
LIFE INSURANCE
MATLAB/R EXERCISES

PROF. KATIA COLANERI

Task 1

The goal of this task is to compute the net single premium of a unit linked life pure endowment

contract.

We begin with the description of the model. We consider a financial market which, under the risk

neutral probability Q has the following dynamics:

• One riskless asset with price process dBt = Bt r dt and B0 = 1, where r is the risk free

interest rate;

• One risky asset with price process dSt = St r dt+ σSdW
S
t , and S0 = s where (W S

t)t≥0 is a

Brownian motion.

We complement the financial market with an insured life with remaining lifetime Tx. We also

assume that the mortality intensity is constant and equal to µx. Then tpx = e−µxt for all t.

We consider a unit linked pure endowment contract with maturity T and sum insured given by

ϕ(ST) = max(S0e
g1T , ST), where g1 is the minimum guaranteed rate.

The task consists of computing the net single premium of the contract Π0 = EJ
[
ϕ(ST)e

−rT e−µT
]
,

where J = Q× P̃.

To do that, we want to apply Montecarlo, according to the following steps:

(1) Generate N = 1000 trajectories of the stock price process from t = 0 to t = T , using Euler

discretization scheme

(2) For each trajectory compute the present value of the benefit given by ϕ(ST)e
−rT e−µT

(3) Average over all trajectory to compute the single premium Π0

Task 2

For this second task we consider a different financial market model and a different mortality

intensity. We assume that under the risk neutral probability Q the financial market has the

following dynamics:

• One riskless asset with price process dBt = Bt rt dt and B0 = 1

• rt is the short rate that has the dynamics: drt = a(r̄ − rt)dt + bdW r
t , and r0 ∈ R, where

(W r
t)t≥0 is a Brownian motion

Katia Colaneri, Department of Economics and Finance, University of Rome Tor Vergata, Via

Columbia 2, 00133 Rome, Italy.

E-mail address: katia.colaneri@uniroma2.it.
1

2 K. COLANERI

• One risky asset with price process dSt = St r dt+ σSdW
S
t , and S0 = s where (W S

t)t≥0 is a

Brownian motion.

We complement the financial market with an insured life with remaining lifetime Tx. We assume

that the mortality intensity is stochastic with dynamics: dµt = κ(µ̄− µt)dt+ η
√
µtdW

µ
t , and µ0 ∈

R+, where (W µ
t)t≥0 is a Brownian motion. Recall that in this case P̃(Tx > T) = EP̃

[
e−

∫ T
0 µudu

]
.

All Brownian motions are assumed to be independent.

We consider a unit linked pure endowment contract with maturity T and sum insured given by

ϕ(ST) = max(S0e
g1T , ST), where g1 is the minimum guaranteed rate.

The task consists of computing the net single premium of the contract Π0 = EJ
[
ϕ(ST)e

−
∫ T
0 rudue−

∫ T
0 µudu

]
,

where J = Q× P̃.

To do that, we want to apply Montecarlo, according to the following steps:

(1) Generate N = 1000 trajectories of the stock price process, the interest rate process, and

the mortality process the from t = 0 to t = T , using Euler discretisation scheme

(2) For each trajectory compute the present value of the benefit given by ϕ(ST)e
−

∫ T
0 rudue−

∫ T
0 µudu

(use an appropriate function to compute the integral, for example cumsum)

(3) Average over all trajectory to compute the single premium Π0

Parameters

Feel free to play with parameters: these are just suggested values.

(1) Parameters for the Stock price:

• S0 = 100

• σ = 0.1

(2) Parameters for the short rate:

• a = 2

• b = 0.05

• r̄ = 0.03

• r0 = 0.07

(3) Parameters for the mortality intensity:

