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1 Introduction

The informational content of prices is a central issue in the analysis of equilibria of com-

petitive markets. In financial markets, in particular, asset prices are often believed to

be good predictors of the economic performance of the underlying fundamentals. Three

different mechanisms have been proposed as possible explanations for this remarkable

property. The rational expectation and the learning-from-price literatures argue that

equilibrium prices are accurate because they reveal and aggregate the information of

all market participants. The Market Selection Hypothesis, MSH, proposes instead that

prices become accurate because they eventually reflect only the beliefs of the most accu-

rate agent. The Wisdom of the Crowd, WOC, suggests that market prices are accurate

because individual, opposite biases are averaged out by the price formation mechanism.

Although these theories aim to explain the same phenomenon, they rest on different

and somehow conflicting hypotheses. In the learning-from-price literature, all agents are

assumed to agree on the way to interpret information. In equilibrium, when all private

information gets revealed, all agents must hold the same belief because they cannot

“agree to disagree.” Therefore, the MSH and the WOC arguments are void. By contrast,

in the MSH and WOC literatures, agents can disagree on how to interpret information

about fundamentals. However, existing models of market selection are incompatible

with the WOC because they do not allow for belief heterogeneity in the long run: by

selecting the most accurate agent, the market destroys all accuracy gains that could

be achieved by balancing out agents’ opposite biases. Focusing on static settings, the

WOC literature struggles to justify the assumption that the consumption-share/belief

distribution is such that the opposite biases of agents cancel out.

In this paper, we bring together the contributions of these three branches of litera-

ture and provide conditions for the WOC to occur in dynamic economies. We extend

the general equilibrium model of market selection of Sandroni (2000) and Blume and

Easley (2006) by allowing the beliefs of some agents to depend on an endogenous market

consensus, but not in a fully rational way. When (some) agent beliefs follow our rule,

the market selects against inaccurate agents but only when their beliefs cannot be used
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to increase the consensus accuracy. And the WOC occurs in equilibrium, irrespective of

the initial consumption-share/beliefs distribution because selection forces endogenously

determine a consumption-share dynamics that makes the market consensus more accu-

rate than the most accurate agent in isolation. Furthermore, when some agents have

opposite bias, the consensus becomes as accurate as the truth in the limit of these agents

relying only on the consensus.

Specifically, we assume that (some) agent beliefs for next-period states are formed

by giving constant weight to two different models. The first model is endogenously gen-

erated by the market and represents the market consensus. The second model, dogmatic

probabilities, is agent-specific and represents each agent’s subjective probabilistic view

of the world. We interpret this rule as depicting the beliefs of an agent who tries to find

a compromise between his subjective view about fundamentals and the possibility that

markets might be accurate after all.1

The dynamics of our economy depends crucially on the definition of the consensus.

We start our analysis by adopting a notion of consensus, market probabilities, that is

informationally taxing to calculate but serves as a theoretical benchmark because it

makes the dynamics of beliefs and the occurrence of the WOC qualitatively independent

of risk attitudes and the aggregate endowment process. Next, we focus on the case

in which agents use consensuses that are easy to calculate. We either assume that

the aggregate endowment is constant and agents use the risk-neutral probabilities for

consensus or we allow for changes in the aggregate endowment but require that agents

have common CRRA utility and use a modification of the risk-neutral probabilities that

corrects for aggregate risk bias. In this setting, we characterize how risk attitudes affect

agents survival and the WOC. Ceteris paribus, economies with more risk-averse agents

generate more accurate risk-neutral probabilities than economies with less risk-averse

agents and the WOC occurs under weaker conditions.

1This rule of thumb, first introduced by Manski (2006) in the context of static prediction markets,
captures the idea that agents’ opinions might depend on a market consensus in a way that is not fully
rational. Full rationality would require each agent to have a correct model of the world and of how other
agents process information — a situation which never occurs in practice. On the contrary, agents in our
model settle on a second best: they naively incorporate other agents’ opinions by anchoring their beliefs
to the market consensus.
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The following describes the structure of the paper and our main findings.

First, in Section 2, we introduce the model of the economy, agent beliefs, the market

consensuses, beliefs accuracy, and we define the WOC as the situation in which the

consensus is more accurate than all dogmatic probabilities.

Second, in Section 3, we focus on the case in which the consensus is the market prob-

ability. We show that the WOC emerges when at least two agents with opposite bias

sufficiently weigh the consensus in forming their beliefs. In this case, the equilibrium path

exhibits long-run heterogeneity, market probabilities never settle down, and the selec-

tion forces endogenously generate a consumption-share/belief dynamic that determines

the WOC. Moreover, we demonstrate that market accuracy is a virtuous self-fulfilling

prophecy. If some agents with opposite bias are almost certain that the consensus is

correct, the consensus is indeed almost correct. Selection forces endogenously determine

a consumption share dynamic such that, in equilibrium, the consensus almost coincides

with the true probability.

Last, in Section 4, we extend our analysis to the case in which agents use the risk-

neutral probability for consensus and characterize how risk attitudes affect the risk-

neutral consensus accuracy and the beliefs dynamic. We provide sufficient conditions

for the occurrence of the WOC and for the self-fulfilling property of the consensus ac-

curacy to occur that take agents’ risk attitudes into consideration. Ceteris paribus,

economies with more risk-averse agents generate more accurate risk-neutral probabil-

ities than economies with less risk-averse agents and the WOC occurs under weaker

conditions.

Throughout the paper we use simulations for illustrative purposes; their length varies

to accommodate the different convergence rates; to ease comparison, we use the same

typical path for all simulations unless differently specified. Proofs are in Appendices.

1.1 Related literature

A very influential stream of literature argues that asset prices are accurate because

financial markets are an efficient aggregator of private information (Grossman, 1976,

1978; Radner, 1979; Grossman and Stiglitz, 1980). Closely related to the literature
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on information transmission (Aumann, 1976; Geanakoplos and Polemarchakis, 1982),

this literature assumes that agents disagree solely due to differences in their private

information and provides conditions under which the price formation mechanism reveals

all private information to all agents in the market. Because all agents agree on the way

to interpret information, and prices instantaneously reveal all available information, in

equilibrium all agents must hold the same beliefs and no WOC or selection based on

belief heterogeneity can occur. Prices are accurate because they reflect and aggregate

all relevant information. It is hard to imagine, however, that most agents active in

financial markets can agree on what information is relevant and how to interpret it —

“Ordinary investors have no model or at best a very incomplete model of the behavior

of prices, dividends, or earnings of speculative assets” — Shiller (1984). In fact, there

is overwhelming evidence documenting the inability of agents to process information

“rationally,” even in simple experimental settings (Kahneman, 2011), and that agents

who use well established models might be acting irrationally by failing to account for

transaction costs (Barber and Odean, 1999) or estimation errors (DeMiguel et al., 2009).

An alternative explanation for market accuracy, the MSH, relies on the evolutionary

argument that markets become accurate because they select for accurate agents (Alchian,

1950; Friedman, 1953). According to the MSH, agents with inaccurate beliefs lose their

wealth to accurate agents and, eventually, equilibrium prices are accurate because they

reflect only the beliefs of the most accurate agent in the economy (Sandroni, 2000). In

these models the market identifies the best model but does not work as an aggregator.

By selecting for a unique most accurate agent, the market “destroys” all the accuracy

gains that could be achieved by pooling the diverse opinions of the agents who vanish

and no WOC can occur. Accordingly, market prices can only be as accurate as the

most accurate agent (Blume and Easley, 2009), even in the knife-edge cases in which

there are multiple survivors (Jouini and Napp, 2011; Massari, 2013). In addition to our

model, others in the market selection literature allow for long-run survival of agents

with heterogeneous beliefs, but do not explicitely analyze the accuracy of the resulting

prices. Survival of agents with heterogeneous beliefs occurs in economies with incomplete

markets (Beker and Chattopadhyay, 2010; Cogley et al., 2013; Cao, 2017), ambiguous
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averse agents (Guerdjikova and Sciubba, 2015), exogenous saving rules (Bottazzi and

Dindo, 2014; Bottazzi et al., 2017), and recursive preferences (Borovička, 2015; Dindo,

2015). A model that merges elements of rational learning from prices and selection is

Mailath and Sandroni (2003). This model does not endogenously generate WOC because

long-run heterogeneity is a consequence of the presence of noise traders.

Finally, the WOC argument (initially proposed by Galton, 1907, and more recently

popularized by Surowiecki, 2005), hypothesizes that asset prices are accurate because the

opposite, idiosyncratic errors of individual agents are averaged out by the price formation

mechanism. The WOC hypothesis has inspired a growing interest in prediction markets

(Wolfers and Zitzewitz, 2004; Arrow et al., 2008) and social trading platforms (Chen

et al., 2014; Pelster et al., 2017). Within the prediction markets literature, most of the

attention has been focused on static settings. However, there is no solid foundation

to justify the WOC argument. WOC can occur only if the consumption-shares/beliefs

distribution is such that individual mistakes cancel out. The main limitation of WOC is

the lack of theoretical arguments supporting this assumption. Further, there is evidence

that even if agents were rationally processing private unbiased signals, the aggregate

beliefs might be biased nonetheless (Ali, 1977; Manski, 2006; Ottaviani and Sørensen,

2014). Works that also combine dynamic elements such as ours in prediction markets are

Kets et al. (2014) and Bottazzi and Giachini (2016). The WOC has also been investigated

within other contexts. In the literature of social learning in networks, Golub and Jackson

(2010) and Jadbabaie et al. (2012) provide conditions under which agents imitating each

other and naively updating their beliefs — using a rule similar to ours — can achieve

the same outcome as rational learning models. In the literature on collective problem-

solving, Hong and Page (2004) explore the trade-off between opinion diversity and the

difficulty in identifying optimal solutions (see also Page, 2007).

Here, we propose a model that combines these points of views and offers a general

framework which overcomes their individual shortcomings.
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2 The model

We study a standard dynamic stochastic exchange economy with complete markets where

agents have heterogeneous beliefs about the realizations of states of nature. Assuming

complete markets implies that agents can use contracts to exchange contingent com-

modities for any date and any state. Since agents have heterogeneous beliefs but are

otherwise identical, they assign different evaluations for contingent commodities and use

the available contracts to trade on such differences. Market clearing determines equilib-

rium prices and allocations. At equilibrium, the agent who assigns a higher probability

to a certain event takes a long position (in excess of his equilibrium consumption if beliefs

were homogeneous) in the contract paying a unit of the consumption good in that event.

The agent with a lower probability supplies the contract. We are interested in studying

the resulting consumption-share and state-price dynamics and in characterizing their

long-run properties. The central question is whether market forces can endogenously

generate a measure of consensus which is more accurate than all agents in isolation.

Time is discrete, indexed by t, and begins at date t = 0. In each period t ≥ 1, the

economy can be in one of S mutually exclusive states, S. The set of partial histories until

t is the Cartesian product Σt = ×tS and the set of all paths is Σ := ×∞S. σ = (σ1, ...)

is a representative path, σt = (σ1, ..., σt) is a partial history until period t, and Ft is the

σ-algebra generated by the cylinders with base σt. By construction (Ft)
∞
t=0 is a filtration

and F is the σ-algebra generated by their union.

We assume that states of nature are i.i.d. with Pt = P ∈ ∆|S| for all t ≥ 1. With

an abuse of notation, P also denote the true measure on (Σ,F). For any probability

measure ρ on (Σ,F), ρ(σt) := ρ({σ1 × ...× σt × S × S × ...}) is the marginal probability

of the partial history σt while ρt := ρ(σt|σt−1) = ρ(σt)
ρ(σt−1)

is the conditional probability of

the generic state σt given σt−1, so that ρ(σt) =
∏t
τ=1 ρ(στ |στ−1).

Next, we introduce a number of economic variables with time index t. All these

variables are adapted to the information filtration (Ft)
∞
t=0.

The economy contains a finite set of agents I. For all paths σ, each agent i ∈ I is

endowed with a stream of the consumption good, (eit(σ))∞t=0. We take the consumption
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good in t = 0 as the numéraire of the economy. Each agent’s objective is to maximize

the stream of discounted expected utility he gets from consumption. Expectations are

computed according to agent beliefs pi, a measure on (Σ,F). Beliefs are heterogeneous

and agents agree to disagree. Naming q(σt) the date t = 0 price of the asset that delivers

one unit of consumption in event σt and none otherwise, agent i maximization reads:

max
(cit(σ))∞t=0

Epi

[ ∞∑
t=0

βtui(cit(σ))

]
s.t.

∑
t≥0

∑
σt∈Σt

q(σt)
(
cit(σ)− eit(σ)

)
≤ 0.

A competitive equilibrium is a sequence of prices and, for each agent, a consumption

plan that is preference maximal on the budget set, and such that markets clear in every

period: ∀(t, σ),
∑

i∈I e
i
t(σ) =

∑
i∈I c

i
t(σ). Assumptions A1-A4 below are standard in the

market selection literature: A1-A3 ensure the existence of a competitive equilibrium,

while A4 guarantees that the market selects for the most accurate agent(s) rather than

for those that save the most. In Appendix C we give the formal definition of the compet-

itive equilibrium when agents’ beliefs depend on the endogenous consensuses and prove

its existence.

A1 The payoff functions ui : R+ → [−∞,+∞] are C1, strictly concave, increasing, and

satisfy the Inada condition at 0 — that is, ui(c)′ →∞ as c↘ 0.

A2 The aggregate endowment is uniformly bounded from above and away from 0:

∞ > F > sup
t,σ

∑
i∈I

eit(σ) > inf
t,σ

∑
i∈I

eit(σ) > f > 0.

A3 (i) For all agents i ∈ I and for all (t, σ), pi(σt) > 0⇔ P (σt) > 0.

(ii)∃ε > 0 such that for all agents i ∈ I and for all (t, σ), pi(σt|σt−1) > ε.2

A4 All agents have common discount factor: ∀i ∈ I, βi = β ∈ (0, 1).

2The way we define pi (Definition 4) ensures that A3 is satisfied even if pi are endogenous (Lem. 4).
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2.1 Agents accuracy and survival

In this section, we remind the reader of standard definitions and results from the market

selection literature. The asymptotic fate of an agent is characterized by his consumption-

shares as follows.

Definition 1. Agent i vanishes if lim
t→∞

cit(σ) = 0 P -a.s., he survives if

lim sup
t→∞

cit(σ) > 0 P -a.s., he dominates if lim
t→∞

cit(σ)∑
i∈I c

i
t(σ)

= 1 P -a.s..

Since it became the standard after Blume and Easley (1992), we rank agents’ accuracy

according to their average (conditional) relative entropies (Kullback-Leibler divergences).

Definition 2. The average relative entropy from pi to the true probability P is

d̄(P ||pi) := lim
t→∞

1

t

t∑
τ=1

d(P ||piτ ),

where, for all τ , d(P ||piτ ) := EP

[
ln P (στ )

pi(στ |στ−1)

]
.

The average relative entropy is uniquely minimized at pi = P, strictly convex, and

d(P ||π) = d̄(P ||π) P -a.s. whenever P and π are i.i.d. measures. We say that

Definition 3. Agent i is more accurate than agent j if d̄(P ||pi) < d̄(P ||pj), P -a.s..

Agent i is as accurate as agent j if d̄(P ||pi) = d̄(P ||pj), P -a.s..

This notion of accuracy is commonly adopted in the market selection literature be-

cause of its straightforward implications for agents survival. Under A1-A4, the pairwise

comparison of agents accuracies delivers a sufficient condition for an agent to vanish.

Proposition 1. (Sandroni, 2000). Under A1-A4, agent i vanishes if there exists an

agent j ∈ I who is more accurate:

d̄(P ||pj) < d̄(P ||pi) P -a.s.⇒ Agent i vanishes.

