
The Lindberg-Levy Central Limit Theorem

Let fX1; :::;Xng be a simple random sample of size n, i.e. a sequence of n
i.i.d random variables, drawn from a distribution X with E(X ) = � and
Var(X ) = �2 <1. We are interested in the asymptotic distribution of the
sample average X n = n�1

nP
i=1
Xi .

Central Limit Theorem (CLT) (Lindberg-Levy): The sequence

Yn = n1=2
X n � �
�

=

nP
i=1
(Xi � �)

n1=2�

converges in distribution to N(0; 1), i.e. Yn
d! N(0; 1):
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Notes

1. Identical means and variances can be dropped straightforwardly.
We need some restrictions on the variance sequence though. In this case,
we work with

Yn =
Pn
i=1(Xi � �i )�Pn
i=1 �

2
i

�1=2 :
2. Versions of the Central Limit Theorem with random vectors are also
available. Just apply univariate theorems to all linear combinations.

3. The basic requirement is that each term in the sum should make a
negligible contribution.
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Examples:

1. Estimation of mean � from a sample of normal random variables:
In this case, we estimate � by �X , and the asymptotic approximation for
the distribution of �X or (�X � �) is exact.

2. Consider n1=2(�̂ � �) where �̂ is the LS estimator.

n1=2(�̂ � �) = n1=2(X 0X )�1X 0"

= [X 0X=n]�1n1=2[X 0"=n]

Where [X 0X=n] is the sample second moment matrix of the regressors.
[X 0X=n] is O(1) or maybe Op(1)depending on assumptions.
Its lim or plim is Q, a KxK p.d. matrix.
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Regression Example Cont�d

What about n1=2[X 0"=n] =
p
n(1=n)

P
x 0i �i?

This is
p
n times a sample mean of x 0i �i :These have

Ex 0i �i = 0;Vx
0
i �i = �

2Q (discuss)

Under the assumption that regressors are well-behaved (i.e., contribution
of any particular observation to [X 0"=n] is negligible), we can apply a
Central Limit Theorem and conclude that

n1=2(�̂ � �) = [X 0X=n]�1n1=2[X 0"=n] D! N(0; �2Q�1).

Consistent with previous results?
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Asymptotic testing

In this section, we will study the "trinity" of asymptotic tests: Likelihood
Ratio (LR), Wald, and Lagrange Multiplier (LM) or Score tests

Background: let `(θ) = ln L(θ) = ln
n∏
i=1
p(yi |θ) =

n∑
i=1
ln p(yi |θ) be the

log-likelihood function, where [y1, ..., yN ] is a random sample from the
population Y ∼ p(y |θ) and θ is an unknown vector of parameters. Then
we define the Maximum Likelihood (ML) estimator

θ̂ = argmax `(θ),

the score function of the likelihood function

s(θ) =
∂`(θ)

∂θ
=

n∑
i=1

1
p(yi |θ)

∂p(yi |θ)
∂θ

≡
n∑
i=1

p′(yi |θ)
p(yi |θ)

=
n∑
i=1

si (θ),

and the information matrix ni(θ), where

i(θ) = E
[
∂ ln p(y |θ)

∂θ

]2
= E

[
p′(y |θ)
p(y |θ)

]2
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Asymptotic Testing - cont’d

Notice that

Esi (θ) =
∫

1
p(y |θ)

∂p(y |θ)
∂θ

p(y |θ)dy = ∂

∂θ

∫
p(y |θ)dy︸ ︷︷ ︸
=1

= 0,

and hence
Vsi (θ) = i(θ)

Moreover

−E
[
∂2 ln p(y |θ)

∂2θ

]
= −E

[
∂

∂θ

p′(y |θ)
p(y |θ)

]
= − E

[
p′′(y |θ)
p(y |θ)

]
︸ ︷︷ ︸
∂2

∂2θ

∫
p(y |θ)dy=0

+ E
[
p′(y |θ)
p(y |θ)

]2
︸ ︷︷ ︸

i(θ)
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Asymptotic Testing - cont’d

Since the individual scores si (θ) are i.i.d. (why?), by CLT

n−1/2s0
d→ N(0, i0)

where s0 = s(θ0), i0 = i(θ0) and θ0 is the population value of θ. Moreover,
under mild regularity conditions on `(θ), it can be proved that

n1/2d0
d→ N(0, i−10 )

where d0 = θ̂ − θ0 denote the vector of deviations.
Testing: Since n−1/2s0 is asymptotically equivalent to n1/2i0d0, we get

n1/2d0
asy
= n−1/2i−10 s0

Further, we have that

2[`(θ̂)− `(θ0)]
asy
= nd ′0i0d0,

which can be proved by expanding `(θ0) around θ̂ and taking probability
limits.
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Asymptotic Testing - cont’d

Consider the hypotheses

H0 : θ = θ0 H1 : θ 6= θ0

Likelihood Ratio Test: It is based on LR = L(θ0)/L(θ̂). The test statistic

−2 ln LR = 2[`(θ̂)− `(θ0)]
d→ κ2(q),

where q is the number of restrictions under H0.
Wald test: Under H0 the test statistic

W = nd ′0i(θ̂)d0
d→ κ2(q),

Lagrange Multiplier (or Score) test: Under H0 the test statistic

LM = n−1s ′0i
−1
0 s0

d→ κ2(q)
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Asymptotic Testing - cont’d

Remark: Given that
p lim i(θ̂) = i0

when the null hypothesis is true and that

p lim(n1/2d0 − n−1/2i−10 s0) = 0,

the tests are asymptotically equivalent. Note that the Wald and LM tests
are appealing because of their asymptotic equivalence to the LR test,
which is an optimal test in the Neyman-Pearson sense.
Discussion:

What are the computational requirements for these tests?

