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Motivation

The method of maximum likelihood (ML) is a useful estimation
method when the parameters of a model cannot be estimated by OLS.
Tests of restrictions are also available (likelihood ratio test principle).

The method requires to specify fully the probability distribution of the
observed sample, not just for example the conditional mean of the
sample (like for the linear regression model when we estimate it by
OLS).

Thus, in the linear regression model, for ML estimation, we must also
specify the dependence structure of the sample through the error
terms (such as ”they are i.i.d.”), and the distribution of the error
term, (such as εt ∼ N(0, σ2)).

We could also choose another distribution.



ML for linear regression

Let yt = β′xt + εt , (t = 1, . . . , n) with εt ∼ N(0, σ2).

By independence, the joint distribution of the εt ’s is

f (ε1, ε2, . . . , εn|β, σ2) =
n∏

t=1

f (εt |β, σ2), (1)

where f (εt |β, σ2) = 1√
2πσ2

exp(− ε2
t

2σ2 ).

We do not observe εt but yt , so we just replace εt by yt − β′xt . Said
differently: f (yt |xt) ∼ N(β′xt , σ

2), and the joint probability
distribution of the observed sample is

f (y1, y2, . . . , yn|β, σ2) =
n∏

t=1

1√
2πσ2

exp

(
−(yt − β′xt)2

2σ2

)
. (2)



Likelihood function: idea

The likelihood function (LF) of the sample y1, y2, . . . , yn is the joint
probability distribution of that sample, viewed as a function of the
parameters of the model (β and σ2).

Indeed, for a given value of β and σ2, we can compute (2): it gives us
the ”probability” of having observed the sample y1, y2, . . . , yn for the
given value of the parameters.

If we take another possible value of β and σ2, we obtain another
value of that probability.

The ML ESTIMATE (MLE) is the value of the parameters that
maximizes the LF; that is, it is the value of β and σ2 for which
the sample is the most likely (or probable) to have been
observed.



Likelihood function: notations

To emphasize what is the LF, we use a special notation:
L(β, σ2|y1, y2, . . . , yn) designates the LF, where the arguments of the
function are β and σ2, and not the observed data y1, y2, . . . , yn.
Formally,

L(β, σ2|y1, y2, . . . , yn) = f (y1, y2, . . . , yn|β, σ2). (3)

L(β, σ2|y1, y2, . . . , yn) maps from Rk to R+, whereas
f (y1, y2, . . . , yn|β, σ2) maps from Rn to R+.

When it is clear from the context what the data are, we even write
L(β, σ2) instead of L(β, σ2|y1, y2, . . . , yn).

We also use the more synthetic and generic notations L(θ) and
L(θ|y): θ for the parameters (thus θ = (β′, σ2) in the regression
case), and y for the sample of size n.



Steps for ML estimation

Finding the ML estimate of the parameters of a model involves two steps:

Step 1: from the model formulation and assumptions, obtain the
likelihood function expression.

Step 2: find the value of the parameters that maximize this function.

Thus, we must solve the maximization problem:

max
θ∈Θ

L(θ|y),

where Θ is the set of admissible values of the parameters θ.



Solving the max problem

It is much easier, and equivalent, to solve

max
θ∈Θ

l(θ|y),

where l(θ|y) = log L(θ|y) (natural logarithm). Since
L(θ|y) =

∏n
t=1 f (yt |θ), in logarithm

l(θ|y) =
∑n

t=1 log f (yt |θ) =
∑n

t=1 lt(θ).

Thus, for the linear regression example, we must solve

max
β∈Rk

,σ2>0

(
−n

2
log σ2 − 1

2σ2

n∑
t=1

(yt − β′xt)2

)
,

where we have neglected the term −n log(
√

2π) because it does not
depend on β and σ2.



First order conditions

If l(θ) is differentiable in θ, the MLE is the solution of the system of
first order conditions (FOC)

q(θ) = 0 where q(θ) =
∂l(θ)

∂θ
,

provided that the second order condition holds; that is, the matrix of
second derivatives, evaluated at the solution of the FOC must be
negative definite.
NB: q(θ) is called the score function.

