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Model Comparison with Sharpe Ratios

Abstract

We show how to conduct asymptotically valid tests of model comparison when the extent of

model mispricing is gauged by the squared Sharpe ratio improvement measure. This is equivalent

to ranking models on their squared Sharpe ratios. Mimicking portfolios can be substituted for

any nontraded model factors and estimation error in the portfolio weights is taken into account

in the statistical inference. A variant of the Fama and French (2018) six-factor model, with a

monthly-updated version of the usual value spread, emerges as the dominant model over the period

1972–2015.



1. Introduction

Financial economists have long sought to explain differences in asset expected returns. The

resulting pricing models can be viewed statistically as constrained multivariate linear regressions

of asset returns on systematic factors. The constraint requires that asset expected returns be a

linear function of the betas (the slope coefficients). When returns in excess of a risk-free rate are

employed and the factors are themselves excess portfolio returns or return spreads, the regression

intercepts – the investment alphas – must be zero. The capital asset pricing model (CAPM)

of Sharpe (1964) and Lintner (1965) was the first such model, with the value-weighted market

portfolio of all financial assets serving as the equilibrium-based factor. Equilibrium theory has also

given rise to the intertemporal CAPM of Merton (1973) and Long (1974) and the consumption

CAPM of Breeden (1979) and Rubinstein (1976). These theories motivate the use of state variable

innovations and consumption growth as nontraded asset-pricing factors. However, as Breeden

(1979) notes, maximally-correlated portfolios can also serve as the factors in such models and the

usual asset-pricing restrictions continue to hold.

The empirically motivated three-factor model (FF3) of Fama and French (1993), with traded

size (SMB) and value (HML) factors along with the market excess return (MKT) was, for many

years, the premier factor model in the literature, sometimes supplemented by a momentum factor,

as suggested by Carhart (1997). In recent years, however, the floodgates have opened and many

alternative factor pricing models (to be discussed below) have been explored. In practice, it is

unlikely that a model’s constraints will hold exactly and so it is of interest to quantify the extent

of mispricing for each model. Barillas and Shanken (2017) address the issue of how to compare

models under the classic Sharpe improvement metric for evaluating the fit of a model. This is the

quadratic form in the alphas that is equivalent to the improvement in the squared Sharpe ratio

(expected excess return over standard deviation) obtained when investment in other asset returns

is permitted in addition to the given model’s factors. This metric is central to the Gibbons, Ross,

and Shanken (GRS, 1989) test of whether a given portfolio is mean-variance efficient, i.e., attains

the maximum possible Sharpe ratio.1

1This measure of reward to risk was introduced by Sharpe (1966) in the context of mutual-fund performance
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A key premise in the analysis of Barillas and Shanken (2017) is that a model should ideally

price the traded factors in the various models, as well as the returns designated as “test assets.” In

this context, they show that model comparison under the Sharpe improvement metric is driven by

the extent to which each model is able to price the factors in the other models, as reflected in the

“excluded-factor” alphas. Surprisingly, the test assets drop out of the analysis and are, therefore,

irrelevant for model comparison. It follows that the model whose factors permit the highest squared

Sharpe ratio to be achieved is ultimately preferred. The argument is straightforward: for simplicity,

consider two models with traded factors, f1 and f2, respectively. The extent to which f1 fails to

price f2 and the test-asset returns, R, is measured by the squared Sharpe increase, Sh2(f1, f2, R)−

Sh2(f1), that results from exploiting the corresponding alphas of f2 and R on f1. Similarly,

Sh2(f2, f1, R)−Sh2(f2) indicates the degree of misspecification of the model with factors f2. Taking

the difference gives Sh2(f2)−Sh2(f1) and thus the model with “less mispricing” also has the higher

squared Sharpe ratio.

Barillas and Shanken (2017) show that test assets also drop out if models are compared on the

basis of their statistical likelihoods. Barillas and Shanken (2018) build on this observation and de-

velop a Bayesian procedure that permits the simultaneous calculation of probabilities for all models

derived from a given set of factors. In essence, their procedure seeks to identify a parsimonious

model that spans the tangency portfolio for the traded factors, but without retaining redundant

factors. Direct evidence about the relative magnitudes of the squared Sharpe ratios for different

models is not provided, however. In this paper, we focus directly on a comparison of models’

squared Sharpe ratios in an asymptotic analysis under very general distributional assumptions.

Complementary insights about model comparison can thus be obtained by viewing the evidence

from each of these perspectives.

Another criterion for comparison due to Hansen and Jagannathan (HJ, 1997) has frequently

been used in the literature. This “HJ-distance” is a measure of model misspecification that indicates

how closely a proposed stochastic discount factor (SDF) based on a set of factors comes to being

evaluation and was dubbed the Sharpe ratio in the classic analysis of active-portfolio investment of Treynor and
Black (1973). Throughout the paper, we assume the (population) Sharpe ratio of the tangency portfolio is positive
so that maximizing the squared Sharpe ratio is equivalent to maximizing the ratio itself.
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a valid SDF; it can also be regarded as the maximum pricing error of the model over portfolios

with unit second moment. When a risk-free asset is available, Kan and Robotti (2008) suggest

a modification to the HJ-distance which requires that all competing SDFs assign the same price

to the risk-free asset. In this case, the distance compares performance based on pricing errors for

excess returns. With traded factors, they further note that imposing the restriction that the factors

are priced without error yields a distance measure equal to the increase in the squared Sharpe ratio.

Thus, our analysis can also be interpreted as a procedure for comparing models in terms of this

modified HJ-distance.

When the factors in one model are all contained in the other – the case of nested models

– the squared Sharpe ratio of the larger model must be at least as high as that for the nested

model. The question then is whether equality holds or the larger model is strictly superior. The

statistical analysis for this scenario is a simple application of the GRS test, with the factors that

are excluded from the nested model serving as left-hand-side returns. The challenge now is to

develop a test for comparing non-nested models, the case in which each model contains factors

not included in the other model. Although the asymptotic distribution of the Sharpe difference

has been derived for a pair of simple trading strategies, the generalization required for model

comparison must accommodate the difference for two tangency portfolios obtained from different

(possibly overlapping) sets of factors.2 We provide such an analysis, while also adjusting for the

well-known small-sample bias in the squared Sharpe ratio estimator, as documented by Jobson and

Korkie (1980). Our simulations indicate that the resulting procedure performs well in samples of

the sort employed in practice.

For models that include nontraded factors, pricing is typically explored using cross-sectional

regression (CSR) analysis. Building on earlier work by Balduzzi and Robotti (2008) and Lewellen,

Nagel, and Shanken (2010), Barillas and Shanken (2017) note that comparison in terms of a

quadratic form in the generalized least squares (GLS) pricing errors again reduces to examin-

ing the difference of squared Sharpe ratios, but with mimicking portfolios now substituted for the

nontraded factors. In this context, test assets along with any traded factors serve to identify the

2See, for example, Jobson and Korkie (1981), Memmel (2003), Christie (2005), and Opdyke (2007).
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mimicking portfolios and the statistical analysis must account for the additional estimation error in

the portfolio weights. We provide asymptotic results for this setting as well. Thus, analyzing mod-

els with nontraded factors again amounts to a comparison of the models’ squared Sharpe ratios –

an intuitively appealing economic criterion. This complements the more statistically-oriented CSR

model R2s that are often reported and whose asymptotic properties are analyzed by Kan, Robotti,

and Shanken (2013).

Our statistical methodology is applied in the comparison of several fairly recent models that

have been explored in the literature. We find that the liquidity-augmented three-factor Fama and

French (1993) model of Pastor and Stambaugh (2003)3 and the “betting-against-beta” CAPM

extension of Frazzini and Pedersen (2014) are dominated by the q-theory model of Hou, Xue, and

Zhang (2015), the Stambaugh and Yuan (2017) mispricing model, and the Fama and French (2018)

five-factor model with cash profitability. A variant of the original Hou, Xue, and Zhang (2015)

model that uses the cash profitability factor instead of its original profitability factor (ROE) is

superior to the six-factor Fama and French (2018) model that also includes momentum. The best

overall performer, however, is a variant of the six-factor Fama and French (2018) model which uses

a “timely” value factor due to Asness and Frazzini (2013) instead of the traditional HML factor.

2. Comparing Sharpe ratios for models with traded factors

We begin this section with a brief review of the GRS test. First, some definitions and notation.

A factor model M is a multivariate linear regression with N excess returns, R, and K traded

factors, f . With T observations on ft and Rt:

Rt = αR + βft + εt, t = 1, . . . , T , (1)

where Rt, εt, and αR are N -vectors, β is an N ×K matrix, and ft is a K-vector. GRS show that

the improvement in the squared Sharpe ratio from adding test assets R to the investment universe

is a quadratic form in the test-asset alphas:

α′RΣ−1αR = Sh2(f,R)− Sh2(f), (2)

3This is true with their traded liquidity factor or a mimicking portfolio constructed from their nontraded factor.
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where Σ is the invertible population covariance matrix of the zero-mean disturbance εt.
4 The

associated F -statistic is then proportional to the statistic obtained by substituting the sample

quantities in (2) and dividing by one plus the sample estimate of Sh2(f).5 Thus a test of αR = 0N ,

where 0N is an N -vector of zeros, is a test of whether f yields the maximum squared Sharpe ratio.

Next, we consider pricing restrictions for nested models and show how to implement the GRS

test in this context, with the factors excluded from the nested model serving as left-hand-side

returns.

2.1. Model comparison and alpha-based tests

Let A be a pricing model with factors [f ′1t, f
′
2t]
′ that nests model B with factors f1t, where f1t

and f2t are K1 and K2-vectors, respectively. In addition, let α21 denote the alphas for the factors

f2t when they are regressed on f1t. Proposition 1 in Barillas and Shanken (2017) shows that to

compare nested models, we need only focus on testing the excluded-factor restriction, α21 = 0K2

(test assets are irrelevant). This restriction can be formally evaluated using the basic alpha test.6

For example, testing the CAPM versus FF3 involves testing whether the CAPM alphas of HML

and SMB are zero. If this joint hypothesis is rejected, we have evidence that FF3 dominates the

CAPM and that the (squared) Sharpe ratio achievable with the factors in FF3 is higher than that

for the market factor. In this case, the tangency portfolio has nonzero weight on HML and/or

SMB.7

Comparing non-nested models is less straightforward, however. For example, let model A consist

of MKT and SMB and model B consist of MKT and HML. Suppose the GRS test indicates that

adding HML increases the squared Sharpe ratio of model A, while the alpha of SMB on model B is

not statistically significant. As Barillas and Shanken (2017) note, such findings would be consistent

4Also see related work by Jobson and Korkie (1982)
5With the usual maximum likelihood estimates, the proportionality constant is (T −N −K)/N and the degrees

of freedom of the F distribution are N and T −N −K. The divisor adjusts for the covariance matrix of the alpha
estimates conditional on the factors f .

6In the empirical section, we employ a version of the test that takes into account residual heteroscedasticity
conditional on the factors. We refer to this as the “basic alpha-based test.” This is the special case of Shanken (1990)
with no conditioning variables.

7Confidence intervals for the difference of squared Sharpe ratios with nested models can also be obtained as in
Lewellen, Nagel, and Shanken (2010).
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with model B having the higher squared Sharpe ratio. But in general, failure to reject either model

or finding that both can be rejected does not tell us which model has the higher squared Sharpe

ratio.8 Therefore, in this paper, we develop a direct asymptotic test of this hypothesis.

2.2. Asymptotic distribution of the difference in squared Sharpe ratios for non-nested models

Now consider two non-nested models (A and B) with factor returns fAt and fBt, respectively,

t = 1, 2, . . . , T. We assume throughout that all time series are jointly stationary and ergodic with

finite fourth moments. This includes the traded-factor returns and later, nontraded factors and

other basis-asset returns. Denote the maximum squared Sharpe ratios that are attainable from

the two sets of factors by θ2
A = µ′AV

−1
A µA and θ2

B = µ′BV
−1
B µB, where µA, µB, VA, and VB are

the nonzero means and invertible covariance matrices of the two sets of factors. Similarly, let the

corresponding sample quantities be θ̂2
A = µ̂′AV̂

−1
A µ̂A and θ̂2

B = µ̂′BV̂
−1
B µ̂B.9

PROPOSITION 1: The asymptotic distribution of the difference in sample squared Sharpe ratios

is given by
√
T ([θ̂2

A − θ̂2
B]− [θ2

A − θ2
B])

A∼ N(0, E[d2
t ]), (3)

provided that E[d2
t ] > 0, where

dt = 2(uAt − uBt)− (u2
At − u2

Bt) + (θ2
A − θ2

B), (4)

with uAt = µ′AV
−1
A (fAt − µA) and uBt = µ′BV

−1
B (fBt − µB).