This fundamental result, together with known results in probability theory, allows to

easily characterize survival of agents with exogenous beliefs. The difficulty we have to

overcome is to calculate the accuracy of agents whose beliefs depend on an endogenous

measure of consensus.
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2.2 Agents beliefs

We assume that beliefs for next-period states of the agents in our economy are formed

by giving constant weights to two different models. The first model pC is endogenous,

and it represents the market consensus. The second model, dogmatic probabilities (πi),

is exogenous and agent specific. When an agent gives zero weight to the consensus, his

beliefs are exogenous and we make no assumption about them — aside from A3 and the

basic requirement that d̄(P ||·) exists. Otherwise, we assume that dogmatic probabilities

are i.i.d.3 and in the strict interior of the simplex, which ensures that A3 holds (Lemma

4 in Appendix).

Definition 4. For all (t, σ), agent i beliefs are given by

pi(σt|σt−1) = (1− αi)pC(σt|σt−1) + αiπi(σt), (1)

where αi ∈ (0, 1] and for αi ∈ (0, 1), πi is strictly positive measure on (S, 2S).

This rule describes the attitude of an agent who partially believes in the WOC. The

parameter αi determines how much agent i believes in the accuracy of the consensus.

Having αi = 1 represents the extreme scenario in which agent i ignores the consensus.

This is the standard case in the market selection literature, where it is typically assumed

that agent beliefs are independent of each other and of equilibrium quantities. Whereas

αi = 0 represents the case in which agent i does not give any weight to his dogmatic

probabilities because he is certain that markets are accurate — with a similar attitude

to the economist who finds a $20 bill lying on the ground and refuses to believe it. The

intermediate cases of αi ∈ (0, 1) are those that generate the most interesting results.4

Definition 4 describes a mental attitude that is consistent with many known biases

including anchoring (Shiller, 1999) and herding (Lakonishok et al., 1992). Furthermore,

3All results generalize verbatim to the case in which the πi probabilities are derived via Bayes rule
from an i.i.d. prior support. Because the Bayesian posterior generically converges to a unique i.i.d.
model (the model with the lowest K-L divergence to the truth, Berk, 1966) and our measure of accuracy
(Definition 3) is an average measure, these Bayesian agents can be treated WLOG as agents with i.i.d.
beliefs in terms of survival and accuracy.

4We rule out αi = 0 because αi = 0 for all i ∈ I leads to an indeterminate equilibrium.
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the beliefs formation rule of Definition 4 has been used to discuss the effect of agents’ par-

tial learning from equilibrium prices in the context of static prediction markets, (Manski,

2006); a similar rule is used in the learning literature on networks by Jadbabaie et al.

(2012); and beliefs (1) determine a portfolio that (assuming log utility) coincides with

the Fractional-Kelly rule proposed by MacLean et al. (2011) in the portfolio theory

literature.

2.3 A definition of the Wisdom of the Crowd

We say that the WOCC occurs if the market consensus, pC , is more accurate than the

beliefs of the most accurate agent in isolation. Two probabilities play a special role

in our definition: the Best Individual Probability (πBIP ), which is the most accurate

dogmatic probability, and the Best Collective Probability (πBCP ), which is the most

accurate combination of agents’ dogmatic probabilities. Moreover, we say that dogmatic

probabilities are diverse when the Best Collective Probability differs from the Best In-

dividual Probability, that is, if it is possible to combine dogmatic probabilities into a

prediction that is more accurate than that of all dogmatic probabilities.

Definition 5. Given a set of dogmatic probabilities {π1, ...πI}:

• the Best Individual Probability is: πBIP = argmin
π∈{π1,...,πI}

d̄(P ||π);

• the Best Collective Probability is: πBCP = argmin
p∈Conv(π1,...,πI)

d̄(P ||p);

• Agents beliefs are diverse if it is possible to achieve accuracy gains by balancing the

different opinions of market participants: πBIP 6= πBCP .

Given our definitions of agent beliefs and consensuses (below), when an agent is

alone in the market his beliefs, his dogmatic probabilities and the consensus coincide

(pi = πi = pC). Therefore, we can define the WOC as follows.

Definition 6. The WOCC occurs if pC is more accurate than πBIP :

d̄(P ||pC) < d̄(P ||πBIP ), P -a.s..
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To gain intuition, consider a two-state, S = {u, d}, two-agent, I = {1, 2}, economy.

The true probability of state u is P (u) = .5. Agent 1 is pessimistic about u, while agent

2 is optimistic. Their dogmatic probabilities are π1(u) = .4 and π2(u) = .7, respectively.

Clearly, agent 1 has the most accurate dogmatic probabilities, thus πBIP = π1 = .4,

while the most accurate way to combine the dogmatic probabilities of the two agents

is 2
3π

1(u) + 1
3π

2(u) = pBCP = P . The WOC occurs if market probabilities are more

accurate than the dogmatic probability of agent 1 (and thus 2) — in other words, if the

market consensus is more accurate than all market participants in isolation.

2.4 Market consensuses

A crucial point of our analysis is the definition of the market consensus pC . We conduct

our analysis using different measures of consensus. The rationale behind these measures

is that the consensus obtained in an economy with a unique agent must coincide with

the beliefs of the agent. All the measures of consensus we propose coincide in economies

with constant aggregate endowment in which all agents have log utility. However, under

more general assumptions they are not the same because they are differently affected by

agent risk attitudes and fluctuations of the aggregate endowment.

The first measure of consensus we propose is market probabilities: pM .

Definition 7. For all (t, σ), market probabilities are

pM (σt|σt−1) =
∑
i∈I

pi(σt|σt−1)
c̄it−1∑
j∈I c̄

j
t−1

, (2)

where c̄it = 1
ui(cit(σ))′

.

If all agents have log utility and the aggregate endowment is constant, pM coincides

with the risk-neutral probabilities and can be calculated from equilibrium prices alone.

In these economies Rubinstein (1974) shows that a representative agent exists and that

his unconditional beliefs are
∑

i∈I p
i(σt)

ci0∑
j∈I c

j
0

. Lemma 1 shows that pM makes the

analysis of general economies qualitatively equivalent to that of a log economy with no

aggregate risk, albeit a distortion of the initial weights.
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Lemma 1. Under A1-A4, on a competitive equilibrium for all (t, σ) it holds

pM (σt) =
∑
i∈I

pi(σt)
c̄i0∑
j∈I c̄

j
0

.

For the general case, the calculation of pM requires knowledge of the preferences and

the consumption-shares of all agents. While it is unlikely that an agent in the market

would have this degree of information, we use market probability to set a benchmark for

the results that follow.

Next, we propose measures of consensus that can be easily calculated from equilib-

rium prices. When the aggregate endowment is constant, we study the occurrence of the

WOC when some of the agents use the risk-neutral probabilities for consensus.

Definition 8. For all (t, σ), the risk-neutral consensus is

pRN (σt|σt−1) =
q(σt|σt−1)∑
σ̃t
q(σ̃t|σt−1)

, (3)

where q(σt|σt−1) := q(σt)
q(σt−1)

is the equilibrium price of a claim that pays a unit of con-

sumption at period/event σt, in terms of consumption at period/event σt−1.

The analysis of economies in which agents rely on the risk-neutral consensus is

more complex than it is for agents using pM because agents’ risk attitudes do affects

pRN accuracy and thus agents accuracy and survival. We show that ceteris paribus,

economies with more risk-averse agents generate more accurate risk-neutral probabili-

ties than economies with less risk-averse agents and the WOCRN occurs under weaker

conditions. Lemma 2 express the equilibrium value of pRNt in a way that facilitates its

comparison to pMt .

Lemma 2. Under A1-A4, on a competitive equilibrium for all (t, σ) it holds

pRN (σt|σt−1) ∝
∑
i∈I

pi(σt|σt−1)
c̄it−1∑
j∈I c̄

j
t

.

The difference between pM and pRN becomes apparent comparing the weights given
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to agent beliefs in Definitions 7 with those in Lemma 2 (
c̄it−1∑
j∈I c̄

j
t−1

6= c̄it−1∑
j∈I c̄

j
t

). The first

one is state independent because the ratio involves the marginal utility of consumptions

in the same period. The second one is state dependent because the ratio compares

marginal utilities in two different periods. Moreover, only pRN requires to be normalized.

In an economy with a unique agent and constant aggregate endowment for all

(t, σ), c̄t = c̄t−1 and both measures satisfy our desiderata to be an unbiased estima-

tor of the beliefs of the agent . However, pRN fails to satisfy this property in economies

where the aggregate endowment varies because there are some (t, σ) such that c̄t 6= c̄t−1.

The last measure of market consensus we study can be calculated from prices and

aggregate endowment alone and corrects for this bias in economies in which all agents

have common CRRA utility function u(c) = c1−γ−1
1−γ — which can be interpreted as

representing the industry standard.

Definition 9. For all (t, σ), the γ-adjusted risk-neutral consensus is

pRNγ (σt|σt−1) =
q(σt|σt−1)et(σ)γ∑
σ̃t
q(σ̃t|σt−1)et(σ̃)γ

(4)

where et(σ) =
∑

i∈I e
i
t(σ) is the aggregate endowment.

Lemma 3 express the equilibrium value of pRNγ in economies in which all agents have

identical CRRA utilities in a way that facilitates its comparison with pRN . It shows that

pRNγ is immune to biases due to fluctuations of the aggregate endowment because it is a

consumption-share version of the pRN consensus.

Lemma 3. Under A1-A4, if all agents have common CRRA utility with parameter

γ ∈ (0,∞), on a competitive equilibrium for all (t, σ) it holds that

pRNγ (σt|σt−1) ∝
∑
i∈I

pi(σt|σt−1)
φit−1(σ)

γ∑
j∈I φ

j
t (σ)

γ ;

where φit(σ) =
cit(σ)∑
j∈I c

j
t (σ)

.
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3 Main results related to pM

In this section, we characterize the accuracy of pM , we provide necessary conditions

and sufficient conditions for the WOCM to occur and we demonstrate its self-fulfilling

property. If a diverse group of agents believes in the accuracy of pM , market probabilities

are indeed accurate.

3.1 Accuracy of pM

The main advantage of using pM for consensus, is that risk attitudes do not have a

qualitative effect on its accuracy. Proposition 2 characterizes the relative accuracy of

pM with respect to that of agents without solving for the equilibrium and independently

of how agents form their beliefs.

Proposition 2. Under A1-A4,

(a) no agent can be more accurate than pM :

∀i ∈ I, d̄(P ||pi) ≥ d̄(P ||pM ), P -a.s.;

(b) agent i survives only if he is as accurate as pM :

Agent i survives⇒ d̄(P ||pi) = d̄(P ||pM ), P -a.s..

Proof. See Appendix A.

Proposition 2 simplifies our analysis because standard techniques to approximate

market probabilities and agent beliefs accuracy cannot be used when agent beliefs depend

on the endogenous consensus. All the results of this section are obtained by combining

Propositions 1 and 2, and by taking advantage of the convexity of the relative entropy.

Market probabilities provide a fundamental hedging benefit to the agents. By believ-

ing in pM an agent weakly improves its accuracy irrespectively of his dogmatic beliefs,

of the beliefs of the other agents, and of the true probability.

Proposition 3. Under A1-A4, if αi ∈ (0, 1) and i uses pM for consensus,

d̄(P ||pi) ≤ d̄(P ||πi) P -a.s.;
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with strict inequality if pMt 6= πi a positive fraction of periods.

Proof. See Appendix A.

If πi is the true model — or is the probability obtained by Bayes rule when the prior

support is correctly specified —, agent i’s average accuracy is not diminished by mixing

with market probabilities because market probability converges to πi exponentially fast

since he dominates. Otherwise, if agent i’s subjective probabilistic model of the world

is incorrect — or if he cannot learn it because its prior support does not contain the

true model —, mixing with the consensus improves agent i’s accuracy whenever the

consensus is more accurate than his dogmatic beliefs.

Furthermore, pM is at least as accurate as πBIP and at most as accurate as πBCP ,

provided that all agents with αi ∈ (0, 1) use pM for consensus.

Corollary 1. Under A1-A4, if all agents with αi ∈ (0, 1) use pM for consensus, pM is

at least as accurate as πBIP and at most as accurate as πBCP :

d̄(P ||πBCP ) ≤ d̄(P ||pM ) ≤ d̄(P ||πBIP ), P -a.s..

Proof. d̄(P ||pM ) ≤By Prop.2 d̄(P ||pBIP ) ≤By Prop.3 d̄(P ||πBIP ).

d̄(P ||pM ) ≥ d̄(P ||πBCP ) =P -a.s. min
p∈Conv(π1,...,πI )

d(P ||p) because ∀(t, σ), pMt ∈By Lem.5 Conv(π1, ..., πI).

Corollary 1 is proven showing that in the long-run either the agent with the most

accurate dogmatic probabilities dominates, and market probabilities are as accurate as

πBIP , or there is long-run heterogeneity, and market probabilities are a convex combi-

nation of the surviving agents’ dogmatic probabilities — thus, at most as accurate as

πBCP by definition.

3.2 Necessary conditions for WOCM

When the reference consensus is pM , we identify two necessary conditions for WOCM .

First, it must be possible to achieve accuracy gains by balancing the different opinions

of market participants (diversity). Second, at least some of the agents must believe in
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market accuracy — which is necessary for long-run heterogeneity. Only under these

conditions selection forces can induce a non-degenerate consumption-share distribution

that makes market probabilities more accurate than the most accurate agent in isolation.

Proposition 4. Under A1-A4, if all agents use pM for consensus, WOCM can occur

only if beliefs are diverse and the beliefs of at least one agent depend on pM .

Proof. See Appendix A.

The first requirement (diversity) tells us that the WOCM cannot occur if all agents

share the same bias. For example, in an economy with two states in which all dogmatic

probabilities overweight the same state, no WOCM can occur because the most accurate

combination of agent beliefs is the one obtained by giving all wealth to the least biased

among the agents (BIP). Furthermore, this condition tells us that the WOCM cannot

occur if there is an agent that knows (or eventually learns) the truth because P =

πBCP = πBIP .

The second requirement (relevance of the market consensus) confirms the standard

result in the selection literature that WOC cannot occur when agents’ beliefs do not

depend on endogenous quantities. For example, suppose the market has an optimistic

and a pessimistic agent. If the pessimistic agent is less accurate than the optimist, then

the pessimist vanishes, and market probabilities become optimistic. Clearly, this is not

the best way to make use of agent opinions. A better way would be to redistribute

consumption-shares in such a way that market probabilities become accurate by balanc-

ing the opposite biases of the two agents. However, this is impossible when agent beliefs

are independent of each other because only the most accurate agent survives (Blume

and Easley, 2009).

3.3 Sufficient conditions for the WOCM

While the market might be populated by many agents with arbitrary beliefs and prefer-

ences, the next condition shows that to guarantee that the WOCM occurs it suffices to

verify a condition on only two agents. If agent BIP mixes with pM and if at the prices
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set by BIP there is an agent with αi ∈ (0, 1) that is more accurate than BIP, then at

least two agents survive and WOCM occurs.

Proposition 5. Under A1-A4,WOCM occurs and at least two agents survive if agent

BIP relies on pM with αBIP ∈ (0, 1) and

∃i ∈ I : d̄(P ||(1− αi)πBIP + αiπi) < d̄(P ||πBIP ) (5)

Proof. See Appendix A.

For intuition, consider a log economy with two states, S = {u, d}, and two agents

I = {BIP, 2}. The true probability of state u is P (u) = .5. Agent BIP is pessimistic

about u, while agent 2 is optimistic. Their dogmatic probabilities are πBIP (u) = .4 and

π2(u) = .7, respectively. Because agent beliefs are diverse (πBIP 6= πBCP = P ) it is

possible to achieve accuracy gains by mixing their opinions.