Let us call θ̂ the solution of the FOC: then θ̂ is the MLE if

q(θ̂) = 0 and H(θ̂) < 0.

where H(θ̂) is the Hessian matrix ∂l(θ)
∂θ∂θ′ evaluated at θ̂.



FOC for β

For the linear regression example, the FOC are

1

σ2

n∑
t=1

xt(yt − β′xt) = 0 (k equations) (4)

− n

2σ2
+

1

2(σ2)2

n∑
t=1

(yt − β′xt)2 = 0 (1 equation) (5)

The solution of (4) does not depend on σ2 and is the solution of∑n
t=1 xt(yt − β′xt) = 0: this is the system of ”normal equations” of

OLS estimation.

The MLE, assuming normality of the error terms, is the same as the
OLS estimate.



FOC for σ2

Having solved (4), we just have to solve

− n

2σ2
+

1

2(σ2)2

n∑
t=1

(yt − β̂′xt)2 = 0,

which gives

σ̂2 =
1

n

n∑
t=1

(yt − β̂′xt)2 =
1

n

n∑
t=1

e2
t . (6)

The MLE of σ2 is not the ”usual” estimator

s2 = 1
n−k

∑n
t=1 e

2
t ,

but if n is large, the difference is small.



Second order conditions

Computations give

H(β̂, σ̂2) =

(
−

∑n
t=1 xtx

′
t

σ̂2 0
0′ − n

2σ̂4

)
=

(
−X ′X

σ̂2 0
0′ − n

2σ̂4

)
,

which is negative definite since X ′X is positive definite (if X is of
rank k).

β̂ and σ̂2 are the MLEs of β and σ2.



Properties of the MLE

Consistency: θ̂n
p→ θ where θ is the parameter value in the DGP

(called ”true value”).

Asymptotic normality: we can proceed as if θ̂n ∼ N(θ, V̂ ) if n is large,
knowing that the larger n, the better the approximation.

V̂ is an estimate of the exact variance-covariance matrix V because
the latter depends in general on some unknown parameters (in
particular, but not exclusively, the true θ itself).

There is no unique choice of V̂ but we give the usual choices
available in econometric software packages (like OxMetrics, TSP,
EVIEWS, RATS, SAS, STATA...)



Formulas for V̂

Based on the Hessian matrix:

V̂H = −[H(θ̂)]−1 = −

[
n∑

t=1

Ht(θ̂)

]−1

,

where Ht(θ̂) = ∂lt(θ)
∂θ∂θ′ evaluated at θ̂.

Based on the score contributions:

V̂G =

[
n∑

t=1

qt(θ̂)qt(θ̂)′

]−1

,

where qt(θ̂) = ∂lt(θ)
∂θ evaluated at θ̂ is the contribution of observation

t to the score function.
NB: q(θ) =

∑n
t=1 qt(θ).



The likelihood ratio test

Under the regularity conditions, one way to test restrictions, say
H0 : Rθ = r is as follows:

Step 1: estimate the model by ML without imposing the restrictions.
Save l(θ̂), the value of the LLF at the maximum.

Step 2: estimate this time by imposing the restrictions. Save l(θ̃), the
value of the LLF at the constrained maximum. So, θ̃ = arg maxθ l(θ)
subject to Rθ = r .

Step 3: Compute the likelihood ratio (LR) test statistic

LR = 2[l(θ̂)− l(θ̃)].

Reject H0 at level α if the p-value of LR is smaller than α, where the
p-value is obtained using the χ2(m). Notice that by construction
LR ≥ 0.



The likelihood ratio test

Example: for the MA(1,2,5) model of the log(USGDP), the value of
the maximized log-likelihood is -330.95578.

For the MA(1,2) model, the value is -332.468523 (smaller since there
is one parameter less).

