Third assumption (Normality):

y:a(XB,0° /N)
1
= ply)= WGXP ( o (v —XB) (y—Xﬂ)>
where N is the sample size.

The log likelihood function is
UB,0%) =c—FlIna® — 5L (y = XB) (y — XB).

Proposition: The LS estimator B is the ML estimator.
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Proposition: The ML estimator for o2 is

o2, =ée/N.
Proof: To find the ML estimator for o2, we solve the FOC:

o0 N 1 , -
992 = g2 T pgay = XB)(y —XB) =0

= o’ =(y=XB)(y = XB)/N
Plugging in the MLE for /3 gives the MLE for o2

Proposition: The distribution of 3 given a value of o2 is q(B,a?(X'X)™1).
Proof: Since (§ is a linear combination of jointly normal variables, it is
normal.
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Fact: If Aisan N x N idempotent matrix with rank r, then there exists
an N x N matrix C with
C'C =1 = CC’' (orthogonal)

C'AC = A,
where:
1...0..0
0...1...0 I 0
S -5 o]
0........ 0

C is the matrix whose columns are orthornormal eigenvectors of A.
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Lemma: Let z ~ q(0,/y) and A be an N x N idempotent matrix with
rank r. Then
Z'Az ~ x2(r).

Proof:

Z/Az =7 CC'ACC'z =2C'ACz = Z’Az, where 2’ = Z/C.

But Z is normal with mean zero and variance:
Ezz = EC'zZ/C = C/(EzZ')C=C'C = 1.

So, z/Az = Z’AZ is the sum of squares of r standard normal variables, i.e.,
ZAz ~x%(r). A
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Proposition:
2
Noi,,

2 NXZ(N_K)
(o2

Proof: Note that 02, = e’e/N = 'Me/N.

No2 e'Me
ML — o2 NX2(N7K)7

o2
using the previous lemma with z =¢/o.
Proposition: cov(a%/,L,B) =0
Proof: Ee(f3 — ) = EMe((X'X) 1 Xe

= EMee'X(X'X)7?
=?MX(X'X)"1 =0
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= e and B are independent.
(This depends on normality: zero covariance = independence)
= €’e and 3 are independent.l

. . . . ’\ 2
So, we have the complete sampling distribution of 3 and o7, .

Note on t-testing:

We now that @ ~ q(0,1) where aé, is the k*h diagonal element of
a?(X' X)L

Estimating 02 by s? gives a statistic which is t(N — K), using the same
argument as in simple regression.
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Simultaneous Restrictions

In multiple regression we can test several restrictions simultaneously. Why
is this useful?

Recall our expenditure system:

In z; +Inm—Inp;

Zaz
Bo+BrInm+ByrInp;+¢€

ory

We are interested in the hypothesis 5; =1 and 3, = —1. A composite
hypothesis like this cannot be tested with the tools we have developed so
far.
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Lemma: Let z ~ q(0,/), and A and B be symmetric idempotent matrices
such that AB = 0.

Thus A and B are projections to orthogonal spaces. Then a = Z/Az and
b = z'Bz are independent.

Proof:
a=z/AAz = sum of squares of Az
b = z'B’'Bz = sum of squares of Bz.

Note that both Az and Bz are normal with mean zero.
cov(Az,Bz) = EAzz'B' = AEzz’B' = AB' =0
We are done. (why?) B

Note: A similar argument shows that z/Az and Lz are independent if
AL =0.
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Definition: Suppose v ~ x?(k) and u ~ x?(p) are independent. Then

F=Z§z~ (k; p)-

Lemma: Let M and M* be idempotent with MM* = M*, e = Me,
e* = M*¢, e ~ q(0,021).

Then

F— (ele_ezl*il//(tt,;\y*_trM*) - F(trM — trM*, trl\/l*).
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Proof: o~2trM* times the denominator is x2(trM*)

As for the numerator:
e —e'e* =M Me — M M*e = &' (M — M*)e.

Note that: (M — M*)(M — M*) = M? — M*M — MM* + M*2 = M — M*
(idempotent).
So e'e — ee* =&'(M — M*)e.

Thus, the numerator upon multiplication by o =2tr(M — M*) is distributed
as
X (tr(M — M*)).

It only remains to show that the numerator and the denominator are
independent.
But (M — M*)M* =0, so we are done. &
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Interpretation:

R[M*] C R[M], i.e.

e’e is a restricted sum of squares

e*e* is an unrestricted sum of squares.

F looks at the normalized reduction in “fit" caused by the restriction.
What sort of restrictions meet the conditions of the lemma?

Proposition: Let X be N x H and X* be N x K where H < K.
(RIX] € RIX™]).

Suppose X = X*A (Ais K x H).
Let M =1 — X(X'X)"1X"and M* = | — X*(X*X*)"1X*,
Then M and M* are idempotent and MM* = M*.
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Example 1: Leaving out variables

Consider y = X18; + X285 + € where X; is N x K and X3 is N x K.

Hypothesis: (5, =0, i.e., X5 is not in the model.

Using the notation from the previous proposition, X = X and
X* = [X1X2]

X =X*A, A= [ é]
Note that: trM =N — Ky, trM* = N — K; — K>.

(e — e*e*) /Ky
e*’e*/(N — Kl — K2)

Thus:

e is from the regression of y on X = X1, and

e* is from the regression of y on X* = [X1 Xz].

The degrees of freedom in the numerator is the number of restrictions.

Professor N. M. Kiefer (Cornell University)
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Example 2: Testing the equality of regression coefficients

in two samples.

Consider
y1 = X181 + €1 where yj is Ny x 1 and X; is N; x K, and
Yo = X2,B2 + &2 where yp is Np x 1 and X5 is My x K.

Hypothesis: §; = 3,

Combine the observations from the samples:

_ 1 * _ X1 0 _ 61
==t - [R]
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The unrestricted model is

y=X"B+e=Xp+ X, +e¢.

X:X*A,A:[;]

Note that trM* = N; + N> — 2K and
trM = Ny + N, — K.

Run the restricted and unrestricted regressions, and calculate

_ (de—eTe")/K
~e¥er /(N + Ny — 2K)'
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Example 3: Testing the equality of a subset of coefficients

Consider
y1 = X181 + Xo8, + €1

where Xi is N; x K7 and X5 is Ny x K>
and

y2 = X3B3+ XafBy + 22
where X3 is No x K7 and X3 is Ny, x K4

Hypothesis: (; = (5

The unrestricted regression is

B
%1 X1 X2 0 0] B2
pr— p— +
Y [}/2] [00X3 X4 B3 ©
B4
= X" +e.
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With the restriction, we have

X1 Xo 0 b1

v [X3OX4} Pa | te
By |

:XB—i-e.

I 0 0]
. 0/ 0
X = XAA=| o 4
00 /|

Thus,
the test statistics is:

(€'e — e*e*) /K1

F=—, .
e* e*/(N1 + Ny — 2K — Ky — K4)
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Another way to look at the condition of the lemma:

Let 5* be the unrestricted coefficient vector and (3 be the restricted
coefficient vector.

The lemma requires that there exist a matrix A such that 8* = Ag.
What kinds or restrictions cannot be brought into this framework??

Consider Ey = X153, versus

E_y = X2,62.
The combined model is not in consideration.
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