Figure 1 [top] shows that long-run heterogeneity and WOCM occurs if both agents

give enough weight to market probabilities. With αBIP=α2=.2, our sufficient condition

is satisfied and we have long-run heterogeneity and WOCM because the dependency

of agent beliefs on market probabilities makes it impossible for any agent to dominate.

When agent BIP (2) consumption-shares become large, his dogmatic probabilities have a

large impact on market probabilities, making his beliefs less accurate than those of agent

2 (BIP ). Thus, consumption-shares never find a resting point, market probabilities

remain close to P and are more accurate than πBIP . Formally, the consumption-shares

are mean-reverting processes around the value φ̄BIP that determines a market probability

p̄M which makes agents BIP and 2 equally accurate, i.e. φBIPt R φ̄BIP ⇔ d(P ||pBIPt ) R

d(P ||p2
t ). The WOCM occurs because p̄M is more accurate than πBIP and π2, and market

probabilities stay close to p̄M a large enough number of periods. Figure 1 [mid] shows

that the WOCM does not occur if agent 2 does not give enough weight to pM because

only agent BIP survives.5 Last, Figure 1 [bottom] shows that long-run heterogeneity

5With α2 = .9, agent 2 vanishes because he is less accurate than agent BIP for every consumption-
share distribution: ∀cBIPt , d(P ||p2

t ) > d(P ||πBIPt ). This can be verified by noticing that agent 2’s beliefs
are less accurate than agent BIP ’s even when agent BIP dominates and sets equilibrium prices equal to
his dogmatic probabilities πBIP : p2|pM=πBIP = .1(.4)+ .9(.7) = .67⇒ d(P ||p2|pM=πBIP ) > d(P ||πBIP ).
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is not a sufficient condition for WOCM . If agent BIP does not rely on the consensus

(αBIP = 1), we do have long-run heterogeneity, but no WOCM because agent BIP

survives and, by Proposition 2, pM is as accurate as every agent that survive.
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Figure 1: Consumption-shares [left] and market probability [right] dynamics in two log-economies
with identical dogmatic beliefs [πBIP (u), π2(u)] = [.4, .7] and different mixing coefficients. [top]: with
[αBIP , α2] = [.2, .2], condition (5) holds and the WOCM occurs. Consumption-shares never find a resting
point, and market probabilities are more accurate than πBIP . [mid]: with [αBIP , α2] = [.2, .9], agent
2 doesn’t give enough weight to pM to survive. The WOCM does not occur, agent BIP dominates,
and market probabilities are as accurate as πBIP . [bottom]: with [αBIP , α2] = [1, .2], there is long-run
heterogeneity because agent 2 gives enough weight to pM for survival, but the WOCM does not occur.
pM is a mean-reverting process with the same accuracy of πBIP because agent BIP survives and his
beliefs are independent of pM .
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3.4 Accurate markets: A self-fulfilling prophecy (pM)

Here we demonstrate that if there is a group of agents in the economy with beliefs around

the truth that are (almost) sure that market probabilities are accurate, then market

probabilities are indeed (almost) accurate, irrespective of the beliefs of the other agents.

By strongly relying on market probabilities, agents generate a virtuous interaction that

makes both their beliefs and the market more accurate. In equilibrium, the selection

forces endogenously generate a consumption-share/beliefs distribution which determine

market probabilities that are (almost) correct even if no agent knows the truth.

Theorem 1. Let (Eα) be a family of economies that satisfies A1-A4 with a subset of

agents Î that relies on pM with αi ∈ (0, ᾱ] and such that P ∈ Conv(Î). Name each

economy market probabilities process (pMt,ᾱ)∞t=0, then:

lim
ᾱ→0

d̄(P ||pMᾱ ) = 0, P -a.s..

Proof. See Appendix A.

Theorem 1 is proven by leveraging the equilibrium condition of Proposition 2, which

allows us to look directly at the long run equilibrium outcomes, rather than character-

izing the stochastic equilibrium dynamics of the economy. Its validity does not require

any assumption on the beliefs of agents in I \ Î beside A3.

The intuition regarding the equilibrium dynamics goes as follows.6 The pM process

is characterized by three parameters which depend on ᾱ. These are its drift, its variance,

and the threshold, p̂M , that determine a drift change. The effect of ᾱ on p̂M is easy

to obtain: p̂M →ᾱ→0 P . The theorem holds because for every interval around p̂M , ᾱ

can be chosen small enough to ensure that the market belief process spends most of its

periods in that interval. The difficulty in proving the result is that a lower ᾱ implies a

lower variance, but also a weaker mean-reverting drift of the market probability process

— the selection forces are weaker because agent beliefs become more similar. Thus,

we have to determine which effect dominates when ᾱ is small. Our result implies that

6The proof of Theorem 3 formalizes this intuition verbatim, under stronger assumptions. The proof
of Theorem 1 is shorter and more general, but does not give intuition about the equilibrium dynamics.
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Figure 2: Consumption-share dynamics [left] and pM frequencies [right] in four log-economies with
true probability P (u) = .5, two agents with dogmatic probabilities πBIP (u) = .4 and π2(u) = .7,
αBIP = α2 = ᾱ and four different values of ᾱ = [1, .2, .05, .001]. The figure shows that a smaller ᾱ
determines frequencies of pM that are more concentrated around the truth.

the accuracy gain for a more accurate mean-reverting point and a lower variance of the

market probability process more than compensates for the accuracy loss due to weaker

mean-reverting forces. Although market probabilities might take a long time to reach

p̂M when ᾱ is small, a low ᾱ makes pM accurate because it forces pM to remain close to

p̂M after reaching it.

Figure 2 illustrates Theorem 1 by showing the consumption-share dynamics and the

frequency of market probabilities of four economies that differ only in their value of ᾱ.

All economies have two agents with dogmatic probabilities πBIP (u) = .4 and π2(u) = .7,

so that πBIP 6= P ∈ Conv(πBIP , π2) and αBIP = α2 = ᾱ. As per Proposition 4, when

ᾱ = 1, no WOC occurs: prices are as accurate as πBIP . As per Proposition 5, for ᾱ low

enough, no agent dominates and market probability is more accurate than πBIP . In this

specific example, ᾱ = 0.2 is already small enough for agent BIP not to dominate. As per

Theorem 1, for ᾱ = .001 ≈ 0 the market probabilities distribution becomes concentrated

in a small interval around P , which makes pM almost as accurate as the truth. If agents

strongly believe that the market is accurate, then the market is indeed accurate.

4 Main results related to pRN and pRNγ

In this section we study the long-run property of markets in which (some) agents use

either pRN or pRNγ for market consensus under the following assumptions.
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A5 : Either there is constant aggregate endowment, or all agents in Ī := BIP ∪ {i ∈ I :

αi 6= 1} have identical CRRA utility and the aggregate endowment is not constant.7

Because the results we derive in both settings are identical, we adopt the abuse of

notation pRN = pRNγ when the aggregate endowment is not constant.8

The equilibrium dynamics of an economy in which agents use pRN for consensus

differs from that of an economy in which the same agents use pM for consensus. For

example, it is possible that if agents use pRN for consensus there is a dominating agent

while, on the same path, long-run heterogeneity would appear if the same agents were

to use pM for consensus. Moreover, pRN does not satisfy the properties of pM discussed

in Section 3: the belief of every surviving agent is typically not as accurate as pRN (see

Proposition 6, below), pRNt might not be a convex combination of agents dogmatic beliefs,

and examples show that the weak inequalities d̄(P ||πBCP ) ≤ d̄(P ||pRN ) ≤ d̄(P ||πBIP )

might fail (see the example in section 4.3).

4.1 Accuracy of pRN

In this section, we characterize the relative accuracy of pRN and pM , and discuss its

dependence on agent risk attitudes and mixing coefficients.

First, we characterize the sign of d̄(P ||pRN ) − d̄(P ||pM ) as a function of risk atti-

tudes, independent of the αis. Proposition 6 illustrates how the RRA parameters of

the surviving agents affect the accuracy of pRN . Ceteris paribus, economies with more

risk-averse agents determine (weakly) more accurate risk-neutral probabilities.

Proposition 6. Under A1-A5, let Î be the set of surviving agents, then,

(a) ∀i ∈ Î, γi ∈ (0, 1]⇒ pRN is at most as accurate as pM : d̄(P ||pRN ) ≥ d̄(P ||pM ), P -a.s.

(b) ∀i ∈ Î, γi = 1⇒ pRN is as accurate as pM : d̄(P ||pRN ) = d̄(P ||pM ), P -a.s.

(c) ∀i ∈ Î, γi ∈ [1,∞)⇒ pRN is at least as accurate as pM : d̄(P ||pRN ) ≤ d̄(P ||pM ), P -a.s.

with strict inequality if and only if there is long-run heterogeneity in beliefs and at least one

among the surviving agent has α ∈ (0, 1).

7The reason why we need only to pose assumptions on agents in Ī is that Proposition 1 guarantees
that the only agent with exogenous beliefs that might survive and have long run effect on the consensus
is agent BIP .

8In the Appendix we present proofs for the two settings separately, when needed.
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Figure 3: pRN and pM dynamics on the same path of in two economies in which agents mix using pRN .
The economies have two states S = {u, d}, two agents I = {BIP, 2} with [πBIP (u), π2(u)] = [.4, .7],
[αBIP , α2] = [.5, .5] and common γ. [left] with γ = 2 > 1 pRN is closer to the truth than pM . [right]
with γ = .2 < 1, pRN is further from to the truth than pM .

Proof. See Appendix A

Figure 3 illustrates Proposition 6. Everything else equal, when γ > (<)1 the pRN

process remains closer to (further away from) the truth than the pM process calculated

in the same economy.

Remark. The validity of the accuracy relations found in Propositions 2 and 6 is inde-

pendent of the way agents obtain their pi, but applies only if pM and pRN are calculated

in the same economy. It would be a mistake to derive results related to pRN approxi-

mating the results derived for pM because the dynamic of an economy in which agents

use pM for consensus can differ from that of an economy in which the same agents use

pRN for consensus even if all agents have an arbitrarily small value of the αis.

Second, we provide a bound for the difference between the accuracy of pRN and pM

which depends on the mixing coefficients but is independent of risk attitudes. This differ-

ence decreases on the lowest mixing coefficient among the surviving agents. Furthermore,

pRN is as accurate as pM when there is no long-run heterogeneity or all surviving agents

have log utility.

Proposition 7. Under A1-A5, let Î be the set of surviving agents that use pRN for

consensus and α = argmini∈Î α
i,

d̄(P ||pRN ) = d̄(P ||pM ) +O(α)− |O(α2)| P -a.s.
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with d̄(P ||pRN ) = d̄(P ||pM ) if one agent dominates, or all agents in Î have α = 1, or all

agents in Î have γ = 1.

Proof. See Appendix A

A useful implication of Proposition 7 is that if one of the agents that survive gives

full confidence to pRN (αi = 0), then pRN = pM , irrespective of risk attitudes.

4.2 Discussion explaining the accuracy of pRN

In this section, we propose two intuitions for the difference in the accuracy of pM and

pRN . The first one is to give economic interpretation to the term determining the

accuracy differential between pM and pRN in the proof of Proposition 6:

d̄(P ||pRN ) = d̄(P ||pM ) + lim
t→∞

1

t

t∑
τ=1

ln
∑
σ̃τ

qτ (σ̃τ |στ−1)

β
P -a.s..

Let us start by noticing that, in every (t-1,σ),
∑

σ̃t
qt(σ̃t|σt−1) is the cost of moving a

unit of consumption for sure a period ahead, i.e., the reciprocal of the risk-free rate. The

effect of risk attitudes on the risk-free rate follows this intuition. In every period most

agents subjectively believe that assets are mispriced and trade for speculative reasons

because agents disagree. When agents have log utility (γ = 1), prices (and thus interest

rates) do not affect optimal saving choices (the substitution effect equals the income

effect) and the reciprocal of the risk free rate is given by the discount factor: for all

(t, σ), β =
∑

σ̃t
qt(σ̃t|σt−1). However, if γ < (>)1, the substitution effect is stronger

(weaker) than the income effect and each agent optimally chooses to save more (less)

aggressively than if they had log utility and a lower (higher) risk-free rate arise: for

all (t, σ),
∑

σ̃τ
qτ (σ̃τ |στ−1) > (<)β. When there is heterogeneity a positive fraction of

periods, this effect renders pRN less (more) accurate than pM . In the standard case of

exogenous beliefs, this effect is present but either disappears in the short run because an

agent dominates, or its magnitude is too small to be captured by an average measure of
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accuracy (Massari, 2017).9

The second interpretation is probabilistic and follows the intuition of Massari (2018).

If all agents have identical CRRA utility with parameter γ, treating the pi as given, by

Lemma 8 (pg. 40) for all (t, σ),

pRN (σt|σt−1) =

(∑
i∈I p

i(σt|σt−1)
1
γ φiγ,t−1(σ)

)γ
∑

σ̃t

(∑
j∈I p

j(σ̃t|σt−1)
1
γ φjγ,t−1(σ)

)γ , with φiγ,t−1(σ) =
pi(σt−1)

1
γ φi0∑

j∈I p
j(σt−1)

1
γ φj0

.

Note that with γ = 1 the equation above coincides with pM (albeit a change in the

time zero consumption-shares), and also coincides with the predictive Bayesian measure

from a prior [c1
γ,t−1(σ), ..., cIγ,t−1(σ)] on the models [p1, ..., pI ]. Looking at the effect of γ

on the prior weights ciγ,t−1(σ), it is apparent that levels of γ > (<)1 can be thought of

as modifying the standard Bayesian procedure in the direction of under (over)-reaction

because γ > (<)1 makes less (more) extreme the differences between the likelihoods of

the modes. Next, note that there is long-run heterogeneity only if no model is correct

and the truth lies between at least two models. In these situations, slowing down (accel-

erating) the convergence rate delivers predictions that are more (less) accurate than that

obtained via Bayes’ rule because they remain closer to (further away from) the truth.

4.3 Necessary conditions for the WOCRN

In this section, we identify necessary conditions for WOCRN to occur which take into

consideration the effect of risk attitudes on pRN accuracy. Unlike for WOCM , we find

that if all agents have CRRA utility with γi > 1 diversity is not a necessary condition

for WOCRN . It is possible that beliefs are not diverse, πBIP = πBCP 6= P , and pRN is

more accurate than πBCP because pRN may not be in Conv(π1, ..., πI), unlike pM .

The market can make use of agent opinions in a way that is even more accurate than

the most accurate convex combination of agents opinions.

For example, consider an economy with three states10 S = {u,m, d} and three agents

9The same effect is present with exogenous beliefs when there is long-run heterogeneity, e.g. with
recursive preferences see Borovička (2015) and Dindo (2015).

10Examples require at least three states to be constructed because in a two-state economy it can be
shown that ∀(t, σ), pRN ∈ Conv(π1, ..., πI).
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Figure 4: Equilibrium dynamics in a three-state S = {u,m, d}, three-agent I = {1, BIP, 2} economy
with [α1, αBIP , α2] = [.1, 1, .1], common γ = 10, uniform iid P , and in which agent beliefs are as in Equa-
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consumption-share dynamics: agent BIP vanishes even if his beliefs is the most accurate combination of
other agents beliefs; [right] K-L and average K-L dynamics: pRN is more accurate than πBCP .

{1, BIP, 2} with common γ > 1 and [α1, αBIP , α2] = [α, 1, α].

Let P = [.3̄, .3̄, .3̄], and [π1, πBIP , π2]′ =


ε π1(m)− .5ε π1(d)− .5ε

ε .5− .5ε .5− .5ε

ε π2(m)− .5ε π2(d)− .5ε

 . (6)

Note that, for π1(m) > .5 > π2(m) beliefs are not diverse: πBIP = πBCP .