Proof: See Appendix.

We prove this result in the Appendix by casting the estimation of the first and second mo-

ments of the returns in the generalized method of moments (GMM) framework and using the delta

method for functions of these parameters. The validity of our asymptotic approximations requires

that at least one of the Sharpe ratios of the models to be compared is different from zero. The

analysis in the Appendix (apart from the proofs of the various lemmas below) accommodates serial

correlation. However, for simplicity, the statements of this and other results in the body of the

8Of course, failure to reject a null hypothesis does not imply it is true and so power considerations further
complicate the interpretation of results.

9In our analysis, V̂ is the maximum likelihood estimator of V, the population covariance matrix.
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paper assume serially uncorrelated time series (factors and returns), a reasonable approximation

for many empirical applications. To conduct statistical tests, we need a consistent estimator of

E[d2
t ]. This can be obtained by replacing each term in dt with the corresponding sample estimate.

We denote the result d̂t and calculate the sample second moment,
∑T

t=1 d̂
2
t /T.

To better understand the determinants of the asymptotic variance of the difference in sample

squared Sharpe ratios, in the next lemma we assume that the traded-factor returns are multivariate

elliptically distributed.

LEMMA 1: When the traded-factor returns are i.i.d. multivariate elliptically distributed with kur-

tosis parameter κ,10 the asymptotic variance of the difference in sample squared Sharpe ratios is

given by

E[d2
t ] = θ2

A

[
4 + (2 + 3κ)θ2

A

]
+ θ2

B

[
4 + (2 + 3κ)θ2

B

]
− 2

{
2ρθAθB[2 + (1 + κ)ρθAθB] + κθ2

Aθ
2
B

}
, (5)

where ρ = Corr[uAt, uBt] = E[uAtuBt]/(θAθB) is the correlation between the returns on the tangency

portfolios of fAt and fBt.

Proof: See Appendix.

The first term is the asymptotic variance of θ̂2
A, the second term is the asymptotic variance of

θ̂2
B, and the last term is −2 times the asymptotic covariance between θ̂2

A and θ̂2
B. The variance

of dt depends on ρ, the correlation between the returns on the tangency portfolios of the factors

of models A and B, and on the kurtosis parameter κ. When ρ = 1, that is, the two tangency

portfolios are identical, E[d2
t ] = 0 and the asymptotic normality result in Proposition 1 breaks

down. When ρ = 0 and the factors are multivariate normally distributed, that is, κ = 0, the

asymptotic variance simplifies to E[d2
t ] = 2

[
θ2
A(2 + θ2

A) + θ2
B(2 + θ2

B)
]
. Finally, it can be shown

that E[d2
t ] is an increasing function of the kurtosis parameter κ.

The asymptotic variance in Proposition 1 forms the basis for testing non-nested models. When

the two models have overlapping factors, however, it is important from both an economic and a

statistical perspective to distinguish between two ways the null hypothesis can hold. One possibility

10The kurtosis parameter for an elliptical distribution is defined as κ = µ4/(3σ
4) − 1, where σ2 and µ4 are its

second and fourth central moments, respectively.
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is that the common factors span the (true) tangency portfolio based on the factors from both models.

If so, the squared Sharpe ratio of each model equals that of the common-factors model and the

other factors are redundant. This spanning condition can be evaluated by an alpha-based test,

with the factors that are excluded from each model together serving as the left-hand-side returns.

If spanning is rejected, some or all of the additional factors contribute to an increase in the squared

Sharpe ratio and equality may or may not hold for the two models. In the absence of spanning,

E[d2
t ] > 0 in (4) and one can perform a direct test of θ2

A = θ2
B using Proposition 1. Alternatively,

given an a priori judgment that exact spanning is implausible and can be ruled out, one can simply

use the direct test. In our empirical work, the alpha-based test easily rejects the spanning condition

in all cases considered and so we focus on the direct test in applications.

3. Comparing models with mimicking portfolios

Section 2 dealt with the case in which the factors are excess returns or return spreads. However,

some models, e.g., the consumption CAPM and the intertemporal CAPM, include one or more risk

factors that are not themselves asset returns. Breeden (1979) points out that such factors can be

replaced with portfolios whose weights are proportional to their betas from the projection of the

factors on returns and a constant. In this section, we first present the asymptotic distribution of

the so-called “mimicking portfolio” squared sample Sharpe ratio and then the distribution of the

difference in the sample squared Sharpe ratios for two models that could have as factors mimicking

portfolios.

3.1. Overview of the mimicking portfolio methodology

Suppose that the K-vector ft consists of some traded and some nontraded factors. Let Rt be

a vector of returns that includes the traded-factor returns as well as any basis-asset returns that

will be used to specify mimicking portfolios for the nontraded factors. In a typical cross-sectional

regression analysis, the basis assets would be the “test assets.” For a traded factor, the mimicking

portfolio is, of course, simply the factor itself. As noted by Barillas and Shanken (2017), in contrast

to the test-asset irrelevance result for traded-factor models, model comparison can depend on the
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basis assets used to construct the mimicking portfolios for nontraded factors.11

We define Yt = [f ′t , R
′
t]
′ and its population mean and covariance matrix as

µ = E[Yt] ≡

[
µf

µR

]
, (6)

V = Var[Yt] ≡

[
Vf VfR

VRf VR

]
. (7)

In the following analysis, we assume that Vf and VR are invertible and that VRf is of full column

rank.12 Consider the projection of ft on Rt and a constant and denote the resulting mimicking-

portfolio returns by f∗t = VfRV
−1
R Rt ≡ ARt with µ∗ = E[f∗t ] = AµR and V ∗ = Var[f∗t ] = AVRA

′ =

VfRV
−1
R VRf . For the mimicking portfolios to exist, the beta sums must not all be zero, i.e., we

assume that A1N 6= 0K , where 1N is an N -vector of ones and 0K is a K-vector of zeros.13 The

population squared Sharpe ratio of a set of mimicking portfolios is given by

θ2 = µ∗′V ∗−1µ∗ ≡ µ′RV −1
R VRf (VfRV

−1
R VRf )−1VfRV

−1
R µR. (8)

Suppose that we have T observations on Yt and let µ̂ and V̂ denote the sample moments of

Yt corresponding to the population moments in (6) and (7). The mimicking portfolio methodol-

ogy estimates the weights of the mimicking portfolios, the matrix A, by running the multivariate

regression

ft = a+ARt + ηt, t = 1, . . . , T . (9)

Let µ̂∗ = Âµ̂R and V̂ ∗ = ÂV̂RÂ
′, where Â = V̂fRV̂

−1
R . Then, the sample squared Sharpe ratio of a

set of mimicking portfolios can be obtained as

θ̂2 = µ̂∗′V̂ ∗−1µ̂∗ ≡ µ̂′RÂ′(ÂV̂RÂ′)−1Âµ̂R. (10)

3.2. Asymptotic distribution of the sample squared Sharpe ratio of a set of mimicking portfolios

11It should also be noted that increasing the number of basis assets used to construct the mimicking portfolio does
not lead, in general, to an increase in the squared Sharpe ratio of the mimicking portfolio returns. A proof of this
result is available from the authors upon request.

12This condition can be evaluated using rank restrictions tests such as the ones proposed by Cragg and Donald
(1997), Robin and Smith (2000), and Kleibergen and Paap (2006).

13Huberman, Kandel, and Stambaugh (1987) show that this condition is equivalent to assuming that the global
minimum-variance portfolio has positive systematic risk.
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Let vt = µ′RV
−1
R (Rt−µR), ut = µ∗′V ∗−1(f∗t −µ∗), and yt = µ∗′V ∗−1ηt. The following proposition

presents a general expression for the asymptotic distribution of θ̂2.

PROPOSITION 2: The asymptotic distribution of θ̂2 is given by

√
T (θ̂2 − θ2)

A∼ N(0, E[h2
t ]), (11)

provided that E[h2
t ] > 0, where

ht = 2ut(1− yt)− u2
t + 2ytvt + θ2. (12)

Proof: See Appendix.

When the factors are perfectly tracked by the returns, yt = 0 and the ht expression in the

proposition reduces to

ht = 2ut − u2
t + θ2, (13)

where ut = µ′fV
−1
f (ft − µf ) and θ2 = µ′fV

−1
f µf .

14

To conduct statistical tests, we need a consistent estimator of E[h2
t ]. This can be obtained by

replacing each term in ht with the corresponding sample estimate. We denote the result ĥt and

calculate the sample second moment,
∑T

t=1 ĥ
2
t /T.

Additional insight into the determinants of the asymptotic variance of the mimicking portfolio

sample squared Sharpe ratio in Proposition 2 can be obtained by specializing the analysis. The

next result examines the case of factors and returns that are multivariate elliptically distributed.

LEMMA 2: When the factors and returns are i.i.d. multivariate elliptically distributed with kurtosis

parameter κ, the asymptotic variance of θ̂2 is given by

E[h2
t ] = θ2

[
4 + (2 + 3κ)θ2

]
+ 4(1 + κ)E[y2

t ]
(
θ2
R − θ2

)
, (14)

where θ2
R = µ′RV

−1
R µR represents the squared Sharpe ratio of the tangency portfolio of R, E[y2

t ] =

µ∗′V ∗−1Vf ·RV
∗−1µ∗, and Vf ·R = Vf − VfRV −1

R VRf is the covariance matrix of the residuals from

projecting the factors on the returns.

14In this case, the asymptotic approximation provided by Maller, Durand, and Jafarpour (2010) and Maller,
Roberts, and Tourky (2016) could be used to derive the asymptotic variance of the sample squared Sharpe ratio.
However, from their expression, it is not clear how to accommodate serial correlation, while it is straightforward from
inspection of (13).
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Proof: See Appendix.

Note that the first term in (14) is all that would be needed to compute the asymptotic variance

of θ̂2 if the mimicking-portfolio weights were known. The second term in (14) represents the errors-

in-variables (EIV) adjustment required when the weights are estimated. The EIV adjustment term

is nonnegative since 1 + κ > 0 and θ2
R ≥ θ2.15 The latter inequality holds since θ2

R is the maximum

squared Sharpe ratio over all portfolios of R, whereas θ2 is the maximum squared Sharpe ratio over

combinations of the mimicking portfolios based on R. The impact of the EIV adjustment term on

the asymptotic variance of θ̂2 can be large when the factors are not well mimicked by the returns,

since in this case E[y2
t ] could be very different from zero.

For example, when K = 1, we have

E[y2
t ] =

(1−R2)θ2

R2
, (15)

where R2 = V
− 1

2
f VfRV

−1
R VRfV

− 1
2

f is the coefficient of determination from regressing ft on Rt. From

this expression, it is clear that there is a negative relationship between E[y2
t ] and R2, which indicates

that E[y2
t ] can be large when the factors are poorly mimicked by the underlying basis-asset returns.

In contrast, when the factors are perfectly tracked by the basis-asset returns, we have E[y2
t ] = 0

and the EIV adjustment term vanishes.16 The EIV term can also be large when θ2
R− θ2 is positive,

that is, when the K-factor pricing model does not hold. Conversely, when the K-factor pricing

holds, i.e., there exists a K-vector λ such that µR = VRfλ, then we have θ2
R = θ2, and the EIV

adjustment term will vanish. Finally, E[h2
t ] is increasing in the kurtosis parameter κ.

3.3. Pairwise model comparison with mimicking portfolios

Nested models. Without loss of generality, assume that model A has f∗At = [f∗′1t , f
∗′
2t ]
′, whereas

model B has f∗Bt = f∗1t. Let µ∗1 = E[f∗1t] and µ∗2 = E[f∗2t]. Similarly, let V ∗11 = Var(f∗1t), V
∗

12 =

Cov(f∗1t, f
∗′
2t), V

∗
22 = Var(f∗2t), and V ∗21 = V ∗′12 . Suppose f∗1t is a K1-vector and f∗2t is K2-vector, with

K = K1 +K2.

