotations offer a slightly different 
interpretation but the special behaviour of the Yen is always apparent. 

APPENDIX A. UNCORRELATEDNESS OF VARIABLES AFTER 
TRANSFORMATION 

Consider two random variables, s and i, which may be dependent. Assume E(q) = 0 and let h( ) be an even 
function such that E[h(s)] exists. If the covariance between q and h(s) exists, it is zero under the following 
conditions: 

A.l The density of s, f(s), is symmetric. 
A.2 E(qi s) is an odd function of s. 

The result follows because 

Cov (q, h(s)) = E[q(h(s) - E[h(s)])] = E[q7h(s)] = E[E(s I e)h(Jfl. 

and, under A.2, E[E(q7 s)h(s)] is an odd function of s, and so given A. 1 its expected value is zero. 

2. The STAMP package can be used to carry out estimation by QML for univariate models. A multivariate 
version is currently being developed. Further information can be obtained by writing to the first author at LSE. 
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In the application here, h(s) = log 62 is an even function, and if s and q are zero mean bivariate normal, 
conditions A. 1 and A.2 are satisfied, and so 

Cov (q, log 62) = 0. 

When s has a Student t-distribution with v degrees of freedom, it can be written as s =- r-2, where vi is 
distributed independently of ; as X2. If g and q are bivariate normal, then 

E(i7 log s2) = E[i7(log 42 _ log a)]-=E[q log 2]J-E(i7)E(log ,) = 0 

and so i7 and log 62 are again uncorrelated. Note that the result holds even if 5 is Cauchy distributed (v = 1), 
since although the mean of s does not exist in this case, E[log 62] does exist and in fact is zero. 

Conditions A.1 and A.2 are satisfied if the joint distribution of s and q satisfies the symmetry condition: 

A. 3 g(e, 7) = g(- c, - ?7). 

This follows because A.3 implies A. 1 since 

00 0 

X 9 (6, ?7)drl g( - c, - ?7)d?l g( - c, ?l)d?l =f (- ) 
- 00 -00 - 

while A.3 implies A.2 because 

E(71s) =J 7 _d= _ g( - J__)d 
__ f(s) f() 

=q(~~ ~ ,J cg-, ?7)d? - E(Ji-7 ) 

APPENDIX B. CORRELATIONS BETWEEN TRANSFORMATIONS OF 
STANDARD NORMAL VARIABLES 

In this appendex we derive the expression for Corr (log s2, log s22) where el and 62 are bivariate standard normal 
variables with correlation coefficient p. 

Define u = (62)1/2 and v = (62)1/2. Johnson and Kotz (1972) give the following expression for the moments 
of u and v 

E(urvs) 
- F2(r?)2r rn JF-,-; -; pj (B.i) 

(r(i/2))2 2 2 2'22 

where F(a, b; c; z) is the hypergeometric function given by 

F(a, b; C; Z) = E ,'= () _= t+ab z + a(a + 
I 

)b(b + 1 ) 2+(B.2) 

where (a), = r(a +n)/r(a). 
The moment generating function of log s' and log sc is given by 

m(t, t2) = E[exp {t, log s, + t2 log s2} ] = E[s,'s2J. (B.3) 

Using (B. 1) in (B.3) and taking logarithms yields 

log m(t,, t2)=(t, +t2) log (2)+iog r((l/2)+t,) +log r((l/2)+t2) 

+logF(-t,, -t2; 1/2; p2) - 2 log r(1/2) (B.4) 

and, therefore, 

O2 log M(tl, t2) I 02F I FF (B5 
At, 02 F1t,&t2 F2 At, at2) 
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To find the covariance between log 62 and log 62, expression (B.5) has to be evaluated at t, = =0. Given the 
expression for the hypergeometric function in (B.2), it is easy to see that at t, = t2= 0 

F(O, 0; 1/2; p2)= (B.6) 

aF = aF = 0 (B.7) 
01 t2 

and 

a2F = ((n-1)!)2p2n (n-1)! 2n (B.8) 
&I at2 =1 (I /2), n! n= (12 

p 

Substituting (B.6), (B.7) and (B.8) into (B.5), we get 

Cov (log 612, log 62) = ,a0 (n-) p2?,(B9 c 1 2 =, ~(1/2),n p(B9 

The variance of log e2 is given by 7r2/2 for i= 1, 2 and therefore the correlation is as in expression (10) in the 
text. 
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