By Lemma 8 (pg. 40), ∀(t, σ), pRN (σt|σt−1) =

(∑
i∈I p

i(σt|σt−1)
1
γ φiγ,t−1(σ)

)γ
∑

σ̃t

(∑
j∈I p

j(σ̃t|σt−1)
1
γ φjγ,t−1(σ)

)γ .
Because γ > 1 ⇒ the denominator is < 1 and pRN (u) > ε whenever there is long run

heterogeneity. Because the relative entropy diverges close to the boundary of the simplex,

for ε small, a small difference in the direction of .3̄ determines a large improvement in

d(P ||pRNt ). Thus, if α is such that there is long run heterogeneity, pRN is more accurate

than πBIP , agent BIP vanishes and WOCRN occurs.

Figure 4 illustrates this scenario with γ = 10, α = .1 and ε = .0001 and initial risk

adjusted consumption shares [.4,.2,.4].

When P ∈ Conv(π1, ..., πI), pRN cannot be more accurate than πBCP = P and the

necessary conditions for WOCM and WOCRN coincide.
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Corollary 2. Under A1-A5, if P ∈ Conv(π1, ..., πI), WOCRN can occur only if beliefs

are diverse and the beliefs of at least one agent depend on pRN .

Proof. By contradiction, πBIP = πBCP =byH0 P ⇒ no WOC. The proof of the second mimics Prop.4.

4.4 Sufficient conditions for the WOCRN

The sufficient conditions for the WOCRN to occur need to take into account how the

risk attitudes of the surviving agents affects pRN accuracy.

We start by deriving a sufficient condition for the WOCRN to occur when all agents

in Ī have CRRA utility with γi > 1. Under this assumption, Proposition 6 guarantees

that pRN is at least as accurate as pM and the sufficient condition we find is weaker than

that of Proposition 5. Specifically, Proposition 8 does not require agent BIP beliefs to

depend on the consensus.

Proposition 8. Under A1-A5, the WOCRN occurs and at least two agents survive, if

all agents j ∈ Ī have CRRA utility with γj > 1 and there is an agent i ∈ Ī such that

d̄(P ||(1− αi)πBIP + αiπi) < d̄(P ||πBIP ). (7)

Proof. See Appendix A

Figure 5 [left] illustrates Proposition 8. For γ = 2 > 1 and [αBIP , α2] = [1, .2] condition

(7) is satisfied, agent BIP cannot dominate and WOCRN occurs. [right] shows the pRN

dynamics on the same path for an economy with the same parameters but in which agent

2 mixes using pM , rather then pRN . As discussed following Proposition 5, this economy

does not generate WOCM because BIP survives but does not mix. Nevertheless, it does

generate WOCRN because there is long run heterogeneity so that pRN is more accurate

than pM (Proposition 6) which is at least as accurate as pBIP (Proposition 3).

More generally, if we do not make assumptions about the preferences of agents in Ī,

we cannot rule out the possibility that the resulting pRN is less accurate than pM and

πBIP . This eventuality makes it harder for the WOCRN to occur when agents rely on
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Figure 5: [left] pRNt dynamics in a two-state economy in which agents mix using pRN with parameters
[πBIP (u), π2(u)] = [.4, .7], [αBIP , α2] = [1, .2],γBIP = 2 = γ2. [right] pRNt dynamics in an economy
with the same parameters in which agent 2 mix using pM , rather than pRN .

pRN rather than pM . Stronger conditions are needed to prevent the system from entering

a dynamic that has long-run heterogeneity but does not deliver an accurate consensus.

Furthermore, we are forced to change our proof technique because the equilibrium rela-

tion of Proposition 2 and 6 are not accurate enough to guarantee that pRN concentrates

around a unique value when some γis are smaller than one. Rather than relying on long

run properties of the equilibrium, we must now characterize the equilibrium dynamics

of the economy. For tractability reasons, we restrict our analysis to economies with two

states and common gamma.

Proposition 9. Consider an economy with two states that satisfies A1-A5. If beliefs

of agents in Ī are diverse, all agents in Ī have common CRRA utility with parameter γ,

mix using pRN with common α and α is small enough, then the WOCRN occurs.

Proof. Application of Theorem 3.

Figure 6 [left] illustrates Proposition 9. With γ = .5 < 1 and [αBIP , α2] = [.2, .2] it

shows that when all agents have identical α and P ∈ Conv(I), α can be chosen small

enough for the WOCRN to occur P -a.s. irrespective of risk attitudes. Intuitively, when

α is “small enough”, the drift and variance conditions on the consumption-shares of

an economy that uses pRN for consensus are similar to those of an economy in which

the same agents use pM for consensus. Accordingly, agent 2 survives and pRN is more

accurate than πBIP because it belongs to the interior of Conv(π1, πBIP ).
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Figure 6: Consumption-shares [left] and market probability [right] dynamics in a two-state economy
with parameters [πBIP (u), π2(u)] = [.4, .7], and γBIP = γ2 = .5. For [αBIP , α2] = [.2, .2] the sufficient
condition of Proposition 9 is satisfied and the WOCRN occurs.

Discussion

The homogeneity requirement for the values of α in Proposition 9 can be relaxed, but

not abandoned. The potential problem is that with γ < 1 pRN might be less accurate

than πBIP , so that it is not guaranteed that believing in market accuracy (weakly)

increases agent accuracy (Proposition 3 does not hold). The above observation suggests

that without a homogeneity requirement for the value of the αis, the long-run dynamics

of the economy might become path dependent. Figure 7 illustrates the equilibrium

consumption-shares and pRN dynamics on two typical paths of the same economy with

γ = .5 < 1 and heterogenous mixing coefficients. It shows that pRN can enter two

distinct dynamics. Either [top] the WOCRN occurs because in a finite sample agents

BIP and 2 reach a high enough consumption-share to make the dynamics of the system

locally independent of the other agents; or [bottom], the WOCRN fails. At the beginning

of this path, agents 2 and BIP lose consumption-shares to agents 3 and 4, so that early

on d(P ||pRNt ) > d(P ||pMt ) and, by giving a lot of weight to pRN , agents BIP and 2 make

their beliefs less accurate than those of the other agents and eventually vanish.

To summarise, there is a positive probability for the WOCRN to occur because there

is a positive probability that agents BIP and 2 reach a high enough consumption-share

to make the dynamics of the system locally independent of agents 3 and 4; however

there is also a positive probability for the WOCRN to fail because there is a positive

probability that agents 3 and 4 reach a high enough consumption-share to make pRN less

accurate than pM . When this happens, agents BIP and 2 vanish because their beliefs
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Figure 7: Consumption-shares [left] and market probability [right] dynamics in two paths
generated from the same probability for a two-state, four-agent economy with parameters
[πBIP (u), π2(u), π3(u), π4(u)] = [.4, .7, .2, .8], [αBIP , α2, α3, α4] = [.05, .05, .2, .2], homogeneous RRA
γ = .5. [Top]: on this path agent BIP and agent 2 dominate and pRN is more accurate than πBIP .
[Bottom]: on this other path agent BIB and agent 2 vanish and pRN is less accurate than πBIP .

are less accurate than pM (by the contrapositive of Proposition 2, b)) since they give a

lot of weight to an inaccurate consensus.

4.5 Accurate markets: A self-fulfilling prophecy (RN)

Here we give conditions under which the self-fulfilling prophecy discussed in Section

3.4 holds when agents use pRN for market consensus. As for our sufficient conditions,

risk attitudes have an effect on the occurrence of the WOCRN , so that we either need

assumptions about agents utilities, or to impose the same restrictions of Proposition 9 to

conduct our analysis. If all agents in Ī have CRRA utility with γi > 1, the self-fulfilling

prophecy condition using pRN coincides with that of Theorem 1.

Theorem 2. Let (Eα) be a family of economies that satisfies A1-A5 with a subset of

agents Î that relies on pRN with αi ∈ (0, ᾱ] and such that P ∈ Conv(Î). Name each

economy risk-neutral probabilities process (pRNt,ᾱ )∞t=0; then, if all agents in Ī have CRRA
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utilities,

∀i ∈ Ī, γi ≥ 1⇒ lim
ᾱ→0

d̄(P ||pRNᾱ ) = 0, P -a.s..

Proof. See Appendix B.

As argued before Proposition 9, the self-fulfilling prophecy property of pRN when

γ < 1 requires tighter conditions to prevent those dynamics in which agents in Ī vanish.

Theorem 3. Let (Eα) be a family of two-state economies that satisfies A1-A5 such

that P ∈ Conv(Ī), all agents in Ī mix using pRN with common α and γ, and name each

economy risk-neutral probabilities process (pRNt,α )∞t=0; then,

lim
α→0

d̄(P ||pRNα ) = 0 P -a.s..

Proof. See Appendix B.

5 Conclusion

We provide conditions under which the MSH and the WOC can be reconciled in a dy-

namic economy where agents naively learn from an endogenous measure of consensus.

Moreover, we show that if a group of agents strongly believe in market accuracy and

their beliefs can be combined to obtain the truth a virtuous self-fulling prophecy oc-

curs. Although no agent knows the truth, and the initial consumption-share/beliefs

distribution might be severely skewed away from the truth, market selection forces en-

dogenously generate consumption-share/beliefs dynamics which determine a consensus

that is almost as accurate as the truth.

A Appendix

We make use of the symbols � and O(·) with the following meanings:

f(x) = O(g(x)) if lim sup
x

∣∣∣∣f(x)

g(x)

∣∣∣∣ <∞.
f(x) � g(x) if ∀x, f(x) > 0, g(x) > 0 and

 lim sup
x

f(x)
g(x) <∞

lim inf
x

f(x)
g(x) > 0

.
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Proof of Lemma 1

Proof.

∀(t, σ), pM (σt) =

t∏
τ=1

pM (στ |στ−1)

=

(∑
i∈I

pi(σt|σt−1)
c̄it−1(σ)∑
j∈I c̄

j
t−1(σ)

)
t−1∏
τ=1

pM (στ |στ−1)

=(a)

(∑
i∈I

pi(σt|σt−1)pi(σt−1|σt−2)
c̄it−2(σ)∑
j∈I c̄

j
t−2(σ)

)
1

pM (σt−1|σt−1)

t−1∏
τ=1

pM (στ |στ−1)

=
∑
i∈I

pi(σt|σt−1)pi(σt−1|σt−2)
c̄it−2(σ)∑
j∈I c̄

j
t−2(σ)

t−2∏
τ=1

pM (στ |στ−1)

...

=
∑
i∈I

t∏
τ=1

pi(στ |στ−1)
c̄i0∑
j∈I c̄

j
0

=
∑
i∈I

pi(σt)
c̄i0∑
j∈I c̄

j
0

(a) : by the FOC, for all (t, σ),∀i ∈ I, c̄it−1(σ) =
βpi(σt−1|σt−2)c̄it−2(σ)

q(σt−1|σt−2)

⇒ c̄it−1(σ)∑
j∈I c̄

j
t−1(σ)

=
pi(σt−1|σt−2)c̄it−2(σ)∑
j∈I p

j(σt−1|σt−2)c̄jt−2(σ)
=

pi(σt−1|σt−2)c̄it−2(σ)

pM (σt−1|σt−1)
1∑

j∈I c̄
j
t−2(σ)

.

Proof of Lemma 2

Proof. From the FOC, for all (t, σ),

∀i ∈ I, c̄it(σ)q(σt|σt−1) = βpi(σt|σt−1)c̄it−1(σ),

summing over i and rearranging,

q(σt|σt−1) =
∑
i∈I

βpi(σt|σt−1)
c̄it−1(σ)∑
j∈I c̄

i
t(σ)

⇒ pRN (σt|σt−1) :=
q(σt|σt−1)∑
σ̃t
q(σ̃t|σt−1)

∝
∑
i∈I

pi(σt|σt−1)
c̄it−1(σ)∑
j∈I c̄

j
t (σ)

.

Proof of Lemma 3
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Proof. In every equilibrium, ∀(t, σ),

pRNγ (σt|σt−1) :=
q(σt|σt−1)et(σ)γ∑
σ̃t
q(σ̃t|σt−1)et(σ̃)γ

∝
∑
i∈I

pi(σt|σt−1)
c̄it−1(σ)∑
j∈I c̄

j
t (σ)

et(σ)γ

et−1(σ)γ

=
∑
i∈I

pi(σt|σt−1)
cit−1(σ)γ∑
j∈I c

j
t (σ)γ

(∑
j∈I c

j
t

)γ
(∑

j∈I c
j
t−1

)γ
=
∑
i∈I

pi(σt|σt−1)
cit−1(σ)γ(∑
j∈I c

j
t−1

)γ 1∑
j∈I

cjt(σ)γ

(
∑
k∈I c

k
t )
γ

=
∑
i∈I

pi(σt|σt−1)
φit−1(σ)

γ∑
j∈I φ

j
t (σ)

γ

Lemma 4. Under A1, A2 and A4-(A5), if agent beliefs are as in Definition 4 with pC =
pM (pRN ) and ∀i ∈ I, αi ∈ (0, 1] then A3 is satisfied.

Proof. By Definition 4, pi(σt|σt−1) = (1− αi)pC(σt|σt−1) + αiπi(σt) with πi is strictly positive
∀ i ∈ I. Therefore, for all (t, σ), pi(σt|σt−1) > 0.

Lemma 5. Under A1-A4, if agent beliefs are as in Definition 4 with pC = pM , then ∀(t, σ),∀j ∈
I ∪M,pj(σt|σt−1) ∈ Conv(π1, ..., πI).

Proof. Substituting pi(σt|σt−1) (Definition 4) in Definition 7,

∀(t, σ), pM (σt|σt−1) =
∑
i∈I

[
(1− αi)pM (σt|σt−1) + αiπi(σt)

] c̄it−1(σ)∑
j∈I c̄

j
t−1(σ)

.

Rearranging, ∀(t, σ), pM (σt|σt−1) =
∑
i∈I

πi(σt)
αic̄it−1(σ)∑
j∈I α

j c̄jt−1(σ)
∈ Conv(π1, ..., πI).

∀i ∈ I : αi ∈ (0, 1), pi(σt|σt−1) ∈ Conv(π1, ..., πI) because is the convex combination of two
points in Conv(π1, ..., πI).

Proof of Proposition 2
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Proof. (a) Let φ̄i0 :=
c̄i0∑
j∈I c̄

j
0

pM (σt) =Lem.1
∑
i∈I

pi(σt)φ̄i0

⇒ ∀i ∈ I, ln pM (σt) ≥ ln pi(σt) + ln φ̄i0,

⇒ 1

t
ln

P (σt)

pM (σt)
≤ 1

t
ln
P (σt)

pi(σt)
− 1

t
ln φ̄i0

⇒ lim
t→∞

[
1

t

[
t∑

τ=1

ln
P (στ )

pM (στ |στ−1)
−

t∑
τ=1

d(P ||pMτ )

]
+

1

t

t∑
τ=1

d(P ||pMτ )

]

≤ lim
t→∞

[
1

t

[
t∑

τ=1

ln
P (στ )

pi(στ |στ−1)
−

t∑
τ=1

d(P ||piτ )

]
+

1

t

t∑
τ=1

d(P ||piτ )− 1

t
ln φ̄i0

]
⇒ d̄(P ||pM ) ≤ d̄(P ||pi) P -a.s., by the SLLNMD.

The last implication follows from the Strong Law of Large Number for Martingale Differences (SLL-
NMD)(see also Sandroni, 2000) that guarantees that for j = i,M ,

lim
t→∞

1

t

[
t∑

τ=1

ln
P (στ )

pj(στ |στ−1)
−

t∑
τ=1

d(P ||pjτ )

]
= 0, P -a.s.