15Bentler and Berkane (1986) show that 1 + κ > 0.
16See Jobson and Korkie (1980) for a derivation of the asymptotic distribution of the sample squared Sharpe ratio

under the assumption that the traded factors (returns) are multivariate normally distributed.

11



As with traded-factor models, testing the equality of squared Sharpe ratios of mimicking port-

folios when the two models are nested amounts to evaluating the hypothesis that the alphas of

the mimicking portfolios excluded from the smaller model (f∗2t) are zero when regressed on the

mimicking portfolios common to both models (f∗1t). Paralleling the notation in Section 2.1, the

hypothesis is α∗21 = 0K2 . In this case, we can no longer use a basic alpha-based test since we have

generated regressors (the portfolio weights).

PROPOSITION 3: Under the null hypothesis H0 : α∗21 = 0K2,

T α̂∗′21V̂ (α̂∗21)−1 α̂∗21
A∼ χ2

K2
, (16)

where V̂ (α̂∗21) is a consistent estimator of

V (α̂∗21) = E[qtq
′
t], (17)

with

qt = ξt(1− y1t) + wt(vt − u1t), (18)

ξt = (f∗2t − µ∗2) − V ∗21V
∗−1

11 (f∗1t − µ∗1), y1t = µ∗′1 V
∗−1

11 (f1t − µ1), η1t = (f1t − µ1) − (f∗1t − µ∗1),

η2t = (f2t − µ2)− (f∗2t − µ∗2), u1t = µ∗′1 V
∗−1

11 (f∗1t − µ∗1), and wt = η2t − V ∗21V
∗−1

11 η1t.

Proof: See Appendix.

If K2 = 1, we can simply rely on the t-ratio associated with α̂∗21 to perform the test. In the

traded-factor case, we can employ the basic alpha-based test for the purpose of testing α21 = 0K2 ,

since in this case we have no generated regressors. We also show in the Appendix that the zero-

intercept restriction is equivalent to a restriction in the GLS cross-sectional regression framework,

but with excess returns (the vector R) projected on covariances with the factors, instead of betas.

Non-nested models. Now consider two non-nested models, A and B, with mimicking portfolios

f∗At and f∗Bt, respectively. Let µ∗A = E[f∗At] and µ∗B = E[f∗Bt]. Similarly, let V ∗A = Var(f∗At) and

V ∗B = Var(f∗Bt). Finally, denote the nonzero population squared Sharpe ratios that are attainable

from the two sets of mimicking portfolios by θ2
A and θ2

B, with sample counterparts θ̂2
A and θ̂2

B.
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PROPOSITION 4: The asymptotic distribution of the difference in sample squared Sharpe ratios

is given by
√
T
(

[θ̂2
A − θ̂2

B]− [θ2
A − θ2

B]
)
A∼ N

(
0, E[d2

t ]
)
, (19)

provided that E[d2
t ] > 0, where

dt = hAt − hBt, (20)

with uAt = µ∗′AV
∗
A
−1(f∗At − µ∗A), yAt = µ∗′AV

∗
A
−1ηAt, hAt = 2uAt(1 − yAt) − u2

At + 2yAtvt + θ2
A, and

similarly for model B. As defined earlier, ηjt = (fjt − µj)− (f∗jt − µ∗j ) for j = A,B.

Proof: See Appendix.

Proposition 4 reveals that when the factors of models A and B are perfectly spanned by the

basis-asset returns, that is, yAt = yBt = 0, then E[d2
t ] collapses to the asymptotic variance provided

in Proposition 1 for the traded-factor case. Typically, yAt and yBt are different from zero, and the

EIV adjustment term can be a main driver of the asymptotic variance of the difference in sample

squared Sharpe ratios of two sets of mimicking-portfolio returns. As earlier, when the factors and

returns are i.i.d. multivariate elliptically distributed, additional insights can be obtained.17 For

example, if the returns on the tangency portfolios of f∗At and f∗Bt are perfectly correlated, then

E[d2
t ] is zero and the asymptotic normality result in Proposition 4 breaks down. Perfect correlation

occurs, in particular, when both models A and B price the basis-asset returns correctly so that the

tangency portfolios for A and B both equal the tangency portfolio for the basis-asset returns. This

is unlikely to be true in practice, however.

Similar to the traded-factors scenario, it is important when evaluating two non-nested models

to test whether the common mimicking portfolios (if any) span the tangency portfolio based on the

mimicking portfolios for both models. If so, the mimicking portfolios specific to each model are

redundant and the models deliver the same squared Sharpe ratio. Equivalently, the alphas of those

redundant portfolios must be zero. Testing this hypothesis again boils down to an extension of the

basic alpha-based test to accommodate estimation error in the mimicking portfolio weights – in

17Lemma 3 in the Appendix provides an explicit expression for E[d2t ] under a multivariate elliptical assumption on
the factors and the returns.
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this case, with model-specific mimicking portfolios as the left-hand-side returns (see Proposition 5

in the Appendix).

4. Multiple model comparison

Suppose a researcher is considering more than two models and wants to test whether one of the

models – the “benchmark” – is at least as good (it has at least as high squared Sharpe ratio) as

the others. In such a case, the relevant significance level for a series of pairwise comparisons will

not be clear and so a joint test is needed. The analysis with traded factors is outlined here.18 We

begin with the simple case of nested models. Then we turn to the more challenging examination

of non-nested models.

Nested models. Consider a benchmark model that is nested in a series of alternative models. We

form a single alternative model that includes all of the factors contained in the models that nests

the benchmark. It is then easily demonstrated that the expanded model dominates the benchmark

model if and only if one or more of the “larger” models dominates it. Thus, the null hypothesis that

the benchmark model has the same (it cannot be higher) squared Sharpe ratio as these alternatives

can be tested using the methodology developed for pairwise nested-model comparison. Specifically,

we examine the alphas from projecting all the factors excluded from the benchmark model onto

the benchmark factors and test whether these alphas are jointly zero. If we reject the null of zero

alphas, then we conclude that the benchmark model is dominated by one or more of the larger

models. Otherwise, we fail to reject the hypothesis that the benchmark model performs as well as

the other models.

Non-nested models. Our multiple model comparison test for non-nested models is based on the

multivariate inequality test of Wolak (1987, 1989). Suppose we have p models. Let δ = (δ2, . . . , δp)

and δ̂ = (δ̂2, . . . , δ̂p), where δi = θ2
1 − θ2

i and δ̂i = θ̂2
1 − θ̂2

i for i = 2, . . . , p. We are interested in

testing

H0 : δ ≥ 0r vs. H1 : δ ∈ <r, (21)

18Details are available from the authors upon request along with the extension to accommodate mimicking portfo-
lios.
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where r = p − 1 is the number of non-negativity restrictions. Thus, under the null hypothesis,

model 1 (the benchmark) performs at least as well as models 2 to p (the competing models).

The test is based on the sample counterpart of δ, δ̂ = (δ̂2, . . . , δ̂p), which has an asymptotic

normal distribution with mean δ and covariance matrix Σδ (conditions for this are provided in the

Online Appendix to Kan, Robotti, and Shanken (2013)). The test statistic is constructed by first

solving the quadratic programming problem

min
δ

(δ̂ − δ)′Σ̂−1

δ̂
(δ̂ − δ) s.t. δ ≥ 0r, (22)

where Σ̂δ̂ is a consistent estimator of Σδ. Let δ̃ be the optimal solution of the problem in (22). The

likelihood ratio test of the null hypothesis is given by

LR = T (δ̂ − δ̃)′Σ̂−1

δ̂
(δ̂ − δ̃). (23)

A large value of LR suggests that the non-negativity restrictions do not all hold. To conduct

statistical inference, we need the asymptotic distribution of LR. We refer the readers to Kan,

Robotti, and Shanken (2013) for its derivation and a discussion of numerical methods for calculating

the implied p-value.

In comparing a benchmark model with a set of alternative models, we first remove those alter-

native models i that are nested by the benchmark model since by construction the null hypothesis,

δi ≥ 0, holds in this case. If any of the remaining alternatives is nested by another alternative

model, we remove the “smaller” model since the squared Sharpe ratio of the “larger” model will

be at least as big. Finally, we also remove from consideration any alternative models that nest

the benchmark, since for nested models the asymptotic normality assumption on δ̂i does not hold

under the null hypothesis that δi = 0.

5. Empirical results

We start by describing the factors and the various empirical asset-pricing specifications. Next,

we summarize the empirical findings for the tests of equality of squared Sharpe ratios for competing

traded-factor models. Finally, we explore model comparison for the mimicking-portfolio case.
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5.1. Factors and pricing models

We analyze eight asset-pricing models starting with an extension of the Fama-French (1993)

three-factor model which, in addition to the value-weighted market excess return (MKT), the small

minus big (SMB) size factor, and the high minus low book-to-market (HML) value factor, includes

a traded liquidity factor (LIQT) developed by Pastor and Stambaugh (2003) (FF3+LIQT). Second

is the Frazzini and Pedersen (2014) model, which extends the CAPM with the betting-against-beta

factor (BAB) – long low-beta assets and short high-beta assets (MKT+BAB).

The third model is the Fama and French (2018) five-factor model (FF5CP), which adds an

investment factor (CMA) and a cash profitability factor (RMWCP) to the FF3 model. Fama

and French create factors in three different ways. We use what they refer to as their “benchmark”

factors. Similar to the construction of HML, these are based on independent (2×3) sorts, interacting

size with cash profitability for the construction of RMWCP, and separately with investments to

create CMA. RMWCP is the average of the two high profitability portfolio returns minus the

average of the two low profitability portfolio returns. Similarly, CMA is the average of the two

low investment portfolio returns minus the average of the two high investment portfolio returns.

Finally, SMB is the average of the returns on the nine small stock portfolios from the three separate

2× 3 sorts minus the average of the returns on the nine big-stock portfolios.

Note that FF5CP differs from the original Fama and French (2015) five-factor model which

constructs the profitability factor using an accruals-based operating profitability measure suggested

by Novy-Marx (2013). Ball et al. (2016) argue that a cash-based measure of profitability yields a

factor that better accounts for average return differences in sorts on accruals. Following Fama and

French (2018), our fourth model adds the up-minus-down (UMD) momentum factor motivated by

the work of Jegadeesh and Titman (1993) to the FF5CP model (FF5CP+UMD).

The fifth model is the Hou, Xue, and Zhang (2015) four-factor model (HXZ), which includes

size (ME), investment (IA), and profitability (ROE) factors in addition to the market. In contrast

to Fama and French (2018), HXZ construct their factors from a triple (2 × 3 × 3) sort on these

characteristics. Moreover, their profitability measure is based on income before extraordinary
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items taken from the most recent public quarterly earnings announcement. Our sixth model is

the four-factor model of Stambaugh and Yuan (2015) (SY), which extends the CAPM by adding a

size factor (SMBSY) and two mispricing factors, “management” and “performance” (MGMT and

PERF), that aggregate information across 11 prominent anomalies by averaging rankings within

two clusters exhibiting the greatest return co-movement.

Given that the choice of profitability factor is a key to the performance of the five-factor model

of Fama and French, our seventh model substitutes RMWCP for ROE in the HXZ model (HXZCP).

Our final model (FF5CP*+UMD) includes the more timely value factor HMLm from Asness and

Frazzini (2013) instead of the standard HML. HMLm is based on book-to-market rankings that

use the most recent monthly stock price in the denominator, whereas HML uses annually updated

lagged prices. The sample period for our data is January 1972 to December 2015. Some factors

are available at an earlier date, but the HXZ factors start in January of 1972 due to the limited

coverage of earnings announcement dates and book equity in the Compustat quarterly files.

Panel A of Table 1 presents summary statistics for our monthly factor returns – means, standard

deviations, and t-statistics. The latter is, of course, proportional to the factor Sharpe ratio. All

factors have positive and sizable average returns. The factor with the highest return premium is

BAB, followed by UMD, PERF, and MGMT. The size factors, SMB and ME, have the smallest

return premiums. Momentum has the highest volatility of all the non-market factors. All premiums,

with the exception of SMB, have t-statistics larger than 2. The cash profitability factor, RMWCP,

has the lowest standard deviation, which partly explains why it has the highest t-statistic (6.67).

