
In this lecture, we will consider the model y = X� + " retaining the
assumption Ey = X�.

However, we no longer have the assumption V (y) = V (") = �2I . Instead
we add the assumption V (y) = V where V is positive de�nite.
Sometimes we take V = �2
 with tr
 = N.

As we know, �̂ = (X 0X )�1X 0y . What is E �̂?

Note that V (�̂) = (X 0X )�1XVX (X 0X )�1 in this case.

Is �̂ BLUE? Does �̂ minimize e 0e?
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The basic idea behind GLS is to transform the observation matrix [y X ] so
that the variance in the transformed model is I (or �2I ).

Since V is positive de�nite, V�1 is positive de�nite too. Therefore, there
exists a nonsingular matrix P such that V�1 = P 0P.

Transforming the model y = X� + " by P yields Py = PX� + P".

Note that EP" = PE" = 0 and
V (P") = PE""0P 0 = PVP 0 � P(P 0P)�1P 0 = I . (We could have done this
with V = �2
 and imposed tr
 = N if useful.) That is, the transformed
model Py = PX� + P" satis�es the conditions under which we developed
Least Squares estimators.
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Thus, the LS estimator is BLUE in the transformed model. The LS
estimator for � in the model Py = PX� + P" is referred to as the GLS
estimator for � in the model y = X� + ".

Proposition: The LGS estimator for � is

�̂G = (X
0V�1X )�1X 0V�1y :

Proof : Apply LS to the transformed model. Thus,

�̂G = (X 0P 0PX )�1X 0P 0Py

= (X 0V�1X )�1X 0V�1y :

�
Proposition: V (�̂G ) = (X

0V�1X )�1.
Proof : Note that �̂G � � = (X 0V�1X )�1X 0V�1". Thus,

V (�̂G ) = E (X 0V�1X )�1X 0V�1""0V�1X (X 0V�1X )�1

= (X 0V�1X )�1X 0V�1VV�1X (X 0V�1X )�1

= (X 0V�1X )�1:
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Aitken�s Theorem: The GLS estimator is BLUE. (This really follows from
the Gauss-Markov Theorem, but let�s give a direct proof.)

Proof : Let b be an alternative linear unbiased estimator such that
b = [(X 0V�1X )�1X 0V�1 + A]y .

Unbiasedness implies that AX = 0.

V (b) = [(X 0V�1X )�1X 0V�1 + A]V

�[(X 0V�1X )�1X 0V�1 + A0]
= (X 0V�1X )�1 + AVA0 + (X 0V�1X )�1X 0A0

+AX (X 0V�1X )�1

The last two terms are zero. (Why?)
The second term is positive semi-de�nite, so A = 0 is best. �
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What does GLS minimize?

Recall that (y � Xb)0(y � Xb) is minimized by b = �̂
(i.e., (y � Xb) is minimized in length by b = �̂).

Consider P(y � Xb). The length of this vector is
(y � Xb)0P 0P(y � Xb) = (y � Xb)0V�1(y � Xb)

Thus, GLS minimizes P(y � Xb) in length.

Let ~e = (y � X �̂G ). Note that satis�es
X 0V�1(y � X �̂G ) = X 0V�1~e = 0:(Why?)

Then

(y � Xb)0V�1(y � Xb) = (y � X �̂G )0V�1(y � X �̂G )
+(b � �̂G )0X 0V�1X (b � �̂G )

Note that X 0~e 6= 0 in general.
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Estimation of Variance

Let V (y) = �2
 where tr 
 = N.

Choose P so P 0P = 
�1. Then the variance in the transformed model
Py = PX� + P" is �2I . Our standard formula gives s2 = ~e 0~e=(N � K )
which is the unbiased estimator for �2.

Now we add the assumption of normality: y � N(X�; �2
).

Consider the log likelihood:

`(��2) = c � N
2
ln�2 � 1

2
ln j
j

� 1
2�2

(y � X�)0
�1(y � X�).

Proposition: The GLS estimator is the ML estimator for �. (Why?)
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Proposition: �2ML = ~e
0~e=N (as expected).

Proposition: �̂G and ~e are independent. (How would you prove this?)