(b): We proceed by proving the contrapositive statement: d̄(P ||pM ) < d̄(P ||pi) P -a.s.⇒ agent i vanishes
— the opposite inequality is ruled out by (a).

c̄it(σ) =
βtpi(σt)

q(σt)
c̄i0 �by Massari (2017), Th.1 pi(σt)∑

i∈I
pi(σt)

c̄i0 �by Lem.1 pi(σt)

pM (σt)
c̄i0

⇒ lim
t→∞

1

t
ln c̄it(σ) = lim

t→∞

1

t
ln

pi(σt)

pM (σt)
+

1

t
ln c̄i0

= lim
t→∞

1

t

[
ln

P (σt)

pM (σt)
− ln

P (σt)

pi(σt)

]
= d̄(P ||pM )− d̄(P ||pi) P -a.s., by the SLLNMD

Therefore, d̄(P ||pM ) < d̄(P ||pi) P -a.s.⇒ lim
t→∞

1

t
ln c̄it(σ) < 0, P -a.s.

⇒ ln c̄it(σ)→ −∞, P -a.s.

⇒ 1

u(cit)
′ → 0 P -a.s.

⇒ cit → 0 P -a.s. by A1

⇒ agent i vanishes.

Proof of Proposition 3
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Proof. ∀(t, σ),

d(P ||pit) = d(P ||(1− αi)pMt + αiπi))

≤(a) (1− αi)d(P ||pMt ) + αid(P ||πi) ; by strict convexity of d(P ||·)
⇒ d̄(P ||pi) ≤ (1− αi)d̄(P ||pM ) + αid̄(P ||πi) ; summing and averaging over t

⇒ d̄(P ||pi) ≤ d̄(P ||πi) P -a.s. ; because d̄(P ||pM ) ≤by Prop.2 d̄(P ||pi)

Moreover, pMt 6= πi a positive fraction of periods ⇒ d̄(P ||pi) < d̄(P ||πi) because inequality (a)
is strict unless pMt (σ) = πi.

Proof of Proposition 4

Proof. WOCM ⇒ beliefs must be diverse. We prove the contrapositive statement:

πBCP = πBIP ⇒ d̄(P ||pM ) ≥ d̄(P ||πBIP ) P -a.s.⇒ no WOCM .

∀(t, σ), pMt ∈By Lem.5 Conv(π1, ..., πI) and πBCP := argmin
p∈Conv(π1,...,πI)

d(P ||p).

Thus, for every choice of αi ∈ (0, 1], ∀σ, d̄(P ||pM ) ≥ d̄(P ||πBCP ) =By H0 d̄(P ||πBIP ).

WOCM ⇒ ∃i : αi ∈ (0, 1). We prove the contrapositive statement:

∀i ∈ I, αi = 1⇒ d̄(P ||pM ) = d̄(P ||πBIP ) P -a.s.⇒ no WOCM .

∀i ∈ I, αi = 1⇒ agent beliefs are independent of each other.
Therefore, agent BIP survives (by Prop.1) and pM is as accurate as πBIP (by Prop.2).

Proof of Proposition 5

Proof. The condition on pi is sufficient to guarantee that agent BIP does not have unitary
consumption shares a positive fraction of periods — otherwise, agent i would be more accurate
than agent BIP , violating Proposition 1.
Therefore, pMt 6= πBIP a positive fraction of periods and the result follows because

d̄(P ||pM ) ≤Prop.2 d̄(P ||pBIP ) <by Prop.3 d̄(P ||πBIP ).

The following two Lemmas are needed for the proof of Proposition 6. In these proofs we omit
the conditioning notation for prices and probabilities and adopt the more compact notation: for
j ∈ I ∪RN, pi(σt|σt−1) := pi(σt|) and q(σt|σt−1) := q(σt|).

Lemma 6. Under A1-A5, if agents’ utilities are CRRA and the aggregate endowment is con-
stant, for all (t, σ),

∀i, γi ≥ 1⇒ 1
β

∑
σt
q(σt|σt−1) ≤ 1

∀i, γi ≤ 1⇒ 1
β

∑
σt
q(σt|σt−1) ≥ 1

,

with equality if and only if ether γi = 1 for all agents or all agents have identical beliefs.
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Proof. On every equilibrium path ∀(t, σ) and for all i,

cit(σ) =

(
βpi(σt|)
q(σt|)

) 1

γi

cit−1(σ).

Multiplying left and right by q(σt|)
β ,

q(σt|)
β

cit(σ) = pi(σt|)
1

γi

(
q(σt|)
β

)1− 1

γi

cit−1(σ).

Summing left and right over all the agents,

q(σt|)
β

∑
i∈I

cit(σ) =
∑
i∈I

pi(σt|)
1

γi

(
q(σt|)
β

)1− 1

γi

cit−1(σ).

Dividing left and right by the aggregate endowment (which is constant over t)

q(σt|)
β

=
∑
i∈I

pi(σt|)
1

γi

(
q(σt|)
β

)1− 1

γi

φit−1,

where [φ1
t−1, ..., φ

I
t−1] is the consumption shares distribution in (t− 1, σt−1).

Summing left and right over the states:

∑
σt

q(σt|)
β

=
∑
i∈I

∑
σt

pi(σt|)
1

γi

(
q(σt|)
β

)1− 1

γi

φit−1.

Multiplying the right-hand side by

∏
k∈I

(∑
σt

q(σt|)
β

)1− 1
γk

∏
j∈I

(∑
σt

q(σt|)
β

)1− 1
γj

= 1 we can express the left-hand side

as a function of the risk-neutral probabilities.

∑
σt

q(σt|)
β

=
∑
i∈I

∑
σt

pi(σt|)
1

γi pRN (σt|)
1− 1

γi φit−1

∏
k∈I

(∑
σt

q(σt|)
β

)1− 1

γk

∏
j 6=i

(∑
σt

q(σt|)
β

)1− 1

γj

. (8)

• Let us focus on the case in which ∀i, γi ≥ 1.

Let i∗ := argmaxi∈I

(∑
σt

q(σt|)
β

)1− 1

γi

, so that ∀k, i ∈ I,

∏
k 6=i∗

(∑
σt

q(σt|)
β

)1− 1
γk

∏
j 6=i

(∑
σt

q(σt|)
β

)1− 1
γj
≤ 1.

It follows that

∑
σt

q(σt|)
β

=
∑
i∈I

∑
σt

pi(σt|)
1

γi pRN (σt|)
1− 1

γi φit−1

(∑
σt

q(σt|)
β

)1− 1

γi
∗
∏
k 6=i∗

(∑
σt

q(σt|)
β

)1− 1

γi

∏
j 6=i

(∑
σt

q(σt|)
β

)1− 1

γj

≤
∑
i∈I

∑
σt

pi(σt|)
1

γi pRN (σt|)
1− 1

γi φit−1

(∑
σt

q(σt|)
β

)1− 1

γi
∗

.
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Rearranging,(∑
σt

q(σt|)
β

) 1

γi
∗

≤
∑
i∈I

∑
σt

pi(σt|)
1

γi pRN (σt|)
1− 1

γi φit−1 (9)

≤(a)
∑
i∈I

∑
σt

(
1

γi
pi(σt|) +

(
1− 1

γi

)
pRN (σt|)

)
φit−1 = 1

⇒
∑
σt

q(σt|)
β
≤ 1.

(a) : ∀i ∈ I, γi ≥ 1⇒ ∀σt, pi(σt|)
1

γi pRN (σt|)
1− 1

γi ≤ 1
γi p

i(σt|) +
(

1− 1
γi

)
pRN (σt|),

because strict concavity of log ensures that

ln
(
pi(σt|)

1

γi pRN (σt|)
1− 1

γi

)
=

1

γi
ln pi(σt|) +

(
1− 1

γi

)
ln pRN (σt|)

≤ ln

(
1

γi
pi(σt|) +

(
1− 1

γi

)
pRN (σt|)

)
.

• Let’s focus on the case in which ∀i, γi ≤ 1.

Let i∗∗ := argmini∈I

(∑
σt

q(σt|)
β

)1− 1

γi

; thus ∀k, i ∈ I,

∏
k 6=i∗∗

(∑
σt

q(σt|)
β

)1− 1
γk

∏
j 6=i

(∑
σt

q(σt|)
β

)1− 1
γj
≥ 1.

Proceeding as above, we obtain the opposite inequality:(∑
σt

q(σt|)
β

) 1

γi
∗∗

≥
∑
i∈I

∑
σt

pi(σt|)
1

γi pRN (σt|)
1− 1

γi φit−1. (10)

The result follows by showing that

γi ≤ 1 ∀i⇒ ln
∑
i∈I

∑
σt

pi(σt|)
1

γi pRN (σt|)
1− 1

γi φit−1 ≥ 0.

For convenience, let ∀i, ηi := 1
γi ; so that ∀i, ηi ∈ (1,∞).

ln
∑
i∈I

∑
σt

pi(σt|)
1

γi pRN (σt|)
1− 1

γi φit−1 = ln
∑
i∈I

∑
σt

pi(σt|)ηi
pRN (σt|)ηi−1

φit−1

≥(a)
∑
i∈I

φit−1 ln
∑
σt

pi(σt|)ηi
pRN (σt|)ηi−1

=
∑
i∈I

(ηi − 1)φit−1

(
1

ηi − 1
ln
∑
σt

pi(σt|)ηi
pRN (σt|)ηi−1

)
=(b)

∑
i∈I

(ηi − 1)φit−1Dηi(p
i
t||pRNt )

≥(c) 0.

(a): By concavity of log.
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(b): Recognizing the definition of the Rényi divergence (Dηi(p
i
t||pRNt )) between pit and pRNt

(Rényi, 1961; Van Erven and Harremos, 2014).
(c): Rény divergence is weakly positive, it equals 0 iff pi = pRN (Van Erven and Harremos,
2014).

An inspection of Equation (8) shows that equality holds if and only if γi = 1 for all agents —

which implies that
∑
σt

q(σt|)
β =

∑
i∈I

∑
σt
pi(σt|) = 1 — or all agents have identical beliefs —

∀i, pit = pt = pRNt ⇒ ∀i,
(∑

σt

q(σt|)
β

)1− 1

γi

=
∑
i∈I

∑
σt
pt(σt|)

1

γi pt(σt|)
1− 1

γi φit−1 = 1.

Lemma 7. Under A1-A5 , if all agents have identical CRRA utility then, for all (t, σ):

∀i, γi ≥ 1⇒ 1
β

∑
σt
q(σt|σt−1)

(
et(σ)

et−1(σ)

)γ
≤ 1

∀i, γi ≤ 1⇒ 1
β

∑
σt
q(σt|σt−1)

(
et(σ)

et−1(σ)

)γ
≥ 1

;

with equality if and only if ether γ = 1 for all agents or all agents have identical beliefs.

Proof. This proof mimics that of Lemma 6. On every equilibrium path ∀(t, σ) and for all i,

cit(σ) =

(
βpi(σt|)
q(σt|)

) 1
γ

cit−1(σ).

Multiplying both sides by q(σt|)
β

(
et(σ)

et−1(σ)

)γ−1

we have

q(σt|)
β

(
et(σ)

et−1(σ)

)γ−1

cit(σ) = pi(σt|)
1
γ

(
q(σt|)
β

(
et(σ)

et−1(σ)

)γ)1− 1
γ

cit−1(σ).

Summing left and right over agents, i,

q(σt|)
β

(
et(σ)

et−1(σ)

)γ−1∑
i∈I

cit(σ) =
∑
i∈I

pi(σt|)
1
γ

(
q(σt|)
β

(
et(σ)

et−1(σ)

)γ)1− 1
γ

cit−1(σ).

Noticing that et(σ) =
∑
i∈I

cit(σ) and et−1(σ) =
∑
i∈I

cit−1(σ), simplifyng and rearranging

q(σt|)
β

(
et(σ)

et−1(σ)

)γ
=
∑
i∈I

pi(σt|)
1
γ

(
q(σt|)
β

(
et(σ)

et−1(σ)

)γ)1− 1
γ

φit−1(σ)

where [φ1
t−1, ..., φ

I
t−1] is the consumption shares distribution in (t− 1, σt−1).

Summing left and right over the states:

∑
σt

q(σt|)
β

(
et(σ)

et−1(σ)

)γ
=
∑
i∈I

∑
σt

pi(σt|)
1
γ

(
q(σt|)
β

(
et(σ)

et−1(σ)

)γ)1− 1
γ

φit−1(σ).
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Multiplying both sides by

(∑
σt

q(σt|)
(

et(σ)
et−1(σ)

)γ
β

)1− 1
γ

,

∑
σt

q(σt|)
(

et(σ)
et−1(σ)

)γ
β


1
γ

=
∑
i∈I

∑
σt

pi(σt|)
1
γ pRN (σt|)1− 1

γ φit−1. (11)

The rest of the proof is now identical to that of Lemma 6, substituting Equation (11) into
Equations (9) and (10) to study the cases γ ≥ 1, γ ≤ 1, respectively.

Proof of Proposition 6

Proof. Let’s start from the case of constant aggregate endowment.

Note that ∀(t, σ), ln pRN (σt) = ln
∏
i

pRN (σt|) = ln
∏
i

q(σt|)∑
σt
q(σt|)

= ln
q(σt)

βt
−

t∑
τ=1

ln

(
1

β

∑
σt

q(σt|)

)

by Massari (2017), Th.1 � ln

(∑
i

pi(σt)

)
−

t∑
τ=1

ln

(
1

β

∑
σt

q(σt|)

)
.

Therefore

d̄(P ||pM )− d̄(P ||pRN ) = lim
t→∞

1

t

(
ln pRN (σt)− ln pM (σt)

)
P -a.s., by the SLLNMD

= lim
t→∞

1

t

(
ln
∑
i

pi(σt)− 1

t

t∑
τ=1

ln

(
1

β

∑
στ

q(στ |)

)
− ln pM (σt)

)

=By Lem.1 lim
t→∞

1

t

(
ln
∑
i

pi(σt)− 1

t

t∑
τ=1

ln

(
1

β

∑
στ

q(στ |)

)
− ln

∑
i

pi(σt)

)

=− lim
t→∞

1

t

t∑
τ=1

ln

(
1

β

∑
στ

q(στ |)

)

and Lemma 6⇒
{
≥ 0 if ∀i, γi ∈ [1,∞)
≤ 0 if ∀i, γi ∈ (0, 1]

;

where inequalities are strict if and only if there is long-run heterogeneity a positive fraction of
periods (that is if and only if at least one surviving agent has α ∈ (0, 1) Massari, 2017) and not
all the surviving agents have log utility (by Lemma 6).

• The proof of the case of common CRRA utility and aggregate risk, is obtained by repeating

the same steps but replacing
(

1
β

∑
σt
q(σt|)

)
and Lemma 6 with

(
1
β

∑
σt
q(σt|)

(
et(σ)

et−1(σ)

)γ)
and Lemma 7, respectively.

41



Proof of Proposition 7

Proof. ∀i ∈ Î, d̄(P ||pM )− d̄(P ||pi) =By Prop. 2 0

⇒by Eq.15,Lem.9 ∀i ∈ Î, d̄(P ||pM )− d̄(P ||pRN ) + lim
t→∞

αi 1
t

t∑
τ=1

E
[
πi

pRNτ
− 1
]
− |O((αi)2)| = 0;

and the result follows by choosing i = argmini∈Î α
i.

Furthermore, if agent i dominates pRN → πi ⇒ d̄(P ||pi)− d̄(P ||pM ) = 0.
Last, Massari (2017) has shown that d̄(P ||pi)−d̄(P ||pM ) = 0 if all surviving agents have α=1.