Table 1 about here

Panel B of Table 1 provides the factor correlations. Naturally, different versions of the same

factor tend to be highly correlated. We make a few additional observations about the factors that

are newer to the factor-pricing literature. As noted by Asness and Frazzini (2013), UMD is much

more negatively correlated with timely value, HMLm (−0.654), than with HML (−0.168). On the

other hand, correlations between the value, investment, and MGMT factors are strong and positive,
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but weaker for HMLm than HML. The correlations between profitability, momentum, and PERF

are also high. These mispricing factor correlations make sense insofar as the MGMT cluster includes

the investment/assets anomaly, while the PERF cluster includes momentum and gross profitability.

5.2. Tests of equality of squared Sharpe ratios for competing traded-factor models

In Table 2, we report pairwise tests of equality of the squared Sharpe ratios for different models,

some nested and others non-nested.19 The models are presented from left to right and top to

bottom in order of increasing squared Sharpe ratios. Panel A shows the differences between the

(bias-adjusted) sample squared Sharpe ratios (column model − row model) for various pairs of

models. In Panel B, we report p-values for the tests of equality of the squared Sharpe ratios. The

estimate for each model is modified so as to be unbiased in small samples under joint normality.

This entails multiplying θ̂2 by (T −K − 2)/T and subtracting K/T , eliminating the upward bias,

while leaving the asymptotic distribution unchanged. We use * to highlight those cases that are

significant at the 5% level and ** for the 1% level.

Table 2 about here

The diagonal elements of Panel A are the sample squared Sharpe ratio differences between

the model in that column and the next best model.20 As previously discussed, p-values must be

computed differently depending on whether the models to be compared are nested or non-nested.

In the case of nested models, we test whether the factors in the larger model that are excluded from

the smaller model have zero alphas when regressed on the smaller model. For example, since FF5CP

19The required condition mentioned earlier, that a model’s Sharpe ratio is nonzero, can be evaluated using a chi-

squared test. Specifically, under H0 : θ2 = 0, T θ̂2
A∼ χ2

K . In our empirical application, we reject this null for all of
our models at the 1% level. In addition, as emphasized by Maller and Turkington (2002), maximizing the squared
Sharpe ratio is equivalent to maximizing the ratio itself when b = 1′KV

−1
f µf ≥ 0. This condition can be tested by

considering b̂ = 1′K V̂
−1
f µ̂f and its associated t-statistic. Specifically, the asymptotic distribution of b̂ is given by (a

proof of this result is available from the authors upon request)

√
T (b̂− b) A∼ N(0, E[g2t ]),

where gt = ut(1− yt) + b, ut = 1′KV
−1
f (ft − µf ), and yt = µ′fV

−1
f (ft − µf ). In the data, the b estimates are positive

for all models and the associated t-ratios range from 4.55 to 9.58, thus suggesting that the b’s for the various models
are reliably positive.

20The bias-adjusted sample squared Sharpe ratio for FF3+LIQT, not shown, is 0.049.
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is nested in FF5CP+UMD, the corresponding p-value reported in Panel B is for the intercept in

the regression of UMD on FF5CP.

When the models are non-nested, which is the case for the rest of our comparisons, we use our

sequential test. We first check whether the difference in squared Sharpe ratios between the model

composed of the common factors and the one that includes all the factors from both models is

different from zero. This is a test of whether the alphas of the non-common factors on the common

ones are zero. If this test fails to reject, then the evidence is consistent with the common-factors

model being as good as the model that adds the non-overlapping factors. Thus, the two non-nested

models are equivalent as well under this null. However, if the preliminary test rejects, then we

proceed to directly test whether the squared Sharpe ratios of the non-nested models are different

by computing the p-value based on the results in Proposition 1.

For example, in comparing the two non-nested models, HXZ and HXZCP, we first run the

alpha-based test for the different profitability factors, ROE and RMWCP, regressed on the three-

factor model (MKT ME IA) that is nested in these two models. This test easily rejects the joint

hypothesis that both alphas are zero with p-value virtually zero. In fact, this is the case for the

preliminary test in all our non-nested pairwise model comparisons. Had the preliminary test not

rejected in this example, the evidence would be consistent with the three-factor model being as

good as either of the two four-factor models. However, since it did reject, the next step is to divide

the (bias-adjusted) squared Sharpe ratio difference, 0.273 − 0.166 = 0.107, by its standard error,

0.038, which is the square root of the asymptotic variance given in Proposition 1 divided by the

number of monthly observations (
√

0.777/528). This yields a t-statistic of 2.78, with p-value 0.005,

as reported in Panel B.

The main empirical findings can be summarized as follows. First, the results show that the

FF3+LIQT and MKT+BAB models are outperformed by the other models, with significance at

the 1% level except for HXZ which outperforms MKT+BAB with a 3% level of significance. Next,

FF5CP has a higher sample squared Sharpe ratio than both SY and HXZ, but the difference

between them is not statistically significant. When we add the momentum factor to FF5CP model,
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it outperforms HXZ at the 5% level, but it still does not dominate the SY model, which includes

the related factor, PERF. Moreover, adding momentum to FF5CP does not result in a statistically

significant increase in the squared Sharpe ratio. Replacing the original profitability factor (ROE) in

the HXZ model with the cash-based profitability factor (RMWCP) results in a substantial increase

in the squared Sharpe ratio, that is statistically significant at the 1% level. This version of HXZ,

HXZCP, now outperforms the SY model as well as FF5CP and FF5CP+UMD, but the differences

are not reliably different from zero. Finally the choice of value factor in the six-factor Fama and

French (2018) model is important. In fact, with the more timely value factor (HMLm), the model

FF5CP*+UMD outperforms all of the other models at the 5% level.21

Thus far, we have considered comparisons of two competing models. Statistical significance

may be overstated, however, by the inevitable process of “searching” for comparisons that lead to

rejection. Therefore, given a set of models of interest, one may want to test whether a single model,

the “benchmark,” has the highest squared Sharpe ratio of all the models. To explore this issue, we

use the test for non-nested models based on the multivariate inequality analysis of Wolak (1989),

outlined in Section 4. The null hypothesis in this joint test is that none of the other models is

superior to the benchmark. The alternative is that some other model has a higher (population) θ2

than the benchmark.

The empirical results are presented in Table 3. Naturally, since FF5CP*+UMD has the highest

sample squared Sharpe ratio, the p-value for this model in the joint test is very large, consistent with

the conclusion that FF5CP*+UMD performs at least as well in population as the other models.

More interesting is the case in which HXZCP is the benchmark. Whereas FF5CP*+UMD was

superior (p-value of 0.043) to this model in the pairwise comparisons, the p-value for the joint

test with benchmark HXZCP is 0.118. Thus, we miss rejecting the hypothesis that HXZCP has a

squared Sharpe ratio at least as big as those for the alternative models. However, we do continue

to reject the remaining models with p-values close to zero in the joint test except for SY, which we

can only reject at the 5% level.

21If we exclude CMA and SMB from this six-factor model, FF5CP*+UMD, the sample squared Sharpe ratio of
this four-factor model is still higher than that of HXZCP by 0.05. However, the difference is no longer statistically
significant (p-value of 0.224).
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Table 3 about here

5.3. Model comparison with a nontraded liquidity factor

Section 3 develops a test for comparing competing models when one or both models contain

mimicking portfolios. As an application of that methodology, we explore the nontraded liquidity

factor of Pastor and Stambaugh (2003). Their aggregate liquidity measure is a monthly cross-

sectional average of individual-stock liquidity measures. These individual measures are based on

daily returns and volume data and capture the relationship between trading volume and subsequent

returns. The actual series of nontraded factor values, LFt, is then defined in terms of innovations

in aggregate liquidity. The traded factor that we discussed earlier (LIQT) is the value-weighted

return on the 10−1 (high−low) decile portfolio spread from a sort on historical liquidity betas with

respect to the nontraded factor LF.

We first construct a mimicking portfolio (LIQM) by regressing LFt on a constant and all of

the traded-factor returns considered above. Thus, R = (MKT, SMB, HML, CMA, RMWCP, ME,

IA, ROE, UMD, HMLm, BAB, SMBSY, MGMT, PERF, LIQT) includes all the factors in the

models that we wish to compare. Additional basis assets could be considered, but are not required.

Although some of these returns are highly correlated, we are interested in the fitted value (the

overall mimicking return), not the individual weights. The sample period is again January 1972 to

December 2015.

There is no requirement for asset pricing or the asymptotic analysis that the mimicking portfolio

be highly correlated with the underlying factors. However, the correlation should be significantly

different from zero so as to avoid complications akin to the “useless factor” problems in cross-

sectional regressions (see Kan and Zhang (1999)). The mimicking portfolio regression for LF has

an adjusted R2 of 0.17 and 7 of the 15 mimicking assets have weights that are reliably different from

zero at the 5% level. Furthermore, the F test of joint significance yields a p-value which is essentially

zero. Thus, the evidence indicates that these asset returns are able to mimic the nontraded factor to

some degree. Surprisingly, the contribution of the traded liquidity factor, LIQT, to the mimicking
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portfolio is not reliably different from zero.22

Insofar as marginal utility is low when the market is highly liquid, asset-pricing theory suggests

a positive premium for liquidity risk. The liquidity mimicking portfolio, LIQM, has an average risk

premium of 0.0005 per month over our sample period. The associated t-statistic is 0.27, so the

estimate is not reliably different from zero.23 In contrast, LIQT has an average premium of 0.0043

or 5.2% annualized, with a t-statistic of 2.80. The correlation between LIQT and LIQM is 0.115,

again not reliably different from zero, whereas the correlation of LIQM with market excess returns

is 0.726.

Although the sample premium for LIQM is not statistically different from zero, the squared

Sharpe ratio for the FF3+LIQM tangency portfolio is positive, as expected, given inclusion of

the FF3 factors.24 Next, we compare the performance of this nontraded liquidity model to that

of the traded-factor models considered earlier, again taking into account estimation error in the

mimicking portfolio weights. Accordingly, Panel A of Table 4 reports the differences in squared

Sharpe ratios. As earlier, models are presented in order of increasing squared Sharpe ratio from

left to right. Finally, we assess the statistical significance of these differences using the result in

Proposition 4, which provides the asymptotic variance of the difference in sample squared Sharpe

ratios for two models with mimicking portfolios. In this application, some terms drop out, since

FF3+LIQM is being compared to models with all traded factors. Panel B of Table 4 reports the

22Panel B of Table 1 indicates that the correlation between LIQT and the other traded factors is minimal as well.
23The t-statistic is computed based on the asymptotic distribution of µ̂∗, which is given by

√
T (µ̂∗ − µ∗) A∼ N(0K , E[qtq

′
t]), (24)

where
qt = (f∗t − µ∗) + ηtvt. (25)

A proof of this result is available from the authors upon request. To conduct statistical tests, we need a consistent
estimator of E[qtq

′
t]. This can be obtained, as earlier, by replacing all quantities in qt by their sample counterparts

and taking the time-series sample second moment.
24Using a chi-squared test with 4 degrees of freedom we reject the null of a zero squared Sharpe ratio for FF3+LIQM

at the 1% level. As for the models with traded factors only, we find no evidence of a negative b = 1′KV
∗−1µ∗. It can

be shown that the asymptotic distribution of b̂ = 1′K V̂
∗−1µ̂∗ is given by (a proof of this result is available from the

authors upon request and takes into account the estimation error of the weights of the mimicking portfolio)

√
T (b̂− b) A∼ N(0, E[g2t ]),

where gt = 1′KV
∗−1(f∗t − µ∗)(1− yt − ut) + 1′KV

∗−1ηt(vt − ut) + b, ut = µ∗′V ∗−1(f∗t − µ∗), and yt = µ∗′V ∗−1ηt. In
the data, the b estimate for FF3+LIQM is positive (7.81) and the associated t-ratio is 1.74.
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p-values. FF3+LIQM is dominated by all models except for FF3+LIQT and MKT+BAB. Thus,

recalling the evidence in Table 2, neither the traded nor the nontraded liquidity models fare well

in our tests.