Which is best?
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Geometry
Likelihood Ratio test

For illustrative purposes, � is one-dimensional.

Here, we look at the change in the log likelihood function `(�) evaluated
at �̂ and �0, `(�̂) and `(�0). If the di¤erence between is too large, we
reject H0.
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Geometry
Wald Test

Here, we look at the deviation in parameter space.

The di¤erence between �̂ and �0 implies a larger di¤erence between `(�̂)
and `(�0) for the more curved log likelihood function. Evidence against
the hypothesized value �0 depends on the curvature of the log likelihood
function measured by ni(�̂).

Hence the test statistic is n(�̂ � �0)2i(�̂).

Professor N. M. Kiefer (Cornell University) Lecture 10: Asymptotic Testing 18 / 23



Professor N. M. Kiefer (Cornell University) Lecture 10: Asymptotic Testing 19 / 23



Geometry
Score test

Here, we look at the slope of the log likelihood function at the
hypothesized value of �0.

Since two log likelihood functions can have equal values of s0 with
di¤erent distances between �̂ and �0, s0 must be weighed by the change in
slope (i.e. curvature). A bigger change in slope implies less evidence
against the hypothesized value �0.

Hence the test statistic n�1s20 i
�1
0 .
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Why is the score test also called the Lagrange Multipler test?

The log likelihood function is maximzied subject to the restriction � = �0:

max
�
`(�)� �(� � �0):

This gives

�̂ = �0 and � = s(�0) =
@`

@�0
:
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Asymptotics testing in the Gaussian regression model

The parameters are � = (�0; �2)0

The log-likelihood function is

`(�) = �N
2

�
ln� + ln�2

�
� 1
2

NX
i=1

(Yi � X 0i �)2
�2

The log-likelihood contribution of the i�th observation is

`i (�) = �
1
2

�
ln� + ln�2 + (Yi � X 0i �)2=�2

�
The individual scores are given by the �rst partial derivatives

si (�) =
�
@`i (�)=@�
@`i (�)=@�

2

�
=

�
Xi (Yi � X 0i �)=�2

� 1
2�2
�
1� (Yi � X 0i �)2=�2

� �
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Asymptotics testing in the Gaussian regression model -
cont�d

The score is given by

s(�) =
nX
i=1

si (�) =
�

X 0(Y � X�)=�2
� 1
2�2
�
N � (Y � X�)0(Y � X�)=�2

� �
The information matrix is N � i(�) where i(�) is given by

�E
�
�XiX 0i =�2 �Xi"i=�4
�X 0i "i=�4 1

2�4 (1� 2"
2
i =�

2)

�
=

�
E
�
XiX 0i =�

2
�

0K
00K 1=2�4

�
;

which can be estimated by�
X 0X=Nb�2 0K

00K 1=2b�4
�
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The Wald test in regression models

If the restrictions R� = r are valid, then the quantity R b� � r should be
close to 0. The Wald test statistic is

W = (R b� � r)0 hVar(R b� � r)i�1 (R b� � r) d! �2(q)

where
Var(R b� � r) = �2R(X 0X )�1R 0

When �2 is substituted by its unbiased estimator in the unrestricted
model, W = qF , where F is the F-test statistic for H0 : R� = r (is
this consistent with the distributional results on W and F?).

The Wald test requires to estimate the unrestricted model. In some
cases, this is cumbersome.
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The score (LM) test in regression models

LM test are often written as NR2 in an auxiliary regression. Here we see
why. De�ne the matrix

S0 = [s0;1; :::s0;N ]0

where

s0;i =
@ ln p(Yi jXi ; �0)

@�

is the i-th individual score (i = 1; :::;N) under the null hypothesis. Than
we can write the LM test as

LM = 10NS0(S
0
0S0)

�1S 001N

where 1N = 1 2 RN , s0 = S 001N and i0 is estimated by S 00S0=N.
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LM Tests by Auxiliary Regressions

Consider the auxiliary regression model

1N = S0
 + errors

The OLS estimator of 
 and the �tted values of 1N are respectively
given by

b
 = (S 00S0)�1S 001N ; b1N = S0(S 00S0)�1S 001N
The LM test can be written as

LM = b10Nb1N = Nb10Nb1N10N1N
= NR2

where R2 is the determination coe¢ cient of the auxiliary regression.
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LM test for omitted variables

Suppose to run a LM test for H0 : �2 = 0 the unrestricted regression
model

Y = X1�1 + X2�2 + "

Consider the estimated restricted model

Y = X1b1 + e

The LM test can be written as NR2 in the auxiliary regression

e = X1
1 + X2
2 + errors
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The LR test in regression models

For the LR test, we estimate the model both under H0 and under H1.
The restricted model must be nested in the unrestricted one.

The LR test statistic is given by

LR = 2
�
`(b�; b�2)� `(b�0; b�20)� = N ln�b�20b�2

�
where b�0 and b�20 are, respectively, the ML estimates of � and �2 from
the restricted model.

Under H0, LR is asymptotically distributed as �2(q), where q is the
number of restrictions imposed to the restricted model

The test is insensitive to linear transformations of the models and of
the restrictions.
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