The LR test statistic for the null hypothesis that the MA(5)
coefficient is equal to 0 is given by

2[−330.95578− (−332.468523)] = 3.025486 < 3.84,

the χ2(1) critical value at 5%.

The hypothesis is not rejected at that level.



Possible problems with ML

Solving the FOC is not usually possible analytically, like was done in
the regression example. Numerical methods are implemented in
econometric softwares.

The MLE is not always unique: the FOC system may have several
solutions. If this is suspected, one must search numerically for several
maxima and choose the global one.

Extreme case of the previous problem: the MLE does not exist (or
there is an infinity of solutions: this is called an identification
problem). An example of this: linear regression when X is not of full
rank.

The MLE may be on a boundary of the parameter space. Then its
asymptotic normality does not hold and the LR test is not
asymptotically distributed as χ2.



Strength and weakness of ML

Strength: if the assumptions are correct, the MLE is the most
efficient estimator asymptotically, in the sense that it is unbiased
asymptotically and has the smallest possible variance. Said more
intuitively, ML uses in the best way the information in the data to
estimate the parameters.

Weakness: ML requires a choice of probability distribution. So, what
are the consequences of a wrong assumption about the probability
distribution of the yt ’s?

The answer to this question is:
- in some cases, the MLE is not even consistent;
- in other cases, it is still consistent and asymptotically normal but
the variance matrix V̂ is different from that given previously.



Quasi-ML

The quasi-ML (QML) estimate is the MLE computed from a LF
based on a (possibly wrong) probability distribution for which
E[qt(θ)] = 0. We denote it by θ̂Q .

In many cases, when yt ∈ R, that wrong distribution can be taken to
be a normal one, with the mean and variance specified in the model.
The LF is then called the ”quasi-likelihood function”.

The QMLE is consistent and asymptotically normal, so in large
samples we can proceed as if θ̂Q ∼ N(θ, V̂Q), where

V̂Q = V̂−1
H V̂G V̂

−1
H .

NB: In the regression model, V̂Q is VarHC (b) (White’s formula).



Tests based on QML

Using the result that θ̂Q ∼ N(θ, V̂Q), we can use Wald tests that is
distributed as χ2 under H0, or for a single restriction, we can use the
N(0, 1) version of the test.

Note however that we cannot apply the the LR test principle in the
QML case, that is 2[l(θ̂Q)− l(θ̃Q)] is not a valid χ2 test statistic.



OLS for AR models

These models are particular ARDL models. They can be cast in the
form of a regression equation yt = β′xt + εt after suitably defining xt
and β.

When we use OLS for an AR(p) model and we have n observations,
we ”loose” p observations: we use y1, y2, . . . , yp to construct the X
matrix. Its first row being 1, y1, y2, . . . , yp, etc.

We say that we condition on the first p observations. But we cannot
use y1, y2, . . . , yp on the left-hand side of the regressions equation
(as dependent variable).



Conditional ML for AR models(1)

The likelihood function conditional on the initial p observations is:

Lc(θ) =
n∏

t=p+1

f (yt |yt−1, yt−2, . . . , yt−p; θ)

where f (yt |yt−1, yt−2, . . . , yt−p; θ) is the conditional density of yt
given yt−1, yt−2, . . . , yt−p, with mean
β′xt = α0 + φ1yt−1 + φ2yt−2 + . . .+ φpyt−p and variance σ2.

Here θ = (β′, σ2) = (α0, φ1, φ2, . . . , φp, σ
2).



Conditional ML for AR models(2)

This LF is the ”probability” of observing yp+1, yp+2, . . . yn given that
we have observed y1, y2, . . . , yp and given the value θ of the
parameters.

Assuming εt ∼ N(0, σ2) for t ≥ p + 1, we know that
f (yt |yt−1, yt−2, . . . , yt−p) is the N(β′xt , σ

2) density, thus:

lc(θ) = −1

2
(n − p) log σ2 − 1

2σ2

n∑
t=p+1

(yt − β′xt)2

Maximizing this gives the OLS estimator of β and (6) for σ2.