Table 4 about here

6. Simulation evidence

In this section, we explore the small-sample properties of our various test statistics via Monte

Carlo simulations. The time-series sample size is taken to be T = 540, close to the actual sample

size of 528 in our empirical work. The factor and basis-asset returns are drawn from a multivariate

normal distribution. We compare actual rejection rates over 100,000 iterations to the nominal 5%

level of our tests. A more detailed description of the various simulation designs can be found in

the Appendix.

We start by considering models with traded factors only. As emphasized in Section 2.1, the null

hypothesis of equal squared Sharpe ratios for nested models can be tested using the alpha-based

test. Here, the size of the alpha-based test, with FF3 nested in FF5CP, is inferred from simulations

in which RMWCP and CMA are exactly priced by the three common factors, MKT, SMB, and

HML. The alpha-based test performs very well, with a rejection rate of 5%. Power for the nested-

models test is evaluated by simulating data for which the true squared Sharpe ratios equal the

sample values and thus FF3 is dominated by FF5CP. The rejection rate for this scenario is 100%.

Next, we turn to non-nested models and consider FF3+LIQT vs. HXZCP. This is an example

of non-nested models with a common factor, MKT. In this case, as emphasized in Section 2.2, the

null of equal squared Sharpe ratios can hold when the common factor, MKT, spans the tangency

portfolio based on the factors from both models (SMB, HML, and LIQT for FF3+LIQT, and ME,

RMWCP, and IA for HXZCP). Again, this condition can be tested using the alpha-based test. This

test is right on the money with rejection rates of 5.0% and 100% under the null and alternative

hypotheses, respectively. If we reject this spanning condition, then we can still have equality of

squared Sharpe ratios and this equality can be tested using the normal test in Proposition 1. In this
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experiment, the factor means are specified in such a way that the squared Sharpe ratio is the same

for FF3+LIQT and HXZCP, that is, 0.284. The size property of the normal test is excellent (5%).

The power of the normal test is explored using the sample squared Sharpe ratios of FF3+LIQT

and HXZCP as the population squared Sharpe-ratio values. These are 0.058 and 0.284, so the null

hypothesis of equivalent model performance is false in these simulations. The rejection rate of 100%

reflects the large differences in sample squared Sharpe ratios across models and the high precision

of these estimates.

We also examine the small-sample properties of the multiple-comparison inequality test for non-

nested models. Recall that the composite null hypothesis for this test maintains that θ2 for the

benchmark model is at least as high as that for all other models under consideration. Therefore, to

evaluate size, we consider the case in which all models have the same θ2 value, so as to maximize the

likelihood of rejection under the null. We simulate six different single-factor models corresponding

to the factors MKT, HMLm, RMWCP, UMD, IA, and LIQT, and implement the likelihood ratio

test with r = 5. Since we calibrate the parameters to the market factor, MKT, the implied common

θ2 for the various models is 0.013. The rejection rates range from 3.3% to 5.9%. Thus, the test

is fairly well specified under the null of equivalent model performance. To examine power, we

simulate four of our original models, FF3+LIQT, HXZ, FF5CP, and FF5CP*+UMD, with the

sample squared Sharpe ratios serving as the population θ2s. Since FF5CP*+UMD has the highest

θ2, we let each of the remaining models serve as the null model in a multiple comparison test against

three alternative models. Thus, we evaluate power for three different scenarios. The rejection rates

for the test are very high: 100% for FF3+LIQT, 99.9% for FF5CP, and 95.8% for HXZ.

Turning to the analysis with mimicking portfolios, we set R = (MKT, SMB, HML, CMA,

RMWCP, ME, IA, ROE, UMD, HMLm, BAB, SMBSY, MGMT, PERF, LIQT), that is, R contains

all the traded-factor returns considered in the empirical section of the paper. We start from the

nested-model case. As emphasized in Section 3.3, this is a situation in which we can no longer

employ the basic alpha-based test to implement nested-model comparison since the mimicking

portfolio weights need to be estimated. Instead, we rely on the chi-squared test in Proposition 3.
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The size of this test, with CAPM nested in FF3+LIQM, is inferred from simulations in which the

liquidity mimicking portfolio, SMB, and HML are exactly priced by the common factor, MKT, and

the mean returns, µR, also incorporate the constraint α∗21 = 0K2 .

Our new test performs very well, with a rejection rate of 5.1%. The power properties of our

chi-squared test are analyzed by simulating data for which the true squared Sharpe ratios equal

the sample values and thus CAPM is dominated by FF3+LIQM (the difference in true squared

Sharpe ratios is 0.041). The rejection rate for this scenario is 100%. If, instead of CAPM nested

in FF3+LIQM, we considered FF3 nested in FF3+LIQM, the power of the test would have been

substantially lower since the difference in true squared Sharpe ratios is only 0.012 in this case.

Naturally, “good” power requires that the differences in model performance are fairly large.

As for non-nested models, we consider FF3+LIQM vs. HXZCP, and test the spanning condition

using our result in Proposition 5 in the Appendix. The chi-squared test enjoys excellent size and

power properties with a rejection rate of 5.3% under the null of spanning and a rejection rate of

100% under the alternative of no spanning. Equality of squared Sharpe ratios can occur also when

the spanning condition is rejected. In this scenario, the normal test in Proposition 4 should be used.

To investigate the size properties of the normal test, the factor means are specified in such a way

that the squared Sharpe ratio is the same for FF3+LIQM and HXZCP, that is, 0.139. The normal

test is found to perform very well under the null, with a rejection rate of 5.6%. The power of the

normal test is explored using the sample squared Sharpe ratios of FF3+LIQM and HXZCP as the

population squared Sharpe-ratio values. These are 0.054 and 0.284, respectively. The rejection rate

of 98.6% for the normal test is excellent. However, in general, power can be affected by the limited

precision of the sample squared Sharpe ratios of the models, given the residual in the projection of

the nontraded factors on the basis-asset returns.

Finally, in order to analyze the size properties of the multiple-model comparison test, we again

simulate six different single-factor models corresponding to the factors MKT, HMLm, RMWCP,

UMD, IA, and the liquidity mimicking portfolio LIQM. Similar to the traded-factor case, we cali-

brate the parameters to the market factor, MKT. The implied common θ2 for the various models is
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therefore 0.013. The rejection rates range from 3.3% to 5.9%. Thus, the test is fairly well specified

under the null of identical model performance. To examine power, we simulate four of our original

models, FF3+LIQM, FF5CP, HXZ, and FF5CP*+UMD, with the sample squared Sharpe ratios

serving as the population θ2s. Since FF5CP*+UMD has the highest θ2, we let each of the remain-

ing models serve as the null model in a multiple comparison test against three alternative models.

The rejection rates for the test are 100% for FF3+LIQM, 99.9% for FF5CP, and 96% for HXZ.

In summary, our Monte Carlo simulations suggest that the proposed tests should be fairly

reliable for the sample size encountered in our empirical work.

7. Conclusion

Barillas and Shanken (2017) analyze model comparison with the extent of model mispricing

measured by the improvement in the squared Sharpe ratio. This is the increase obtained when

investment in other returns (traded factors and test assets) is considered in addition to a model’s

factors. In this framework, model comparison is equivalent to identifying the model whose factors

yield the highest squared Sharpe ratio. Moreover, this result extends to models that include

nontraded factors, with mimicking portfolios substituted for those factors.

We have shown how to conduct asymptotically valid tests for such model comparisons and apply

these methods in an analysis of a variety of factor-pricing models. A variant of the six-factor model

of Fama and French (2018), with a monthly-updated version of the usual value spread, emerges as

the dominant model over the period 1972–2015.
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Appendix

Proof of Proposition 2:

The proof relies on the fact that θ̂2 is a smooth function of µ̂ and V̂ . Therefore, once we have

the asymptotic distribution of µ̂ and V̂ , we can use the delta method to obtain the asymptotic

distribution of θ̂2. Let

ϕ =

[
µ

vec(V )

]
, ϕ̂ =

[
µ̂

vec(V̂ )

]
. (A.1)

We first note that µ̂ and V̂ can be written as the GMM estimator that uses the moment conditions

E[rt(ϕ)] = 0(N+K)(N+K+1), where

rt(ϕ) =

[
Yt − µ

vec((Yt − µ)(Yt − µ)′ − V )

]
. (A.2)

Since this is an exactly identified system of moment conditions, it is straightforward to verify that

under the assumption that Yt is stationary and ergodic with finite fourth moment, we have

√
T (ϕ̂− ϕ)

A∼ N(0(N+K)(N+K+1), S0), (A.3)

where

S0 =
∞∑

j=−∞
E[rt(ϕ)rt+j(ϕ)′]. (A.4)

Note that S0 is a singular matrix as V̂ is symmetric, so there are redundant elements in ϕ̂. We

could have written ϕ̂ as [µ̂′, vech(V̂ )′]′, but the results are the same under both specifications.

Using the delta method, the asymptotic distribution of θ̂2 is given by

√
T (θ̂2 − θ2)

A∼ N

(
0,

[
∂θ2

∂ϕ′

]
S0

[
∂θ2

∂ϕ′

]′)
. (A.5)

It is straightforward to obtain

∂θ2

∂µ′f
= 0′K ,

∂θ2

∂µ′R
= 2µ∗′V ∗−1A. (A.6)

The derivative of θ2 with respect to vec(V ) is more involved and is given by

∂θ2

∂vec(V )′
=

[
0′K , µ

∗′V ∗−1A
]
⊗
[
0′K , −µ∗′V ∗−1A

]
+
[
0′K , µ

′
R

(
V −1
R −A′V ∗−1A

)]
⊗
[
2µ∗′V ∗−1, −2µ∗′V ∗−1A

]
. (A.7)
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Using the expression for ∂θ2/∂ϕ′, we can simplify the asymptotic variance of θ̂2 to

V (θ̂2) =

∞∑
j=−∞

E[ht(ϕ)ht+j(ϕ)], (A.8)

where

ht(ϕ) =
∂θ2

∂ϕ′
rt(ϕ)

= 2µ∗′V ∗−1A(Rt − µR) + vec

(
[0′K , −µ∗′V ∗−1A][(Yt − µ)(Yt − µ)′ − V ]

[
0K

A′V ∗−1µ∗

])

+ vec

(
[2µ∗′V ∗−1, −2µ∗′V ∗−1A][(Yt − µ)(Yt − µ)′ − V ]

[
0K

(V −1
R −A′V ∗−1A)µR

])
= 2µ∗′V ∗−1(f∗t − µ∗)− µ∗′V ∗−1(f∗t − µ∗)(f∗t − µ∗)′V ∗−1µ∗

+ 2µ∗′V ∗−1(ft − µf )(Rt − µR)′V −1
R µR − 2µ∗′V ∗−1(f∗t − µ∗)(Rt − µR)′V −1

R µR

− 2µ∗′V ∗−1(ft − µf )(f∗t − µ∗)′V ∗−1µ∗ + 2µ∗′V ∗−1(f∗t − µ∗)(f∗t − µ∗)′V ∗−1µ∗ + θ2

= 2ut − u2
t + 2µ∗′V ∗−1ηtvt − 2µ∗′V ∗−1ηtut + θ2

= 2ut(1− µ∗′V ∗−1ηt)− u2
t + 2µ∗′V ∗−1ηtvt + θ2

= 2ut(1− yt)− u2
t + 2ytvt + θ2. (A.9)

In particular, if ht is uncorrelated over time, then we have V (θ̂2) = E[h2
t ], and its consistent

estimator is given by

V̂ (θ̂2) =
1

T

T∑
t=1

ĥ2
t . (A.10)

When ht is autocorrelated, one can use Newey and West’s (1987) method to obtain a consistent

estimator of V (θ̂2).

This completes the proof of Proposition 2.