Testing :

Testing procedures are as in the ordinary model. Results we have
developed under the standard set-up will be applied to the transformed
model.
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When does �̂G = �̂?

1. �̂G = �̂ holds trivially when �
2I = V .

2. �̂ = (X 0X )�1X 0y and
�̂G = (X

0V�1X )�1X 0V�1y
�̂G = �̂
) (X 0X )�1X 0 = (X 0V�1X )�1X 0V�1

) VX = X (X 0V�1X )�1X 0X = XR
(What are the dimensions of these matrices?)

Interpretation: In the case where K = 1, X is an eigenvector of V . In
general, if the columns of X are each linear combinations of the same K
eigenvectors of V , then �̂G = �̂. This is hard to check and would usually
be a bad assumption.
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Example: Equicorrelated case: V (y) = V = I + �110 where 1 is an
N-vector of ones.

The LS estimator is the same as the GLS estimator if X has a column of
ones.

Case of unknown 
:

Note that there is no hope of estimating 
 since there are N(N + 1)=2
parameters and only N observations. Thus, we usually make some
parametric restriction as 
 = 
(�) with � a �xed parameter. Then we
can hope to estimate � consistently using squares and cross products of LS
residuals or we could use ML.

Note that it doesn�t make sense to try to consistently estimate 
 since it
grows with sample size.
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Thus, �consistency� refers to the estimate of �.

De�ntion: 
̂ = 
(�̂) is a consistent estimator of 
 if and only if �̂ is a
consistent estimator of �.

Feasible GLS (FGLS) is the estimation method used when 
 is unknown.
FGLS is the same as GLS except that it uses an estimated 
, say

̂ = 
(�̂), instead of 
.

Proposition: �̂FG = (X
0
̂�1X )�1X 0
̂�1y

Note that �̂FG = � + (X
0
̂�1X )�1X 0
̂�1". The following proposition

follows easily from this decomposition of �̂FG .
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Proposition: The su¢ cient conditions for �̂FG to be consistent are

p lim
X 0
̂�1X
N

= Q

where Q is positive de�nite and �nite, and

p lim
X 0
̂�1"
N

= 0.

It takes a little more to get a distribution theory. From our discussion of
�̂G , it easily follows that

p
N(�̂G � �)! N

 
0; �2

�
X 0
�1X
N

��1!
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What about the distribution of �̂FG when 
 is unknown?

Proposition: Su¢ cient conditions for �̂FG and �̂G to have the same
asymptotic distribution are that

p lim
X 0(
̂�1 � 
�1)X

N
= 0

p lim
X 0(
̂�1 � 
�1)ep

N
= 0:

Proof : Note that

p
N(�̂G � �) =

�
X 0
�1X
N

��1 �X 0
�1"p
N

�
and

p
N(�̂FG � �) =

 
X 0
̂�1X
N

!�1 
X 0
̂�1"p

N

!
.
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Thus
p lim

p
N(�̂G � �̂FG ) = 0

if

p lim
X 0
̂�1X
N

= p lim
X 0
�1X
N

and

p lim
X 0
̂�1"p

N
= p lim

X 0
�1"p
N

.

We are done. (Recall that p lim(x � y) = 0) the random variables x
and y have the same asymptotic distribution.)
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Summing up:

Consistency of �̂ implies consistency of the FGLS estimator. A little more
is required for the FGLS estimator to have the same asymptotic
distribution as the GLS estimator. These conditions are usually met.
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Small-sample properties of FGLS estimators:

Proposition: Suppose �̂ is an even function of " (i.e., �̂(") = �̂(�")).
(This holds of �̂ depends on squares and cross products of residuals.)
Suppose " has a symmetric distribution. Then E �̂FG = � if the mean
exists.

Proof : The sampling error
�̂FG � � = (X 0
̂(�̂)�1X )�1X 0
̂(�̂)�1"

has a symmetric distribution around zero since " and �" give the same
value of 
̂. If the mean exists, it is zero. �

Note that this property is weak. It is easily obtained but it is not very
useful.
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General advice:

-Do note use too many parameters in estimating the variance-covariance
matrix or the increase in sampling variances will outweigh the decrease in
asymptotic variance.

-Always calculate LS as well as GLS estimators. What are the data telling
you if these di¤er a lot?
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