Exact ML for AR(1) model

The exact likelihood function uses all observations. It is equal to the
conditional one times the marginal density of the first observation:

L(θ) = f (y1|θ)
n∏

t=2

f (yt |yt−1; θ).

For the AR(1) model, assuming normality, it can be shown that

f (y1|θ) ∼ N
(

α0
1−φ1

, σ2

1−φ2
1

)
. The LLF is then

l(θ) = −1

2
log

σ2

1− φ2
1

− 1

2

(
y1 −

α0

1− φ1

)2

−1

2
(n − 1) log σ2 − 1

2σ2

n∑
t=2

(yt − α0 − φ1yt−1)2.



Exact ML for AR(p) models

The exact likelihood function is equal to the conditional one times the
joint density of the first p observations:

L(θ) = f (y1, y2, . . . yp|θ)
n∏

t=p+1

f (yt |yt−1, yt−2, . . . , yt−p; θ).

The density f (y1, y2, . . . yp|θ) is multivariate normal if εt ∼ N(0, σ2)
but its formula is heavy. Anyway, the solution of the maximization of
the LLF is obtained by numerical methods.



Conditional ML for MA models (yt = µ + θ1εt)

If εt ∼ N(0, σ2), then the LLF is

lc(θ) = −n

2
log σ2 − 1

2σ2

n∑
t=1

ε2
t , (7)

where εt = yt − µ− θ1εt−1 for t = 1, 2, . . . , n in the MA(1).
Problem: we need ε0 to compute ε1.

Solution: we condition on a value of ε0: ε0 = 0 (the expectation) is
convenient since then we compute successively ε1 = y1 − µ,
ε2 = y2 − µ− θ1ε1, ε3 = y3 − µ− θ1ε2, . . .

For a MA(q), the LLF is also given by (7). We can fix
ε0 = ε−1 = . . . = ε1−q = 0 and compute εt = yt − µ−

∑q
j=1 θjεt−j

for t ≥ 1 .



Maximum Likelihood Estimation (State Space Model)

Let θ ∈ Θ denote a vector containing the so-called hyperparameters,
i.e. the vector of structural parameters other than the scale factor σ2.

The state space model depends on θ via the system matrices
Zt = Zt(θ),Gt = Gt(θ),Tt = Tt(θ),Ht = Ht(θ).



Local Level model

Consider the local level model:

yt = αt + εt εt ∼ N(0, σ2
ε )

αt = αt−1 + ηt ηt ∼ N(0, σ2
η)

(8)

The parameter to be estimated are σ2
ε and σ2

η. Those parameter are
restricted in the region [0,+∞). It is much better to maximize the
function in the domain (−∞,+∞).



Reparametrization

The vector of parameters, θ, has two unrestricted elements, which are
related to the model’s hyperparameters by:

σ2
η = exp(2θ1), σ2

ε = exp(2θ2),

or in the inverse way:

θ1 =
1

2
log(σ2

η) θ2 =
1

2
log(σ2

ε )



Likelihood using the Kalman filter

Let L(Yn; θ) denote the log-likelihood function, that is the log of the
joint density of the sample time series {y1, . . . , yn} as a function of
the parameters θ.

The log-likelihood can be evaluated by the prediction error
decomposition:

L(Yn; θ) = log f (y1, . . . , yn; θ) =
n∑

t=1

log f (yt |Yt−1; θ).

The predictive density f (yt |Yt−1; θ) is evaluated with the support of
the Kalman Filter.



Proof

In this case we assume NORMALITY.
Recall that Ft = Var(yt |Yt−1) and νt = yt − Zt α̃t .

Then we can substitute N(Zt α̃t ,Ft) for f (yt |Yt−1) and we get, apart
from constant :

log L(Yn) = −1
2

(
n∑

t=1
log |Ft |+

n∑
t=1

ν ′tF
−1
t νt

)
.

The likelihood function can be maximized numerically by a
quasi-Newton optimization routine.