Proof of Lemma 2

In our proof, we rely on the mixed moments of multivariate elliptical distributions. Lemma 2

of Maruyama and Seo (2003) shows that if (Xi, Xj , Xk, Xl) are jointly multivariate elliptically
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distributed and with mean zero, we have

E[XiXjXk] = 0, (A.11)

E[XiXjXkXl] = (1 + κ)(σijσkl + σikσjl + σilσjk), (A.12)

where σij = Cov[Xi, Xj ]. Consider

ht = 2ut(1− yt)− u2
t + 2ytvt + θ2

from Proposition 2. It is straightforward to show that

E[ut] = 0, (A.13)

E[vt] = 0, (A.14)

E[yt] = 0, (A.15)

E[u2
t ] = θ2, (A.16)

E[v2
t ] = θ2

R, (A.17)

E[y2
t ] = µ∗′V ∗−1Vf ·RV

∗−1µ∗, (A.18)

E[utvt] = θ2, (A.19)

E[utyt] = 0, (A.20)

E[vtyt] = 0. (A.21)

With these results and under the multivariate elliptical assumption on Yt, we can show that

E[h2
t ] = 4E[u2

t (1− yt)2] + E[u4
t ] + 4E[y2

t v
2
t ]− 4E[u3

t (1− yt)] + 8E[utvtyt(1− yt)]

− 4E[u2
t vtyt]− 2θ4 + θ4

= 4θ2 + 4(1 + κ)θ2E[y2
t ] + 3(1 + κ)θ4 + 4(1 + κ)θ2

RE[y2
t ]− 0− 8(1 + κ)θ2E[y2

t ]− 0− θ4

= θ2[4 + (2 + 3κ)θ2] + 4(1 + κ)E[y2
t ](θ

2
R − θ2). (A.22)

This completes the proof of Lemma 2.

Proofs of Propositions 1 and 4:
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Using Proposition 2, we obtain the following expressions for models A and B:

hAt =

[
∂θ2

A

∂ϕ

]′
rt = 2uAt(1− yAt)− u2

At + 2yAtvt + θ2
A, (A.23)

hBt =

[
∂θ2

B

∂ϕ

]′
rt = 2uBt(1− yBt)− u2

Bt + 2yBtvt + θ2
B. (A.24)

By the delta method and equations (A.1)–(A.4), the asymptotic distribution of θ̂2
A− θ̂2

B is given by

√
T ([θ̂2

A − θ̂2
B]− [θ2

A − θ2
B])

A∼ N

(
0,

[
∂(θ2

A − θ2
B)

∂ϕ

]′
S0

[
∂(θ2

A − θ2
B)

∂ϕ

])
. (A.25)

With the analytical expressions of hAt and hBt, the asymptotic variance of
√
T (θ̂2

A − θ̂2
B) can be

written as
∞∑

j=−∞
E[dtdt+j ], (A.26)

where

dt =

(
∂θ2

A

∂ϕ
−
∂θ2

B

∂ϕ

)′
rt = hAt − hBt. (A.27)

This completes the proof of Proposition 4.

Note that when the factors are perfectly tracked by the returns, we have that ηjt is a zero

vector and yjt = 0 for j = A,B. Hence, the asymptotic variance in Proposition 4 reduces to that

in Proposition 1 for models with traded factors.

This completes the proof of Proposition 1.

Lemma 3 and Proof of Lemma 1

LEMMA 3: When the factors and returns are i.i.d. multivariate elliptically distributed with kurtosis

parameter κ, the asymptotic variance of the difference in sample squared Sharpe ratios of two sets

of mimicking portfolios, f∗At and f∗Bt, is given by

E[d2
t ] = E[h2

At] + E[h2
Bt]− 2E[hAthBt], (A.28)
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with

E[h2
At] = θ2

A

[
4 + (2 + 3κ)θ2

A

]
+ 4(1 + κ)E[y2

At]
(
θ2
R − θ2

A

)
, (A.29)

E[h2
Bt] = θ2

B

[
4 + (2 + 3κ)θ2

B

]
+ 4(1 + κ)E[y2

Bt]
(
θ2
R − θ2

B

)
, (A.30)

E[hAthBt] = 2ρθAθB [2 + (1 + κ)ρθAθB] + κθ2
Aθ

2
B

+4(1 + κ)E[yAtyBt](θ
2
R + ρθAθB − θ2

A − θ2
B), (A.31)

where ρ = Corr[uAt, uBt] = E[uAtuBt]/(θAθB) is the correlation between the returns on the tangency

portfolios of f∗At and f∗Bt, E[y2
At] = µ∗′AV

∗−1
A VfA·RV

∗−1
A µ∗A, E[y2

Bt] = µ∗′BV
∗−1
B VfB ·RV

∗−1
B µ∗B, VfA·R =

VfA − VfARV
−1
R VRfA , VfB ·R = VfB − VfBRV

−1
R VRfB , and E[yAtyBt] = µ∗′AV

∗−1
A Cov[ηAt, η

′
Bt]V

∗−1
B µ∗B.

Proof of Lemma 3:

Since the E[h2
t ] expressions for models A and B have already been derived in Lemma 2, we only

need to compute E[hAthBt]. It can be shown that

E[hAthBt] = 4E[uAtuBt(1− yAt)(1− yBt)]− 2E[uAtu
2
Bt(1− yAt)] + 4E[uAtyBt(1− yAt)vt]

+ 2θ2
BE[uAt(1− yAt)]− 2E[u2

AtuBt(1− yBt)] + E[u2
Atu

2
Bt]− 2E[u2

AtyBtvt]

− θ2
BE[u2

At] + 4E[yAtuBt(1− yBt)vt]− 2E[yAtu
2
Btvt] + 4E[yAtyBtv

2
t ] + 2θ2

BE[yAtvt]

+ 2θ2
AE[uBt(1− yBt)]− θ2

AE[u2
Bt] + 2θ2

AE[yBtvt] + θ2
Aθ

2
B. (A.32)

Under the multivariate elliptical assumption on Yt, we obtain

E[hAthBt] = 4ρθAθB + 4(1 + κ)ρθAθBE[yAtyBt] + 0− 4(1 + κ)E[yAtyBt]θ
2
A + 0 + 0

+ (1 + κ)(θ2
Aθ

2
B + 2ρ2θ2

Aθ
2
B) + 0− θ2

Aθ
2
B − 4(1 + κ)E[yAtyBt]θ

2
B + 0

+ 4(1 + κ)E[yAtyBt]θ
2
R + 0 + 0− θ2

Aθ
2
B + 0 + θ2

Aθ
2
B. (A.33)

After simplification, we have

E[hAthBt] = 2ρθAθB[2 + (1 + κ)ρθAθB] + κθ2
Aθ

2
B + 4(1 + κ)E[yAtyBt](θ

2
R + ρθAθB − θ2

A − θ2
B).

(A.34)

This completes the proof of Lemma 3.
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When yAt = yBt = 0, we have

E[h2
At] = θ2

A

[
4 + (2 + 3κ)θ2

A

]
,

E[h2
Bt] = θ2

B

[
4 + (2 + 3κ)θ2

B

]
,

E[hAthBt] = 2ρθAθB[2 + (1 + κ)ρθAθB] + κθ2
Aθ

2
B.

This completes the proof of Lemma 1.

Remarks and proof of Proposition 3:

There are cases in which uAt = uBt and the normal approximations in Propositions 1 and 4

break down. This occurs when the models are nested. Let

µ∗A =

[
µ∗1

µ∗2

]
, µ∗B = µ∗1, (A.35)

and

V ∗A =

[
V ∗11 V ∗12

V ∗21 V ∗22

]
, V ∗B = V ∗11. (A.36)

We have

uAt = µ∗′AV
∗−1
A (f∗At − µ∗A)

=

[
µ∗1
µ∗2

]′ [
V ∗−1

11 + V ∗−1
11 V ∗12V

∗−1
22·1 V

∗
21V

∗−1
11 −V ∗−1

11 V ∗12V
∗−1

22·1
−V ∗−1

22·1 V
∗

21V
∗−1

11 V ∗−1
22·1

] [
f∗1t − µ∗1
f∗2t − µ∗2

]
= [µ∗′1 V

∗−1
11 − α∗′21V

∗−1
22·1 V

∗
21V

∗−1
11 , α∗′21V

∗−1
22·1 ]

[
f∗1t − µ∗1
f∗2t − µ∗2

]
, (A.37)

where V ∗22·1 = V ∗22 − V ∗21V
∗−1

11 V ∗12 and α∗21 = µ∗2 − V ∗21V
∗−1

11 µ∗1. Note that α∗21 = 0K2 implies

uAt = µ∗′1 V
∗−1

11 (f∗1t − µ∗1) ≡ µ∗′BV ∗−1
B (f∗Bt − µ∗B) = uBt, (A.38)

and yAt = yBt. Conversely uAt = uBt implies that α∗21 = 0K2 . Similarly, α∗21 = 0K2 implies

θ2
A = θ2

B = µ∗′1 V
∗−1

11 µ∗1, and conversely θ2
A = θ2

B implies α∗21 = 0K2 . This suggests that for the

nested-model case, we only need to test H0 : α∗21 = 0K2 .25

Proof of Proposition 3: We first show that

√
T (α̂∗21 − α∗21)

A∼ N(0K2 , V (α̂∗21)). (A.39)

25Note that for nested models we do not need to perform the normal test because α∗21 6= 0K2 implies that the
squared Sharpe ratio of model A is larger than the squared Sharpe ratio of model B.
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Using the delta method, the asymptotic distribution of α̂∗21 is given by

√
T (α̂∗21 − α∗21)

A∼ N

(
0K2 ,

[
∂α∗21

∂ϕ′

]
S0

[
∂α∗21

∂ϕ′

]′)
. (A.40)

It is straightforward to obtain

∂α∗21

∂µ′f
= 0K2×K ,

∂α∗21

∂µ′R
= (Vf2R − V ∗21V

∗−1
11 Vf1R)V −1

R . (A.41)

The derivative of α∗21 with respect to vec(V ) is given by

∂α∗21

∂vec(V )′
=

[
0′K , (µR − VRf1V

∗−1
11 µ∗1)′V −1

R

]
⊗
[
−V ∗21V

∗−1
11 , IK2 , (V ∗21V

∗−1
11 Vf1R − Vf2R)V −1

R

]
+
[
µ∗′1 V

∗−1
11 , 0′K2

, 0′N
]
⊗
[
0K2×K , (V ∗21V

∗−1
11 Vf1R − Vf2R)V −1

R

]
KN+K , (A.42)

where Km is an m2×m2 commutation matrix defined as Kmvec(X) = vec(X ′) for an m×m matrix

X. Using the expression for ∂α∗21/∂ϕ
′, we can simplify the asymptotic variance of α̂∗21 to

V (α̂∗21) =
∞∑

j=−∞
E[qt(ϕ)qt+j(ϕ)′], (A.43)

where

qt(ϕ) =
∂α∗21

∂ϕ′
rt(ϕ)

= (Vf2R − V ∗21V
∗−1

11 Vf1R)V −1
R (Rt − µR)

+ [−V ∗21V
∗−1

11 , IK2 , (V
∗

21V
∗−1

11 Vf1R − Vf2R)V −1
R ][(Yt − µ)(Yt − µ)′ − V ]

[
0K

V −1
R (µR − VRf1V

∗−1
11 µ∗1)

]

+ [0K2×K , (V
∗

21V
∗−1

11 Vf1R − Vf2R)V −1
R ][(Yt − µ)(Yt − µ)′ − V ]

 V ∗−1
11 µ∗1

0K2

0N


= (f∗2t − µ∗2)− V ∗21V

∗−1
11 (f∗1t − µ∗1) + V ∗21V

∗−1
11 (f∗1t − µ∗1)(f1t − µ1)′V ∗−1

11 µ∗1

− (f∗2t − µ∗2)(f1t − µ1)′V ∗−1
11 µ∗1

+
[
−V ∗21V

∗−1
11 [(f1t − µ1)− (f∗1t − µ∗1)] + [(f2t − µ2)− (f∗2t − µ∗2)]

]
(vt − u1t)

= ξt(1− y1t) + wt(vt − u1t). (A.44)

Let V̂ (α̂∗21) be a consistent estimator of V (α̂∗21). Then, under the null hypothesis,

T α̂∗′21V̂ (α̂∗21)−1α̂∗21
A∼ χ2

K2
, (A.45)
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and this statistic can be used to test H0 : θ2
A = θ2

B. This completes the proof of Proposition 3.

An alternative test of α∗21 = 0K2 can be obtained by establishing a connection between the

mimicking portfolio framework and the following GLS two-pass cross-sectional regression frame-

work. Consider the second-pass projection with covariances instead of betas and assume that the

zero-beta rate is zero. Then, the “price of covariance risk” parameters are given by

λ = (VfRV
−1
R VRf )−1VfRV

−1
R µR. (A.46)

It is immediately evident that the λ vector for model A is given by

λA =

[
λA,1
λA,2

]
= V ∗−1

A µ∗A =

[
V ∗−1

11 µ∗1 − V
∗−1

11 V ∗12V
∗−1

22·1 α
∗
21

V ∗−1
22·1 α

∗
21

]
. (A.47)

It follows that α∗21 = 0K2 if and only if λA,2 = 0K2 . Therefore, nested model comparison can also

be conducted by testing whether λA,2 is a zero vector. If we choose this approach, then we can use

the results in Proposition 21 and Lemma 9 of the Online Appendix of Kan, Robotti, and Shanken

(2013) to implement the test.