Proof of Proposition 8

Proof. The condition on pi is sufficient to guarantee that agent BIP does not dominate —
otherwise, agent i would be more accurate than agent BIP , violating Proposition.1. With long-
run heterogeneity, d̄(P ||pRN ) <Prop.6,(c) d̄(P ||pM ) and the result follows because:

d̄(P ||pRN ) <Prop.6,(c) d̄(P ||pM ) ≤Prop.2 d̄(P ||pBIP ) ≤ d̄(P ||πBIP ),

where the last inequality follows because, ∀(t, σ),

d(P ||pBIPt ) = d(P ||(1− αBIP )pRNt + αBIPπBIP ))

≤ (1− αBIP )d(P ||pRNt ) + αBIP d(P ||πBIP ) ; by strict convexity of d(P ||·)
⇒ d̄(P ||pBIP ) ≤ (1− αBIP )d̄(P ||pRN ) + αBIP d̄(P ||πBIP ) ; summing and averaging over t

⇒ d̄(P ||pBIP ) ≤Prop.6,(c) (1− αBIP )d̄(P ||pRN ) + αBIP d̄(P ||πBIP )

⇒ d̄(P ||pBIP ) ≤Prop.2 (1− αBIP )d̄(P ||pBIP ) + αBIP d̄(P ||πBIP )

⇒ d̄(P ||pBIP ) ≤ d̄(P ||πBIP ).

Lemma 8. Under A1-A5 , if all agents have identical CRRA utility, then:

pRN (σt|σt−1) =

(∑
i∈I
(
(1− α)pRN (σt|σt−1) + απi(σt)

) 1
γ φit−1(σ)

)γ
∑
σ̃t

(∑
j∈I
(
(1− α)pRNt (σ̃t|σt−1) + απj(σ̃t)

) 1
γ φjt−1(σ)

)γ .
Proof. In every equilibrium ∀i ∈ I and ∀(t, σ) the FOC is

(cit(σ))γ

(cit−1(σ))γ
= βpi(σt|σt−1)

q(σt|σt−1) ; rearranging,

(
q(σt|σt−1)

) 1
γ cit(σ) =

(
βpi(σt|σt−1))

) 1
γ cit−1(σ).

Summing over agents
(∑

i∈I ct(σ) = et(σ)
)
, and taking the power γ gives

q(σt|)et(σ)γ =

(∑
i∈I

(
βpj(σt|σt−1))

) 1
γ cjt−1(σ)

)γ
.
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Using Definition 9, we obtain

pRNγ (σt|σt−1) :=
q(σt|σt−1)et(σ)γ∑
σ̃t
q(σ̃t|σt−1)et(σ̃)γ

=

(∑
i∈I(βp

i(σt|σt−1))
1
γ cit−1(σ)

)γ
∑
σ̃t

(∑
i∈I(βp

i(σ̃t|σt−1))
1
γ cit−1(σ)

)γ ,
and the result follows substituting each pi with its Definition 4. The same result for pRN follows
by noticing that when et(σ) = e for all (t, σ) Definition 9 turns into Definition 8.

B Theorems 1,2,3

Lemma 9. Under A1-A4 (A5), if ∃Î ⊂ I : P ∈ Conv(Î),∀i ∈ Î, αi ∈ (0, ᾱ) with ᾱ =
maxi∈Î{α

i} < 1, then

a), all agents in Î use pM for consensus,⇒ ∃γ ∈ ∆|Î| :

ᾱ
∑
i∈Î

γi

αi
d̄(P ||pM )− ᾱ

∑
i∈Î

γi

αi
d̄(P ||pi) = lim

t→∞

ᾱ

t

t∑
τ=1

E

[
P

pMt
− 1

]
− |O(ᾱ)2|, (12)

b), all agents in Î use pRN for consensus,⇒ ∃γ ∈ ∆|Î|:

ᾱ
∑
i∈Î

γi

αi
d̄(P ||pM )− ᾱ

∑
i∈Î

γi

αi
d̄(P ||pi) = ᾱ

∑
i∈Î

γi

αi
d̄(P ||pM )− ᾱ

∑
i∈Î

γi

αi
d̄(P ||pRN ) + lim

t→∞

ᾱ

t

t∑
τ=1

E

[
P

pRNτ
− 1

]
− |O(ᾱ

2
)|.

(13)

Proof. a) By assumption, ∀i ∈ I,∀(t, σ), pit = pMt + αi(πi − pM ). Taylor expanding around 1:

E ln
pit
pMt

= E ln

(
1 + αi

(
πi

pMt
− 1

))
= αiE

[
πi

pMt
− 1

]
− |O((αi)2)|.

So that d̄(P ||pM )− d̄(P ||pi) = lim
t→∞

1

t

t∑
τ=1

[
E ln

piτ
pMτ

]
(14)

= lim
t→∞

αi

t

t∑
τ=1

E

[
πi

pMτ
− 1

]
− |O((αi)2)|

Let γ = [γ1, ..., γI ] ∈ ∆|Î| be such that ∀s ∈ S,
∑
i∈Î γ

iπi(s) = P (s) — this vector exists because

we assumed P ∈ Conv(Î)—, and let γα = [γ
1ᾱ
α1 , ...,

γI ᾱ
αI

].
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Equation (14) holds for all agents in Î, therefore it holds for their γα wighted sum:

∑
i∈Î

γiᾱ

αi
d̄(P ||pM )−

∑
i∈Î

γiᾱ

αi
d̄(P ||pi) =

∑
i∈Î

γiᾱ

αi
lim
t→∞

αi
1

t

t∑
τ=1

E

[
πi

pM τ

− 1

]
− |O((αi)2)|

= lim
t→∞

1

t

t∑
τ=1

ᾱ
∑
γi

E

[
γi
πi

pMt
− γi

]
−
∑
i∈Î

γiᾱ

αi
|O((αi)2)|

= lim
t→∞

ᾱ

t

t∑
τ=1

E

[
P

pMt
− 1

]
− |O(ᾱ2)|

b): By assumption, pit = pRNt + α(πi − pRN ); performing a Taylor expansion around 1:

E ln
pit
pRNt

= E ln

(
1 + αi

(
πi

pRNt
− 1

))
= E ln 1 + αiE

[
πi

pRNt
− 1

]
− |O((αi)2)|

⇒ −d̄(P ||pi) = −d̄(P ||pRN ) + lim
t→∞

αi

t

t∑
τ=1

E

[
πi

pRNτ
− 1

]
− |O((αi)2)| P -a.s.;

which implies

d̄(P ||pM )− d̄(P ||pi) = d̄(P ||pM )− d̄(P ||pRN ) + lim
t→∞

αi

t

t∑
τ=1

E

[
πi

pRNτ
− 1

]
− |O((αi)2)| P -a.s. (15)

and Equation (13) is obtained taking the γα weighted sum as in point a.

Proof of Theorem 1

Proof. In equilibrium, the following inequalities must hold P -a.s.

∀i ∈ Î, d̄(P ||pM )− d̄(P ||pi) ≤By Prop.2 a) 0

⇒ ∀γ ∈ ∆|Î|, ᾱ
∑
i∈Î

γi

αi
d̄(P ||pM )− ᾱ

∑
i∈Î

γi

αi
d̄(P ||pi) ≤ 0

⇒By Lem.9,a) lim
t→∞

ᾱ

t

t∑
τ=1

E

[
P

pMt
− 1

]
≤ |O(ᾱ)2|

⇒ d̄(P ||pMᾱ )→ᾱ→0 0;

The last implication holds because pM = P is the only minimizer for both the continuous positive

functions d(P ||pMt ) and E
[
P
pMt
− 1
]
.

Proof of Theorem 2
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Proof. In equilibrium, the following inequalities must hold P -a.s.

∀i ∈ Î, d̄(P ||pM )− d̄(P ||pi) ≤By Prop.2 a) 0

⇒ ∀γ ∈ ∆|Î|, ᾱ
∑
i∈Î

γi

αi
d̄(P ||pM )− ᾱ

∑
i∈Î

γi

αi
d̄(P ||pi) ≤ 0

⇒By Lem.9, b)

ᾱ∑
i∈I∗

γi

αi
d̄(P ||pM )− ᾱ

∑
i∈Î

γi

αi
d̄(P ||pRN ) + lim

t→∞

ᾱ

t

t∑
τ=1

E

[
P

pRNτ
− 1

] ≤ |O(ᾱ2)|

⇒By Prop.6, a) d̄(P ||pM )− d̄(P ||pRN ) ≥ 0 lim
t→∞

ᾱ

t

t∑
τ=1

E

[
P

pRNτ
− 1

]
≤ |O(ᾱ2)|

⇒ lim
α→0

d̄(P ||pRNᾱ ) = 0.

The last implications holds because pRN = P is the only minimizer of the continuous non-negative

functions E
[

P
pRNt
− 1
]
≥ 0 and d̄(P ||pRN ) ≥ 0.

Preliminaries for the proof of Theorem 3
Our proof is an application of Theorem 3.1 of Hajek (1982) which places two conditions on the
drift and the variance of a stochastic process (mean reverting in our case) which guarantees that
the process spend most of its time close to a boundary (its mean-reverting point in our case).
We start by illustrating the results in Hajek (1982) that are relevant to our proof.
Let (Yt)

∞
t=0 be a sequence of real valued adopted random variables, with drift E[Yt+1 − Yt|Ft]

such that conditions C1,C2 below are satisfied.

C1. ∃ε0 > 0 : E [Yt+1 − Yt + ε0|Yt > a,Ft−1] < 0;

C2. ∃Z <∞ : ∀(t, σ), [ |Yt+1 − Yt||Ft] < Z and EeλZ = D <∞, for some λ > 0.

Hajek (1982) Lemma 2.1 (see below) allows us to translate conditions C1,C2 into higher
order conditions (D1,D2) that are used to derive the following
Theorem 3.1, Hajek (1982):
Assume conditions D1,D2 on (Yt,Ft)t≥0, for any ε′ > 0 exist constants K and δ with δ ∈ (0, 1) :

P

[
1

t

t∑
τ=1

IYτ<b ≤
(

1− 1

1− ρ
Deη(a−b)

)
(1− ε′)

]
≤ Kδt (16)

Next, we map our problem into Hajek (1982) framework.
To ease notation we focus on state u and define P := P ({σt+1 = u}), πBCP := πBCP ({σt+1 =
u}), πi := πi({σ = u}), pMt+1 := pMt+1({σt+1 = u|σt}) and cit := ci(σt).
WLOG, we focus on a two-agent (l, r) economy with πl < P < πr.11

Let Yt := γ ln
φrt
φlt

; because the economy has two agents Yt = γ ln
φrt

1−φrt
pins down the consumption

11The proof generalize to more than two agents by replacing πr and πl by πRt :=
∑
pit>P

πiφit−1(σ) and

πLt :=
∑
pit<P

πiφit−1(σ); φrt (σ) and φlt(σ) with φRt (σ) :=
∑
pit>P

φit−1(σ) and φLt (σ) :=
∑
pit<P

φit−1(σ)

and providing a bound on the difference πRt − πLt that holds uniformly for every consumption-share
distribution within agents in L and R.
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shares of both agents at once, ∀(σ, t), φrt = φ(Yt) = e
Yt
γ

1+e
Yt
γ

= 1 − φl; and we can write pRNt as

a function of Yt alone, so that the dynamic of (Yt)
∞
t=0 is directly informative for the dynamic of

d(P ||pRNt )∞t=0. Using Lemma 8 (pg. 40), we obtain

pRNt+1 =

(
(prt+1)

1
γ φ(Yt) + (plt+1)

1
γ (1− φ(Yt))

)γ
(

(prt+1)
1
γ φ(Yt) + (plt+1)

1
γ (1− φ(Yt))

)γ
+
(

(1− prt+1)
1
γ φ(Yt) + (1− plt+1)

1
γ (1− φ(Yt))

)γ ,
where pRNt+1(Yt) exists and is analytic by the analytic implicit function theorem.

The equilibrium conditions, ∀(t, σ),
(
crt
crt

)γ
=

prt
plt

(
crt−1

clt−1

)γ
imply that our (Yt)

∞
t=0 process evolves

according to the following dynamics

Yt = Yt−1 + Iσt=u ln
(1− α)pRNt (Yt−1) + απr

(1− α)pRNt (Yt−1) + απl
+ Iσt=d ln

(1− α)(1− pRNt (Yt−1)) + α(1− πr)
(1− α)(1− pRNt (Yt−1)) + α(1− πl)

.

Next we characterize the drift and variance of (Yt)
∞
t=0 as a function of α. We use Hajek (1982)

theorem 3.1 to show α can be chose small enough to guaranty that Yt spends most of the periods
arbitrarily close to the value Ȳ : pRN (Ȳ ) = P .

Lemma 10. Under the assumptions of Theorem 3, ∀(t, σ):

E [Yt+1 − Yt|Yt,Ft−1] = α
(πr − πl)

pRNt+1(1− pRNt+1)

(
P − pRNt+1

)
+O(α2) (17)

Proof. The equilibrium condition implies that for all (t, σ),

Yt+1|σt+1=u − Yt = ln

(
(1− α)pRNt+1 + απr

(1− α)pRNt+1 + απl

)
= ln

(
1 + α

(
πr − pRNt+1

)
pRNt+1

)
− ln

(
1 + α

(
πl − pRNt+1

)
pRNt+1

)
;

=Taylor expanding around 1 α

(
πr − pRNt+1

)
pRNt+1

− α
(
πl − pRNt+1

)
pRNt+1

+O(α2);

Yt+1|σt+1=d − Yt = ln

(
(1− α)(1− pRNt+1) + α(1− πr)
(1− α)(1− pRNt+1) + α(1− πl)

)
= ln

 1 + α
(pRNt+1−π

r)

1−pRNt+1

(1 + α
(pRNt+1−πl)

1−pRNt+1


=Taylor expanding around 1 α

(
pRNt+1 − πr

)
1− pRNt+1

− α
(
pRNt+1 − πl

)
1− pRNt+1

+O(α2).

Computing the expected value

E[Yt+1 − Yt|Ft] = α

(
P

(
πr − πl

pRNt+1

)
+ (1− P )

(
πl − πr

1− pRNt+1

))
+O(α2)

=α(πr − πl)
((

P

pRNt+1

+
1− P

1− pRNt+1

))
+O(α2)

=α
(πr − πl)

pRNt+1(1− pRNt+1)

(
P − pRNt+1

)
+O(α2)
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Lemma 11. Under the assumptions of Theorem 3, there exists a ᾱ > 0 : ∀α ∈ (0, ᾱ],

C1 : E
[
Yt+1 − Yt|Yt > Ȳ +

√
ᾱ,Ft−1

]
≤ −|O(α)O(ᾱ.5)|+ |O(α)O(ᾱ)|+ |O(α2)|;

for Ȳ := γ ln φ̄r

φ̄l
, with φ̄l, φ̄r : pRN (Ȳ ) = P .

Proof. First, note that Ȳ = γ ln φ̄r

φ̄l
is well defined. P ∈ Conv(πl, πr) ⇒ ∃φ̄l, φ̄r : pRN = P

because by the implict function theorem pRN (φr), is continuous and pRN (φr = 0) = πl < P and
pRN (φr = 1) = πr > P . Note that φ̄r, and thus Ȳ , may depend on α, but not on ᾱ. Next,
Lemma 10 guarantees that

E
[
Yt+1 − Yt|Yt > Ȳ +

√
ᾱ,Ft−1

]
= α

(πr − πl)
pRNt+1(1− pRNt+1)

(
P − pRNt+1

∣∣
Yt>Ȳ+

√
ᾱ

)
+O(α2);

so that the result follows by showing that
(
P − pRNt+1

∣∣
Yt>Ȳ+

√
ᾱ

)
≤ −|O(

√
ᾱ)|+O(ᾱ).