• κ = 2

• η = 0.03

• ū = 0.001

• u0 = 0.004

(4) Other parameters

• T = 10

• g1 = 0.02

3

Appendix: Euler Discretisation scheme - Matlab version

Algorithm 1 N trajectories of Stock price, short rate and mortality intensity

Require: N = 10000 ▷ Number of trajectories

Require: M = 100 ▷ Number of time points in 1 year

dt = 1/M ▷ Fix a time step

rng(′default′) ▷ Set seed for reproducibility. In R you may fix set.seed(123)

dWS ← sqrt(dt) · randn(N,M · T) ▷ Generate a Brownian Motion for the stock

dWr ← sqrt(dt) · randn(N,M · T) ▷ Generate a Brownian Motion for the short rate

dWS ← sqrt(dt) · randn(N,M · T) ▷ Generate a Brownian Motion for the mortality intensity

S ← zeros(N,M · T + 1) ▷ initialize a matrix S

S(:, 1)← S0

r ← zeros(N,M · T + 1) ▷ initialize a matrix r

r(:, 1)← r0
u← zeros(N,M · T + 1) ▷ initialize a matrix u

u(:, 1)← u0

for i = 1 : N do

for j = 1 : M · T + 1 do

S(i, j + 1)← S(i, j) + S(i, j) · r(i, j) · dt+ S(i, j) · σ · dWS(i, j)

r(i, j + 1)← r(i, j) + a · (r̄ − r(i, j)) · dt+ b · dWr(i, j)

u(i, j + 1)← u(i, j) + κ(ū− u(i, j)) · dt+
√
u(i, j) · η · dWu(i, j)

end for

end for

discount← zeros(N,M · T + 1) ▷ initialize a parameter for the double discount

discount← exp(−cumsum(r(:, 1 : end) + u(:, 1 : end), 2) · dt) ▷ Compute the double discount

process

PV ← zeros(N, 1)

PV ← discount(:, end) ·max(S0 · eg1T , S(:, end)) ▷ Compute the present value of the benefit.

Note that this is product of vectors

Pi← mean(PV) ▷ Single premium

4 K. COLANERI

Appendix: Euler Discretisation scheme - R version

Algorithm 2 N trajectories of Stock price, short rate and mortality intensity

Require: N = 10000 ▷ Number of trajectories

Require: M = 100 ▷ Number of time points in 1 year

dt = 1/M ▷ Fix a time step

set.seed(123) ▷ Set seed for reproducibility

S ← matrix(0, nrow = N, ncol = M · T + 1) ▷ initialize a matrix S

S[, 1]← s0
r ← matrix(0, nrow = N, ncol = M · T + 1) ▷ initialize a matrix r

r[, 1]← r0
u← matrix(0, nrow = N, ncol = M · T + 1) ▷ initialize a matrix u

u[, 1]← u0

dWS < −matrix(rnorm(N ·M · T, 0, sqrt(dt)), nrow = N) ▷ Generate a Brownian Motion for

the stock

dWr < −matrix(rnorm(N ·M · T, 0, sqrt(dt)), nrow = N) ▷ Generate a Brownian Motion for

the short rate

dWu < −matrix(rnorm(N ·M · T, 0, sqrt(dt)), nrow = N) ▷ Generate a Brownian Motion for

the mortality intensity

for i in 1 : N do

for j in 1 : M · T + 1 do

S[i, j + 1]← S[i, j] + S[i, j · r[i, j] · dt+ S[i, j] · σ · dWS[i, j]

r[i, j + 1]← r[i, j] + a · [r̄ − r[i, j]] · dt+ b · dWr[i, j]

u[i, j + 1]← u[i, j] + κ[ū− u[i, j]] · dt+
√

u[i, j] · η · dWu[i, j]

end for

end for

discount← matrix(0, nrow = N, ncol = M · T + 1) ▷ initialize a parameter for the double

discount

discount← exp(−cumsum(r[, 1 : (M · T + 1)] + u[, 1 : (M · T + 1)]) · dt) ▷ Compute the

double discount process

PV ← matrix(0, nrow = N, ncol = 1)

PV ← discount[,M · T + 1] ·max(S0 · eg1T , S[,M · T + 1]) ▷ Compute the present value of the

benefit. Note that this is product of vectors

Pi← mean(PV) ▷ Single premium

	Task 1
	Task 2
	Parameters
	Appendix: Euler Discretisation scheme - Matlab version
	Appendix: Euler Discretisation scheme - R version