Remarks and Proposition 5:

The normal approximations in Propositions 1 and 4 can break down also in the non-nested

model case. Without loss of generality, assume model A has mimicking portfolios f∗At = [f∗′1t , f
∗′
2t ]
′

and model B has mimicking portfolios f∗Bt = [f∗′1t , f
∗′
3t ]
′, where f∗3t is a K3-vector. Consider a

model C which has only the factors f∗Ct = f∗1t (the common mimicking portfolios). Let µ∗1 = E[f∗1t],

µ∗2 = E[f∗2t], µ
∗
3 = E[f∗3t], V

∗
11 = Var(f∗1t), V

∗
12 = Cov(f∗1t, f

∗′
2t), V

∗
21 = V ∗′12 , V ∗22 = Var(f∗2t), V

∗
13 =

Cov(f∗1t, f
∗′
3t), V

∗
31 = V ∗′13 , V ∗33 = Var(f∗3t), and define

µ∗A =

[
µ∗1

µ∗2

]
, µ∗B =

[
µ∗1

µ∗3

]
, µ∗C = µ∗1. (A.48)

Similarly, let

V ∗A =

[
V ∗11 V ∗12

V ∗21 V ∗22

]
, V ∗B =

[
V ∗11 V ∗13

V ∗31 V ∗33

]
, V ∗C = V ∗11. (A.49)

Define uAt = µ∗′AV
∗−1
A (f∗At − µ∗A), uBt = µ∗′BV

∗−1
B (f∗Bt − µ∗B), and uCt = µ∗′CV

∗−1
C (f∗Ct − µ∗C) ≡

µ∗′1 V
∗−1

11 (f∗1t − µ∗1). Using the same proof as for Proposition 3, we have

uAt = uCt = uBt (A.50)
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if and only if α∗21 = µ∗2 − V ∗21V
∗−1

11 µ∗1 = 0K2 and α∗31 = µ∗3 − V ∗31V
∗−1

11 µ∗1 = 0K3 . Note that when

uAt = uBt, we also have yAt = yBt, θ
2
A = θ2

B, and the normality result in Proposition 4 breaks

down (similarly, in the traded-factor case, when α21 = 0K2 and α31 = 0K3 , the normality result in

Proposition 1 breaks down). In the following proposition, we show how to jointly test α∗21 = 0K2

and α∗31 = 0K3 . Let ψ = [α∗′21, α
∗′
31]′ and ψ̂ = [α̂∗′21, α̂

∗′
31]′.

PROPOSITION 5: Under the null hypothesis H0 : ψ = 0K2+K3,

T ψ̂′V̂ (ψ̂)−1ψ̂
A∼ χ2

K2+K3
, (A.51)

where V̂ (ψ̂) is a consistent estimator of

V (ψ̂) =

∞∑
j=−∞

E[q̃tq̃
′
t+j ], (A.52)

and q̃t is a (K2 +K3)-vector obtained by stacking up the qt’s for models A and B, respectively (the

qt for model A is given in Proposition 3 and the qt for model B is similarly defined).

Proof of Proposition 5:

The proof of this result relies on the proof of Proposition 3 for the determination of the qt’s

for models A and B. Let V̂ (ψ̂) be a consistent estimator of V (ψ̂). Then, under the null hypothesis

H0 : ψ = 0K2+K3 ,

T ψ̂′V̂ (ψ̂)−1ψ̂
A∼ χ2

K2+K3
, (A.53)

and this statistic can be used to test H0 : θ2
A = θ2

B.

This completes the proof of Proposition 5.

In the traded-factor case, we can simply use the basic alpha-based test for the purpose of testing

α21 = 0K2 and α31 = 0K3 , since in this case we have no generated regressors. An alternative test

of α∗21 = 0K2 and α∗31 = 0K3 can be obtained by focusing on the GLS two-pass cross-sectional

regression framework. The λ vector for model A is given by

λA =

[
λA,1
λA,2

]
= V ∗−1

A µ∗A =

[
V ∗−1

11 µ∗1 − V
∗−1

11 V ∗12V
∗−1

22·1 α
∗
21

V ∗−1
22·1 α

∗
21

]
. (A.54)

It follows that α∗21 = 0K2 if and only if λA,2 = 0K2 . Similarly, the λ vector for model B is given by

λB =

[
λB,1
λB,3

]
= V ∗−1

B µ∗B =

[
V ∗−1

11 µ∗1 − V
∗−1

11 V ∗13V
∗−1

33·1 α
∗
31

V ∗−1
33·1 α

∗
31

]
, (A.55)
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where V ∗33·1 = V ∗33 − V ∗31V
∗−1

11 V ∗13. It follows that α∗31 = 0K3 if and only if λB,3 = 0K3 . Therefore,

non-nested model comparison can also be conducted by testing λA,2 = 0K2 and λB,3 = 0K3 . If we

choose this approach, then we can use the results in Proposition 21 and Lemma 10 of the Online

Appendix of Kan, Robotti, and Shanken (2013) to implement the test.

In summary, for the non-nested model case with overlapping mimicking portfolios, we first need

to jointly test α∗21 = 0K2 and α∗31 = 0K3 . If we reject the null, we need to perform the normal test.

Therefore, for non-nested models with overlapping mimicking portfolios, the test of H0 : θ2
A = θ2

B

is a sequential test. For the non-nested model case with non-overlapping mimicking portfolios, we

can simply perform the normal test in order to test H0 : θ2
A = θ2

B.

Simulation designs for models with traded factors only

In all simulations, we set the true variance-covariance matrix of the factor returns equal to its

sample estimate from the data. In order to impose the various null hypotheses and investigate the

size properties of the tests, we constrain the means of the factor returns as described below.

Nested models

Define µ1 = E[f1t], µ2 = E[f2t], V11 = Var(f1t), and V21 = Cov(f2t, f
′
1t). To investigate the

size properties of the alpha-based test for pairwise nested-model comparison, we impose the null

hypothesis H0 : α21 = 0K2 which can be rewritten as

µ2 = V21V
−1

11 µ1. (A.56)

Therefore, in the simulations, we set µ1 = µ̂1 and µ2 = V̂21V̂
−1

11 µ̂1, where µ̂1, V̂21, and V̂11 are the

sample counterparts of µ1, V21, and V11, respectively. To investigate the power properties of the

test, we simply set µ1 = µ̂1 and µ2 = µ̂2, where µ̂2 is the sample counterpart of µ2.

Non-nested models

For pairwise non-nested model comparison with overlapping factors, we first need to test whether

α21 = 0K2 and α31 = 0K3 . Define µ3 = E[f3t] and V31 = Cov[f3t, f
′
1t]. In order to impose the null

hypothesis and examine the size properties of the alpha-based test, we let µ1 = µ̂1, µ2 = V̂21V̂
−1

11 µ̂1,

and µ3 = V̂31V̂
−1

11 µ̂1, where V̂31 is the sample counterpart of V31. To examine power, we set µ1 = µ̂1,
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µ2 = µ̂2, and µ3 = µ̂3, where µ̂3 is the sample counterpart of µ3.

If we reject α21 = 0K2 and α31 = 0K3 , then we need to implement the normal test described in

Section 2.2. To impose θ2
A = θ2

B when uAt 6= uBt is more complicated. Note that

θ2
A = µ′1V

−1
11 µ1 + α′21V

−1
22·1α21, (A.57)

where V22·1 = V22 − V21V
−1

11 V12 and α21 = µ2 − V21V
−1

11 µ1. Similarly, we have

θ2
B = µ′1V

−1
11 µ1 + α′31V

−1
33·1α31, (A.58)

where V33·1 = V33 − V31V
−1

11 V13 and α31 = µ3 − V31V
−1

11 µ1. Therefore, θ2
A = θ2

B if and only if

α′21V
−1

22·1α21 = α′31V
−1

33·1α31. (A.59)

Set µ1 = µ̂1, µ2 = µ̂2 and α̂21 = µ̂2−V̂21V̂
−1

11 µ̂1. then we need to choose α31 such that α′31V
−1

33·1α31 =

c, where c ≡ α̂′21V̂22·1α̂21. There are many solutions to this equation, but we can set up the following

minimization problem:

min
α31

(α31 − α̂31)′(α31 − α̂31)

s.t. α′31V
−1

33·1α31 = c, (A.60)

where α̂31 = µ̂3 − V̂31V̂
−1

11 µ̂1. This way we set α31 as close as possible to α̂31. Once the minimizer

α∗31 is obtained, we can recover µ3 as

µ3 = α∗31 + V̂31V̂
−1

11 µ̂1. (A.61)

So, in summary, to analyze the size properties of the normal test, we can set µ1 = µ̂1, µ2 = µ̂2,

and µ3 = α∗31 + V̂31V̂
−1

11 µ̂1. To analyze the power properties of the normal test, we set µ1 = µ̂1,

µ2 = µ̂2, and µ3 = µ̂3. A similar simulation design can be implemented to investigate the size and

power properties of the normal test when the two models do not have common factors.

To evaluate the size properties of the multiple model comparison test described in Section 4,

we consider the case in which all models have the same θ2 value, so as to maximize the likelihood

of rejection under the null. We now explain how we can set the means of the factors such that
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the squared Sharpe ratio for each single-factor model is the same. Suppose that model 1 is the

benchmark model and that the number of models is equal to p. In the single-factor setting, equality

of squared Sharpe ratios requires that

θ2
1 ≡ c =

µ2
i

σ2
i

(A.62)

for i = 2, . . . , p, where µi and σ2
i are the mean and variance of factor i, respectively. Now set

µ1 = µ̂1, σ2
1 = σ̂2

1, c =
µ̂21
σ̂2
1
, and σ2

i = σ̂2
i for i = 2, . . . , p, where σ̂2

i is the sample counterpart of σ2
i .

In order to make the squared Sharpe ratios of the various models identical, we can set

µi =
√
cσ̂i, (A.63)

for i = 2, . . . , p. This guarantees that we maximize the likelihood of rejection under the null. To

examine the power properties of the multiple model comparison test, we can simply set the means

of the factors equal to their sample estimates from the data.

Simulation designs for models with mimicking portfolios

In all simulations, we set the true variance-covariance matrix of the factors and basis-asset

returns equal to its sample estimate from the data. In order to impose the various null hypotheses

and investigate the size properties of the tests, we constrain the means of the factor and basis-asset

returns as described below.

Nested models

To impose the null α∗21 = 0K2 and study the size properties of the chi-squared test in Propo-

sition 3, we set µ1 = â + µ̂∗1 and µ2 = b̂ + µ̂∗2 = b̂ + V̂ ∗21V̂
∗−1

11 µ̂∗1, where â and b̂ are the estimated

intercepts from regressing f1t and f2t on the augmented span of R. The constraint α∗21 = 0K2

also imposes some restrictions on µR. Given µ̂∗ = [µ̂∗′1 , µ̂
∗′
1 V̂
∗−1

11 V̂ ∗12]′, we can solve the following

constrained minimization problem to set µR:

min
µR

(µR − µ̂R)′V̂ −1
R (µR − µ̂R)

s.t. µ̂∗ = ÂµR, (A.64)

where Â = V̂fRV̂
−1
R . This way we set µR as close as possible to µ̂R in a GLS sense. Denote by

µ◦R the minimizer of (A.64). Then we can set µR = µ◦R and generate factors and returns under the
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constrained mean vector [µ′1, µ
′
2, µ

◦′
R]′. To analyze the power properties of the test, we can simply

leave the mean vector unrestricted, that is, set µ1 = µ̂1, µ2 = µ̂2, and µR = µ̂R.