Because of Markovianity, the above does not depend on how pRNt+1 and Yt are determined,
and we can drop the time indexes.
We want to show that pRN (Y ;α) has a strictly positive and finite derivative in Y for every
α small enough, α ∈ (0, ᾱ]. Then, a Taylor expansion guarantees that for all ε small enough
Y > Ȳ + ε⇒ pRN > P + |O(ε)|+O(ε2). Taking ε =

√
ᾱ concludes the proof.

To calculate dpRN

dY we use the implicit function theorem. For our purposes, let

F (Y, pRN ) := (pRN − 1)
(

(pr)
1
γ φ(Y ) + (pl)

1
γ (1− φ(Y ))

)γ
+ pRN

(
(1− pr)

1
γ φ(Y ) + (1− pl)

1
γ (1− φ(Y ))

)γ
.

so that ∀Y ∈(−∞,+∞), the solutions of F (Y, pRN )=0 identify pRN (Y ), in particular F (Ȳ, P ) = 0.
By the implicit function theorem, on the solutions of F (Y, pRN ) = 0

dpRN

dY
= −

∂F (Y,pRN )
∂Y

∂F (Y,pRN )
∂pRN

.

Next we sketch the calculations that show that ∃α∗ : ∀α ∈ (0, α∗], dp
RN

dY ∈ (0,∞).

• Numerator: ∂F (Y,pRN )
∂Y ≤ 0, with equality iff α = 0

∂F (Y, pRN )

∂Y
= −(1− pRN )γ

(
(pr)

1
γ φ(Y ) + (pl)

1
γ (1− φ(Y ))

)γ−1 (
(pr)

1
γ − (pl)

1
γ

)
φ′(Y )+

− pRNγ
(

(1− pr)
1
γ φ(Y ) + (1− pl)

1
γ (1− φ(Y ))

)γ−1 (
(1− pl)

1
γ − (1− pr)

1
γ

)
φ′(Y ),

where φ′(Y ) = 1
γφ(Y ) (1− φ(Y )) > 0.

Therefore, ∂F (Y,pRN )
∂Y ≤ 0 because πr > πl ⇒ pr > pl ⇒ ∂F (Y,pRN )

∂Y ≤ 0;

and ∂F (Y,pRN )
∂Y = 0 iff pr = pl ⇔ α = 0.

• Denominator: for α small, ∂F (Y,pRN )
∂pRN

≥ 0, with equality iff α = 0

Note that for i = l, r, pi = (1− α)pRN + απi,
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∂F (Y, pRN )

∂pRN
=
(

(pr)
1
γ φ+ (pl)

1
γ (1− φ)

)γ
+
(

(1− pr)
1
γ φ+ (1− pl)

1
γ (1− φ)

)γ
− (1− pRN )

(
(pr)

1
γ φ+ (pl)

1
γ (1− φ)

)γ−1 (
(pr)

1
γ−1φ+ (pl)

1
γ−1(1− φ)

)
(1− α)

− pRN
(

(1− pr)
1
γ φ+ (1− pl)

1
γ (1− φ)

)γ−1 (
(1− pr)

1
γ−1φ+ (1− pl)

1
γ−1(1− φ)

)
(1− α).

Note that α = 0⇒ pl = pr = pRN ⇒ ∂F (Y,pRN )
∂pRN

∣∣∣
α=0

= 0.

Moreover, Lemma 15 shows that ∂
∂α

(
∂F (Y,pRN )
∂pRN

)∣∣∣
α=0

= 1, so that a Taylor series expansion of

∂F (Y,pRN )
∂pRN

in α = 0 leads to the conclusion that for α small ∂F (Y,pRN )
∂pRN

> 0.

∂F (Y, pRN )

∂pRN
=
∂F (Y, pRN )

∂pRN

∣∣∣∣
α=0

+
∂

∂α

(
∂F (Y, pRN )

∂pRN

)∣∣∣∣
α=0

(α) +
1

2

∂2

∂α∂α

(
∂F (Y, pRN )

∂pRN

)∣∣∣∣
α=0

(α2)

= 0 + α+O(α2)

• Ratio: dpRN

dY = −
∂F (Y,pRN )

∂Y
∂F (Y,pRN )

∂pRN

> 0 for all α small.

The above calculations show that for α small enough dpRN

dY = −
∂F (Y,pRN )

∂Y
∂F (Y,pRN )

∂pRN

> 0. However, both

derivatives are null at α = 0.12 To show that the ratio is uniformly strictly positive for all α
small, we use l’Hôpital’s rule to analyze its limit behaviour.

lim
α→0

dpRN

dY
= lim
α→0
−

∂
∂α

(
∂F (Y,pRN )

∂Y

)
∂
∂α

(
∂F (Y,pRN )
∂pRN

) = −
∂
∂α

(
∂F (Y,pRN )

∂Y

)∣∣∣
α=0

∂
∂α

(
∂F (Y,pRN )
∂pRN

)∣∣∣
α=0

=
1

γ
(πr − πl)φ(Y ) (1− φ(Y )) > 0,

where the last equality follows from Lemma 15 which show that
∂
∂α

(
∂F (Y,pRN )

∂Y

)∣∣∣
α=0

= − 1
γ (πr − πl)φ(Y ) (1− φ(Y )) and ∂

∂α

(
∂F (Y,pRN )
∂pRN

)∣∣∣
α=0

= 1.

To conclude the proof, note that for ᾱ small enough we can set a bound b:13

b = argmin
α∈[0,ᾱ]

{
dpRN (Y )

dY
for Y ∈

[
Ȳ (α), Ȳ (α) +

√
ᾱ
]}

;

so that, the Taylor expansion of pRN (Y ) guarantees that for all α ∈ (0, ᾱ]

Y > Ȳ +
√
ᾱ⇒

(
P − pRNt+1

∣∣
Yt>Ȳ+

√
ᾱ

)
≤ −b(

√
ᾱ) +O(ᾱ).

12The function pRN (Y ), and thus its derivatives, are not defined for α = 0. The following equations
are conducted on the continuous extension of pRN at α = 0.

13The existence and positivity of such a minimum is guaranteed by the continuity and positivity of
the argument in the closed interval [0, ᾱ] using the Weirstrass theorem.
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Lemma 12. Under the assumptions of Theorem 3, exists a ᾱ > 0 : ∀α ∈ (0, ᾱ]:

C2 ∃k′ <∞ : ∀(t, σ), [Yt+1 − Yt|Yt,Ft−1] ≤ Z = αk′

and E(eλZ) ≤ (eλαk
′
) = D <∞ with λ =

1

α
.

Proof. Lemma 10 shows that maxσ,t [Yt+1 − Yt|Yt,Ft−1] = |O(1)|α. Thus,

∃k′ <∞ : ∀(t, σ), [Yt+1 − Yt|Yt,Ft−1] ≤ Z = αk′

and E(eλZ) ≤ (eλαk
′
) = D <∞ with λ =

1

α
.

Now we use Hajek (1982) Lemma 2.1 to translate conditions C1,C2 to D1,D2
Lemma 2.1,Hajek (1982): Choose constants η, ρ:

0 < η ≤ λ; η <
ε0
c

: ρ = 1− ε0η + cη2

with c = EeλZ−(1−λE(Z))
λ2 ; and consider the following conditions:

D1 : E
[
eη(Yt+1−Yt)

∣∣∣Yt > a,Ft−1

]
< ρ,

D2 : E
[
eη(Yt+1−a)

∣∣∣Yt ≤ a,Ft−1

]
< D;

then C1,C2 and ρ < 1⇒D1 and C2⇒D2.

Lemma 13. Under the assumptions of Theorem 3, exists a ᾱ > 0 : ∀α ∈ (0, ᾱ],D1,D2 hold
for this parameter choice.

λ =
1

ᾱ
, a = Ȳ + ᾱ.5, ε0 = |O(ᾱ1.5)|, η = ᾱ−.4, ρ = 1− |O(ᾱ1.1)|+ |O(ᾱ1.2)| < 1.

Proof. Because α ∈ (0, ᾱ], Lemmas 11 and 12 guaranty that this parameter choice satisfies
C1,C2. Moreover, λ = 1

ᾱ and Lemma 12⇒ c = O(ᾱ2), so that ε0 = |O(ᾱ1.5)|, η = ᾱ−.4 ⇒ ρ =
1− |O(ᾱ1.1)|+ |O(ᾱ1.2)| < 1 for ᾱ small.

Lemma 14. Under the assumptions of Theorem 3 ∀ε, ε̄, ∃K ∈ (0,∞), δ ∈ (0, 1) and ᾱ ∈ (0, 1)
such that ∀α ∈ (0, ᾱ],

P

[
1

t

t∑
τ=1

Id(P ||pRNτ )<ε ≤ 1− ε̄

]
≤ Kδt

Proof. We apply Hajek (1982) Theorem 3.1 putting in Eq. 16 the parameters
λ = 1

ᾱ , a = Ȳ + ᾱ.5, ε0 = |O(ᾱ1.5)|, η = ᾱ−.4, ρ = 1− |O(ᾱ1.1)|+ |O(ᾱ1.2)| and b = Ȳ + ᾱ.2:

P

[
1

t

t∑
τ=1

IYτ<Ȳ+ᾱ.2 ≤
(

1− 1

|O(ᾱ1.1)|+ |O(ᾱ1.2)|
De−ᾱ

−.2
eᾱ

.1

)
(1− ε′)

]
≤ Kδt;
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so that for every ε, ε̄, ∃K ∈ (0,∞), δ ∈ (0, 1) and ᾱ such that ∀α ∈ (0, ᾱ] :

P

[
1

t

t∑
τ=1

IYτ<Ȳ+ε ≤ 1− ε̄

]
≤ Kδt

Repeating the same steps for the process −(Yt)
∞
t=1, we obtain the opposite bound.

For every ε, ε̄, ∃K ∈ (0,∞), δ ∈ (0, 1) and ᾱ such that ∀α ∈ (0, ᾱ] :

P

[
1

t

t∑
τ=1

IYτ>Ȳ−ε ≤ 1− ε̄

]
≤ Kδt

Therefore, ∀ε, ε̄, ∃K ∈ (0,∞), δ ∈ (0, 1) and ᾱ ∈ (0, 1) such that ∀α ∈ (0, ᾱ],

P

[
1

t

t∑
τ=1

I|Yτ−Ȳ |<ε ≤ 1− ε̄

]
≤ Kδt

The following continuity argument proves the Lemma.
By continuity of pRN (Y ),∀ε̄′ > 0,∃ε̄′′ > 0 : |Yτ − Ȳ | < ε̄′′ ⇒ |pRN (Y )− P | < ε̄′.
By continuity of d(P ||pRN ),∀ε̄ > 0,∃ε̄′ : |pRNt (Y )− P | < ε̄′ ⇒ dt(P ||pRN ) < ε̄.
Thus ∀ε̄ > 0,∃ε̄′′ : |Yt − Ȳ | < ε̄′′ ⇒ dt(P ||pRN ) < ε̄.

Proof of Theorem 3

Proof. By Lemma 14, ∀ε, ε̄, ∃K ∈ (0,∞), δ ∈ (0, 1) and ᾱ ∈ (0, 1) such that ∀α ∈ (0, ᾱ],

P

[
1

t

t∑
τ=1

Id(P ||pRNτ )<ε ≤ 1− ε̄

]
≤ Kδt. (18)

What remains to show is that Eq. 18 ⇒ ∀ε > 0,∃ᾱ : α ∈ (0, ᾱ]⇒ P
{
d̄(P ||pRN ) < ε

}
= 1.

For ε > 0, let Ft :=

{
1
t

t∑
τ=1

d(P ||pRNτ < ε

}
. We apply Borel-Cantelli Lemma to show that for

every ε > 0, ᾱ can be chosen small enough to guaranty that the probability that FCt occurs
infinitely often is zero, which it implies that ∀ε > 0, P{limt→∞ Ft} = P

{
d̄(P ||pRN ) < ε

}
= 1.
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First, Lemma 14 implies that ∀ε̄ > 0, ᾱ can be chosen small enough to guaranty that

P {Ft < 2ε̄} =P

1

t

t∑
τ=1

d(P ||pRNτ

∣∣∣∣∣
{d(P ||pRNτ <ε̄}

+
1

t

t∑
τ=1

d(P ||pRNτ

∣∣∣∣∣
{d(P ||pRNτ ≥ε̄}

< 2ε̄


≥P

{
ε̄
1

t

t∑
τ=1

d(P ||pRNτ < ε̄}+ max(d(P ||pRNτ )
1

t

t∑
τ=1

d(P ||pRNτ ≥ ε̄} < 2ε̄

}

≥P

{
max d(P ||pRNτ

1

t

t∑
τ=1

I{d(P ||pRNτ ≥ε̄} < 2ε̄− ε̄

}
; because

t∑
τ=1

I{d(P ||pRNτ <ε̄}

t
≤ 1

=P


t∑

τ=1

I{d(P ||pRNτ ≥ε̄}

t
<

ε̄

max(d(P ||pRNτ )


≥1−Kδt.

Next, we apply Borel-Cantelli Lemma to show that for all ε = 2ε̄ > 0 exists ᾱ : ∀α ∈ (0, ᾱ):

P
{
FCt

}
= 1− P

{
1

t

t∑
τ=1

|Yτ − Ȳ | < ε

}
= Kδt

⇒ lim
t→∞

t∑
τ=1

P
{
FCt

}
≤ lim
t→∞

t∑
τ=1

Kδt <∞

⇒by Borel-Cantelli Lemma P

{
lim sup
t→∞

FCt

}
= 0

Lemma 15. On the solutions pRN (Y ) of F (Y, pRN , α) = 0 it holds

∂

∂α

(
∂F (Y, pRN , α)

∂Y

)∣∣∣∣
α=0

= − 1

γ
(πr−πl)φ(Y ) (1− φ(Y )) and

∂

∂α

(
∂F (Y, pRN , α)

∂pRN

)∣∣∣∣
α=0

= 1.

Proof. As previously shown,

∂F (Y, pRN , α)

∂Y
= −(1− pRN )γ

(
(pr)

1
γ φ(Y ) + (pl)

1
γ (1− φ(Y ))

)γ−1 (
(pr)

1
γ − (pl)

1
γ

)
φ′(Y )

+ pRNγ
(

(1− pr)
1
γ φ(Y ) + (1− pl)

1
γ (1− φ(Y ))

)γ−1 (
(1− pr)

1
γ − (1− pl)

1
γ

)
φ′(Y ),

where φ′(Y ) = 1
γ
φ(Y ) (1− φ(Y )). For i = r, l,

pi = απi + (1− α)pRN ⇒

∂(pi)
1
γ

∂α

∣∣∣∣
α=0

= (pi)
1
γ
−1 πi−pRN

γ

∣∣∣
α=0

= (pRN )
1
γ
−1 πi−pRN

γ

∂(1−pi)
1
γ

∂α

∣∣∣∣
α=0

= (1− pi)
1
γ
−1 πi−pRN

γ

∣∣∣
α=0

= (1− pRN )
1
γ
−1 pRN−πi

γ

(19)
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Using the above to evaluate ∂
∂α

∂F (Y,pRN ,α)
∂Y

in α = 0, leads to

∂

∂α

∂F (Y, pRN , α)

∂Y

∣∣∣∣
α=0

= −(1− pRN )γ
(

(pRN )
1
γ φ(Y ) + (pRN )

1
γ (1− φ(Y ))

)γ−1

(pRN )
1
γ
−1 π

r − πl

γ
φ′(Y )

+ pRNγ
(

(1− pRN )
1
γ φ(Y ) + (1− pRN )

1
γ (1− φ(Y ))

)γ−1

(1− pRN )
1
γ
−1 π

l − πr

γ
φ′(Y )

= −(1− pRN )(πr − πl)φ′(Y ) + pRN (πl − πr)γφ′(Y )

= −(πr − πl)φ′(Y )

= − 1

γ
(πr − πl)φ(Y ) (1− φ(Y ))

Turning to ∆(α) = ∂
∂α

(
∂F (Y,pRN ,α)

∂pRN

)
. As previously shown,

∂F (Y, pRN , α)

∂pRN
=
(

(pr)
1
γ φ+ (pl)

1
γ (1− φ)

)γ
+
(

(1− pr)
1
γ φ+ (1− pl)

1
γ (1− φ)

)γ
− (1− pRN )(1− α)

(
(pr)

1
γ φ+ (pl)

1
γ (1− φ)

)γ−1 (
(pr)

1
γ
−1
φ+ (pl)

1
γ
−1

(1− φ)
)

− pRN (1− α)
(

(1− pr)
1
γ φ+ (1− pl)

1
γ (1− φ)

)γ−1 (
(1− pr)

1
γ
−1
φ+ (1− pl)

1
γ
−1

(1− φ)
)
.

Taking the derivate w.r.t. α and using (19) we get

∆|α=0 = γ
(

(pRN )
1
γ

)γ−1

(pRN )
1
γ
−1

(
πr − pRN

γ
φ(Y ) +

πl − pRN

γ
(1− φ(Y ))

)
+ γ

(
(1− pRN )

1
γ

)γ−1

(1− pRN )
1
γ
−1

(
pRN − πr

γ
φ(Y ) +

pRN − πl

γ
(1− φ(Y ))

)
+ (1− pRN )

(
(pRN )

1
γ

)γ−1 (
(pRN )

1
γ
−1
)

− (1− pRN )(γ − 1)
(

(pRN )
1
γ

)γ−2 (
(pRN )

1
γ
−1
)(πr − pRN

γ
φ(Y ) +

πl − pRN

γ
(1− φ(Y ))

)
(pRN )

1
γ
−1

− (1− pRN )
(

(pRN )
1
γ

)γ−1 (
(pRN )

1
γ
−2
)

(1− γ)

(
πr − pRN

γ
φ(Y ) +

πl − pRN

γ
(1− φ(Y ))

)
+ pRN

(
(1− pRN )

1
γ

)γ−1 (
(1− pRN )

1
γ
−1
)
.

− pRN (γ − 1)
(

(1− pRN )
1
γ

)γ−2 (
(1− pRN )

1
γ
−1
)(pRN − πr

γ
φ(Y ) +

pRN − πl

γ
(1− φ(Y ))

)
(1− pRN )

1
γ
−1

− pRN
(

(1− pRN )
1
γ

)γ−1 (
(1− pRN )

1
γ
−2
)

(1− γ)

(
pRN − πr

γ
φ(Y ) +

pRN − πl

γ
(1− φ(Y ))

)
.
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Finally, evaluating the powers of pRN and simplifying gives

∆|α=0 = γ

(
πr − pRN

γ
φ(Y ) +

πl − pRN

γ
(1− φ(Y ))

)
+ γ

(
pRN − πr

γ
φ(Y ) +

pRN − πl

γ
(1− φ(Y ))

)
+ (1− pRN )

− 1− pRN

pRN
(γ − 1)

(
πr − pRN

γ
φ(Y ) +

πl − pRN

γ
(1− φ(Y ))

)
− 1− pRN

pRN
(1− γ)

(
πr − pRN

γ
φ(Y ) +

πl − pRN

γ
(1− φ(Y ))

)
+ pRN

− pRN

1− pRN (γ − 1)

(
pRN − πr

γ
φ(Y ) +

pRN − πl

γ
(1− φ(Y ))

)
− pRN

1− pRN (1− γ)

(
pRN − πr

γ
φ(Y ) +

pRN − πl

γ
(1− φ(Y ))

)
= 1 .

C Proof of competitive equilibrium existence

We define a competitive equilibrium with consensus as a 2I+2-tuple of sequences of consumption
allocations (cit(σ))∞t=0, beliefs pi(σt|)∞t=0, consensus beliefs pC(σt|)∞t=0 and prices (q(σt))∞t=0, one
for each σ ∈ Σ, such that

1. Each agent i ∈ I consumption solves the utility maximization given endogenous beliefs pi

and prices (q(σt))(t,σt)

max
(cit(σ))∞t=0

Epi

[ ∞∑
t=0

βtui(cit(σ))

]
s.t.

∑
t≥0

∑
σt∈Σt

q(σt)
(
cit(σ)− eit(σ)

)
≤ 0. (20)

2. All good markets clear: ∑
i∈I

cit(σ) =
∑
i∈I

eit(σ) for all (t, σ). (21)

3. Each agent i ∈ I beliefs pi are as in Definition 4 for a given choice of consensus belief pC

and idiosyncratic belief πi.

4. The consensus belief pC is pM as in Definition 7 or pRN as in Definition 8 or pRNγ as in
Definition 9.

The competitive equilibrium with consensus differs from the standard one in that agent beliefs
are endogenously determined.

In what follows we prove that under A1-A4 (A5) there exists a competitive equilibrium with
consensus. In the first step, we shall assign an initial consumption share distribution φ0 and
derive sequences of consumption, prices, individual beliefs, and consensus beliefs consistent with
the First Order Conditions (FOC) of agents utility maximization problem, with market clearing,
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and with the definition of individual and consensus beliefs. This step is similar to the computation
of a Pareto optimal allocation given a set of Pareto weights but, due to the endogeneity of beliefs,
involves an additional fixed point argument for each iteration. The Brouwer fixed point theorem,
together with the smoothness of our maps, guarantees the existence of such fixed point for each
iteration. The details of this step are different for pM and the other consensuses because of their
different analytical form.

In the second step, we show that there exists an initial distribution of consumption shares
such that each agent’s budget constraint is satisfied. The main difference between this step and
the standard proof of the existence of the competitive equilibrium with exogenous beliefs is that
in our case the initial consumption-share distribution affects prices also via its effect on beliefs.
This further complication does not change the typical argument. Even in this case, Brouwer’s
fixed point theorem guarantees the existence of a fixed point.

Remark Our proof ensures existence, not uniqueness. Multiplicity of equilibria is not prob-
lematic because our results hold in all the equilibria that exist.

Let us start from the system of FOCs. Having defined c̄it(σ) = 1
ui(cit(σ))′

, the system of agent

i FOC and his budget constraint is
c̄i0 = 1

λi ,

c̄it(σ) = βpi(σt|)
q(σt|) c̄

i
t−1(σ) for all (t, σ),∑

t≥0

∑
σt∈Σt

q(σt)
(
cit(σ)− eit(σ)

)
= 0,

(22)

where λi is the multiplier associated with agent i’s budget constraint.

First step - pM is the consensus used by all i ∈ I
By Lemma 5 for all (t, σ)

pMt =
∑
i∈I

πi
αic̄it−1∑
j∈I α

j c̄jt−1

, (23)

so that, using Definition 4,

pit = (1− αi)
∑
j∈I

πj
αj c̄jt−1∑
k∈I α

k c̄kt−1

+ αiπi. (24)

Thus, for each given initial consumption distribution (φi0)Ii=1 we can compute initial marginal
utilities (c̄i0)Ii=1 , consensus beliefs pM1 , and individual beliefs (pi1)Ii=1.

Having determined beliefs, we can proceed to compute equilibrium consumption in date t = 1
as usual. From the second equation of (22), the ratio of agent i = 1 to agent j FOC between
t = 0 and (t = 1, σ1) gives

((uj)′)−1

(
c̄10

c̄j0

p1(σ1|)
pj(σ1|)

u1(φ1
1(σ1))e1(σ1))′

)
= φj1(σ1)e1(σ1).

Aggregating over agents we find

∑
j∈I

((uj)′)−1

(
c̄10

c̄j0

p1(σ1|)
pj(σ1|)

u1(φ1
1(σ1)e1(σ1))′

)
= e1(σ1). (25)
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Agent i = 1 consumption share φ1
1(σ1) can be derived from the above. A solution φ1

1(σ1) of
(25) always exists in (0, 1) because, by A1, A3, the l.h.s. is continuous in φ1

1(σ1) = x, goes
to 0 < e1(σ1) for x → 0, and is larger than e1(σ1) in x = 1.14 Repeating the same argument
for all the agents we find (φi1(σ1))Ii=1 and, repeating for all σ1 ∈ S, we find (φi1)Ii=1. Iterating
these steps for all t and all σt gives the stream of individual consumptions, individual beliefs,
and consensus beliefs for each choice of path σ ∈ Σ and for each choice of (φi0)Ii=1.

First step - pRN is the consensus used by all i ∈ I
By Lemma 2, in t = 0 the consensus pRN in (t = 1, σ1) defined in (8) can be written as

pRN (σ1|) =

∑
i∈I p

i(σ1|) c̄i0∑
j∈I c̄

j
1(σ1)∑

σ̃1∈S
∑
i∈I p

i(σ̃1|) c̄i0∑
j∈I c̄

j
1(σ̃1)

for all σ1 ∈ S, (26)

where pRN (σ1|) is also on the r.h.s. in each individual belief pi(σ1|) for all i ∈ I. The above
for all σ1 together with (25) for all σ1 define a map from ∆S to ∆S as follows. For each given
ρ ∈ ∆S , (25) for all σ1 and all i allows to compute (ci1(ρ))Ii=1 when individual beliefs (pi1)Ii=1

are built using ρ as the consensus, (pi1(ρ))Ii=1. Then, having consumption (ci1(ρ))Ii=1 and beliefs
(pi1(ρ))Ii=1, (26) gives the consensus beliefs pRN1 (ρ). We have an equilibrium consensus when
pRN1 (ρ) = ρ.

The existence of the latter follows from Brouwer’s fixed point theorem because the map that
we have built composing (25) for all i and σ1 and (26) for all σ1 goes from the simplex ∆S to
the simplex ∆S and is continuous. To prove continuity note that, given ρ, for each i and σ1 (25)
defines a function F i(ρ, φi1(σ1)) such that the solution of

Fi(ρ, φ
i
1(σ1)) = 0 determines ci1(σ1)(ρ) = e1(σ1)φi1(σ1) .

Continuity of ci1(σ1)(ρ) in ρ follows from the Implicit Function Theorem because, by A1,A3,
Fi(ρ, x) is the sum of compositions of monotone functions, and thus monotone, implying that
the derivative ∂Fi/∂x is different from zero in the solution φi1(σ1) of Fi(ρ, x) = 0. Continuity of
the composed map follows from continuity of ci1(σ1)(ρ) for all i and σ1 and from continuity of
(26).

Having found the date t = 0 consensus beliefs pRN1 , the corresponding date t = 1 consumption
distribution and individual beliefs are (ci1(pRN1 ))Ii=1 and (pi1(pRN1 ))Ii=1, respectively.

Iterating these steps for all t and all σt gives a sequence of consumptions, individual and
consensus beliefs as a function of the initial consumption distribution φ0.

First step - pRNγ is the consensus used by all i ∈ I

Note that when the consensus beliefs is pRNγ defined as in 9, this first step of the proof is the

same provided that map (26) is replaced by the corresponding expression of pRNγ as a function
of equilibrium consumption derived in Lemma 3.

14For the latter note that

∑
j∈I

((uj)′)−1

(
c̄10

c̄j0

p1(σ1|)
pj(σ1|)

u1(φ1
1(σ1)e1(σ1))′

)∣∣∣∣∣∣
φ1
1(σ1)=1

=
∑
j 6=1

((uj)′)−1

(
c̄10

c̄j0

p1(σ1|)
pj(σ1|)

u1(e1(σ1))′
)

+ e1(σ1)

.
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First step - different agents use different consensuses
The computation of streams of consumption, individual beliefs, and consensus beliefs given an
initial consumption distribution φ0 can be performed also when different agents use different
consensuses. We consider two cases: i) agents use either pM or pRN ; ii) agents use either pM or
pRNγ .15

When agents use either pM or pRN the proof proceeds similarly to when all agents use only
pRN . In t = 0, given a candidate consensus beliefs ρ ∈ ∆S , initial individual beliefs of those
mixing with pRN are computed directly from ρ while individual beliefs of those mixing with pM

are computed using (24) with πj = pj if j chooses pRN as consensus. Having all agents individual
beliefs for a given ρ, the combination of (25) and (26) for all s ∈ S determines the fixed point ρ
such that pRN1 (ρ) = ρ. From here we proceed as above.

The case when agents use either pM or pRMγ proceeds along the same way provided that

the map (26) is replaced by the corresponding expression of pRNγ as a function of equilibrium
consumption as in Lemma 3.

Second step
With the first step we have found individual consumption and beliefs for each given consumption
distribution φ0. Using the FOC, to such consumption streams there corresponds a sequence of
state- contingent prices (q(σt))(t,σt). We have an equilibrium when φ0 is chosen such that all
agents budget constraints, third equation in (22), are satisfied.

More formally, define

fi(φ0) =
∑
t≥0

∑
σt∈Σt

q(σt)eit(σ
t)−

∑
t≥0

∑
σt∈Σt

q(σt)et(σ
t)φit(σ

t),

... =
... =

...

fI(φ0) =
∑
t≥0

∑
σt∈Σt

q(σt)eIt (σ
t)−

∑
t≥0

∑
σt∈Σt

q(σt)et(σ
t)φIt (σ

t).

We have a competitive equilibrium with consensus if we can find φ ∈ ∆I such that f(φ) = 0.
The existence of (at least) one of these points follows from Brouwer’s fixed point Theorem, as
follows.

First note that each function is well defined and continuous. Well defined because the
aggregate endowment is bounded (A2) and state prices go to zero as fast as βt (FOC and
A1-A4). Continuous because, as shown in the proof of the first step for pRN , the equilibrium
consumption that solves (25) for all i, t, and σt is continuous in its parameters (we have proved
continuity with respect to ρ but the argument is the same for continuity in φ0, monotonicity in
the unknown consumption allows to use the Implicit Function Theorem).

Define the function f+ : ∆I → [0,∞)I as

f+
i (φ) = max{fi(φ), 0} for all i ∈ I.

Denote
α(φ) = 1 +

∑
i∈I

f+
i (φ) .

15In each case the definition of competitive equilibrium with consensus should be changed accordingly.
In 3. each agent should be allowed to use the consensus he chooses. In 4. both consensuses, pM or pRN

in i) and pM or pRNγ in ii), should be determined in equilibrium.
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By construction α(φ) ≥ 1 for all φ ∈ ∆I . Define the function F : ∆I → ∆I as

F (φ) =
φ+ f+(φ)

α(φ)
.

Continuity of fi for all i ∈ I imply that the function F is continuous on the compact convex set
∆I and thus has a fixed point φ̄ by the Brouwer Fixed Point Theorem. Showing that f(φ̄) = 0
ends the proof.

F (φ̄) = φ̄ implies

φ̄+ f+(φ̄)

1 +
∑
i∈I f

+
i (φ̄)

= φ̄ ⇒ f+(φ̄) = φ̄

(∑
i∈I

f+
i (φ̄)

)
. (27)

Assume first that
∑
i∈I

f+
i (φ̄) > 0. If φ̄i = 0, then, by construction, the budget constraint does

not hold for i and fi(φ̄) > 0, so that f+
i (φ̄) > 0 too, leading to a contradiction with (27). Then

it must be φ̄i > 0 for all i, implying f+
i (φ̄) > 0 for all i, by (27), and leading to a contradiction

with
∑
i∈I

fi(φ) = 0 for all φ (Walras Law). It follows that
∑
i∈I

f+
i (φ̄) = 0 and thus, being the sum

of non-negative functions, f+
i (φ̄) = 0 for all i, implying fi(φ̄) ≤ 0 for all i. The latter together

with
∑
i∈I

fi(φ̄) = 0 (Walras Law) implies fi(φ̄) = 0 for all i ∈ I.
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