Non-nested models

In the presence of overlapping mimicking portfolios, we first need to test whether α∗21 = 0K2 and

α∗31 = 0K3 using Proposition 5 in this Appendix. In order to impose this null and examine the size

properties of our chi-squared test, we set µ1 = â+ µ̂∗1, µ2 = b̂+ V̂ ∗21V̂
∗−1

11 µ̂∗1, and µ3 = ĉ+ V̂ ∗31V̂
∗−1

11 µ̂∗1,

where â, b̂, and ĉ are the estimated intercepts from regressing f1t, f2t, and f3t on the augmented

span of the basis-asset returns. Given µ̂∗ = [µ̂∗′1 , µ̂
∗′
1 V̂
∗−1

11 V̂ ∗12, µ̂
∗′
1 V̂
∗−1

11 V̂ ∗13]′, we can solve the

following constrained minimization problem to constrain the µR vector:

min
µR

(µR − µ̂R)′V̂ −1
R (µR − µ̂R)

s.t. µ̂∗ = ÂµR, (A.65)

where Â = V̂fRV̂
−1
R . Denote by µ◦R the minimizer of (A.65). Then we can set µR = µ◦R and generate

factor and basis-asset returns using the mean vector [µ′1, µ
′
2, µ

′
3, µ

◦′
R]′. To examine power, we set

the means of the factors and the returns equal to their sample estimates from the data.

If we reject α∗21 = 0K2 and α∗31 = 0K3 , then we need to implement the normal test in Proposi-

tion 4. To study the size properties of the normal test, we need to impose θ2
A = θ2

B when uAt 6= uBt.

Note that

θ2
A = µ∗′1 V

∗−1
11 µ∗1 + α∗′21V

∗−1
22·1 α

∗
21, (A.66)

where V ∗22·1 = V ∗22 − V ∗21V
∗−1

11 V ∗12 and α∗21 = µ∗2 − V ∗21V
∗−1

11 µ∗1. Similarly, we have

θ2
B = µ∗′1 V

∗−1
11 µ∗1 + α∗′31V

∗−1
33·1 α

∗
31, (A.67)

where V ∗33·1 = V ∗33 − V ∗31V
∗−1

11 V ∗13 and α∗31 = µ∗3 − V ∗31V
∗−1

11 µ∗1. Therefore, θ2
A = θ2

B if and only if

α∗′21V
∗−1

22·1 α
∗
21 = α∗′31V

∗−1
33·1 α

∗
31. (A.68)

Then we can write (A.68) as a function of µR:

µ′RÊµR = 0, (A.69)
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where Ê = Ĉ ′V̂ ∗−1
22·1 Ĉ − D̂′V̂ ∗−1

33·1 D̂, Ĉ = V̂f2RV̂
−1
R − V̂ ∗21V̂

∗−1
11 V̂f1RV̂

−1
R , and D̂ = V̂f3RV̂

−1
R −

V̂ ∗31V̂
∗−1

11 V̂f1RV̂
−1
R . There are many solutions to (A.69), but we can set up the following mini-

mization problem:

min
µR

(µR − µ̂R)′V̂ −1
R (µR − µ̂R)

s.t. µ′RÊµR = 0. (A.70)

This way we set µR as close as possible to µ̂R in a GLS sense. Denote by µ◦R the minimizer

of this constrained optimization problem. Then, we set µR = µ◦R. When R contains the set of

traded factors (as is the case in our empirical work and simulation experiments), we can set the

means of the nontraded factors equal to their sample estimates from the data. Since the results

are independent of the means of the nontraded factors, we set the means equal to their sample

estimates when R does not contain the set of traded factors. To analyze power, we set the means

of the factors and the returns equal to their sample estimates from the data.

Similar to the traded-factor case, to evaluate the size properties of the multiple model compar-

ison test with mimicking portfolios, we consider the situation in which all models have the same θ2

value. The squared Sharpe ratio of the single-factor model with mimicking portfolio i is given by

θ2
i =

(VfiRV
−1
R µR)2

(VfiRV
−1
R VRfi)

. (A.71)

Let

V n
fiR

=
VfiR

(VfiRV
−1
R VRfi)

1
2

. (A.72)

Then we can write

θ2
i = (V n

fiR
V −1
R µR)2. (A.73)

To ensure that all models have the same θ2, a sufficient condition is

V n
fiR
V −1
R µR = c, (A.74)

where c is a constant. Let V n
fR = [V n

f1R
, . . . , V n

fKR
]. We have

V n
fRV

−1
R µR = c1K . (A.75)
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In order to constrain µR, we consider the following minimization problem:

min
µR

(µR − µ̂R)′V̂ −1
R (µR − µ̂R)

s.t. V̂ n
fRV̂

−1
R µR = ĉ1K , (A.76)

where ĉ = V̂ n
fiR
V̂ −1
R µ̂R, with fi being the single factor of model i. We choose the market factor

as factor i. Denote by µ◦R the minimizer of this constrained optimization problem. Then we set

µR = µ◦R.26 To examine the power properties of the test, we set µR = µ̂R and µf = µ̂f , so that the

population squared Sharpe ratio of each model is set equal to its sample θ2.

26Since the results are independent of the choice of the mean of the factors, we set the means equal to their sample
estimates.
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Table 1
Summary Statistics for Monthly Factor Returns

This table presents the sample summary statistics for the traded factors. The sample period for our data
is January 1972 to December 2015 (528 observations). MKT is the difference between the value-weighted
market return and the one-month U.S. Treasury bill rate. SMB and HML are the small minus big size
factor and high minus low book-to-market value factor of Fama and French (1993). CMA is the conservative
minus aggressive investment factor of Fama and French (2015). RMWCP is the robust minus weak cash
profitability factor of Fama and French (2018). ME, IA, and ROE are the size, investment, and profitability
factors in Hou, Xue and Zhang (2015). UMD is the up-minus-down momentum factor. HMLm is the more
timely value factor from Asness and Frazzini (2013). BAB is the betting-against-beta factor in Frazzini and
Pedersen (2014). SMBSY, MGMT, and PERF are the size and the two anomaly factors in Stambaugh and
Yuan (2017). LIQT is the traded liquidity factor in Pastor and Stambaugh (2003).

Panel A: Means, standard deviations, and t-statistics

mean standard deviation t-statistic

MKT 0.53% 4.55% 2.66
SMB 0.21% 3.11% 1.51
HML 0.35% 2.98% 2.70
CMA 0.33% 1.97% 3.89
RMWCP 0.40% 1.39% 6.67
ME 0.27% 3.11% 2.01
IA 0.41% 1.85% 5.09
ROE 0.56% 2.58% 4.99
UMD 0.72% 4.42% 3.73
HMLm 0.34% 3.57% 2.21
BAB 0.90% 3.39% 6.08
SMBSY 0.38% 2.81% 3.15
MGMT 0.64% 2.81% 5.23
PERF 0.68% 3.84% 4.06
LIQT 0.43% 3.56% 2.80

Panel B: Correlations

SMB HML CMA RMWCP ME IA ROE UMD HMLm BAB SMBSY MGMT PERF LIQT

MKT 0.241 −0.316 −0.389 −0.277 0.236 −0.362 −0.191 −0.142 −0.115 −0.099 0.213 −0.524 −0.260 −0.052
SMB −0.129 −0.050 −0.312 0.973 −0.165 −0.405 −0.017 −0.018 −0.036 0.937 −0.320 −0.134 −0.002
HML 0.700 −0.201 −0.067 0.688 −0.082 −0.168 0.767 0.388 −0.056 0.716 −0.267 0.031
CMA −0.062 −0.011 0.904 −0.063 0.019 0.483 0.307 0.008 0.766 −0.047 0.024
RMWCP −0.337 −0.052 0.492 0.297 −0.372 −0.001 −0.246 0.077 0.622 0.057
ME −0.117 −0.316 0.006 0.004 0.012 0.931 −0.279 −0.125 −0.015
IA 0.059 0.033 0.479 0.333 −0.088 0.758 −0.054 0.021
ROE 0.495 −0.437 0.274 −0.292 0.093 0.631 −0.065
UMD −0.654 0.191 0.031 0.048 0.716 −0.023
HMLm 0.111 −0.010 0.482 −0.635 0.068
BAB 0.040 0.318 0.136 0.056
SMBSY −0.242 −0.065 0.003
MGMT 0.013 −0.005
PERF 0.035
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Table 2
Tests of Equality of Squared Sharpe Ratios

This table presents pairwise tests of equality of the squared Sharpe ratios of the eight asset-pricing models.
The models include the Pastor and Stambaugh (2003) liquidity-augmented three-factor Fama and French
(1993) model (FF3+LIQT), the betting-against-beta extension of the CAPM of Frazzini and Pedersen (2014)
(MKT+BAB), the Hou, Xue, and Zhang (2015) four-factor model (HXZ), the Stambaugh and Yuan (2017)
mispricing model (SY), the Fama and French (2018) five-factor model with cash profitability (FF5CP) as
well as its extension with the momentum factor (FF5CP+UMD), the Hou, Xue, and Zhang (2015) four-
factor model with RMWCP instead of ROE (HXZCP), and a six-factor model of Fama and French (2018)
that replaces HML with HMLm (FF5CP*+UMD). The models are presented from left to right and top to
bottom in order of increasing squared Sharpe ratios. The sample period for our data is January 1972 to
December 2015 (528 observations). We report in Panel A the difference between the (bias-adjusted) sample

squared Sharpe ratios of the models in column i and row j, θ̂2i − θ̂2j , and in Panel B the associated p-value (in

parentheses) for the test of H0 : θ2i = θ2j . * indicates significance at the 5% level and ** indicates significance
at the 1% level.

Panel A: Differences in sample squared Sharpe ratios

MKT+BAB HXZ SY FF5CP FF5CP+UMD HXZCP FF5CP*+UMD

FF3+LIQT 0.036 0.117∗∗ 0.172∗∗ 0.193∗∗ 0.203∗∗ 0.223∗∗ 0.293∗∗

MKT+BAB 0.080∗ 0.136∗∗ 0.157∗∗ 0.166∗∗ 0.187∗∗ 0.257∗∗

HXZ 0.056 0.077 0.086∗ 0.107∗∗ 0.176∗∗

SY 0.021 0.030 0.051 0.121∗

FF5CP 0.009 0.030 0.100∗∗

FF5CP+UMD 0.021 0.090∗∗

HXZCP 0.070∗

Panel B: p-values

MKT+BAB HXZ SY FF5CP FF5CP+UMD HXZCP FF5CP*+UMD

FF3+LIQT 0.198 0.002 0.000 0.000 0.000 0.000 0.000

MKT+BAB 0.027 0.002 0.001 0.000 0.000 0.000

HXZ 0.122 0.075 0.042 0.005 0.001

SY 0.616 0.430 0.238 0.015

FF5CP 0.054 0.136 0.000

FF5CP+UMD 0.346 0.000

HXZCP 0.043
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Table 3
Multiple Model Comparison Tests

This table presents multiple model comparison tests of the squared Sharpe ratios of eight asset-pricing
models. The models include the Pastor and Stambaugh (2003) liquidity-augmented three-factor Fama and
French (1993) model (FF3+LIQT), the betting-against-beta extension of the CAPM of Frazzini and Pedersen
(2014) (MKT+BAB), the Hou, Xue, and Zhang (2015) four-factor model (HXZ), the Stambaugh and Yuan
(2017) mispricing model (SY), the Fama and French (2018) five-factor model with cash profitability (FF5CP)
as well as its extension with the momentum factor (FF5CP+UMD), the Hou, Xue, and Zhang (2015) four-
factor model with RMWCP instead of ROE (HXZCP), and a six-factor model of Fama and French (2018)
that replaces HML with HMLm (FF5CP*+UMD). The models are estimated using monthly returns from
January 1972 to December 2015 (528 observations). We report the benchmark models in column 1 and

their (bias-adjusted) sample squared Sharpe ratio (θ̂2) in column 2. r in column 3 denotes the number
of alternative models in each multiple non-nested model comparison. LR in column 4 is the value of the
likelihood ratio statistic with p-value given in column 5. Finally θ̂2M − θ̂2 in column 6 denotes the difference
between the (bias-adjusted) sample squared Sharpe ratios of the expanded model (M) and the benchmark
model, with p-values given in column 7.

Benchmark θ̂2 r LR p-value θ̂2M − θ̂2 p-value

FF3+LIQT 0.049 6 33.351 0.000
MKT+BAB 0.086 6 21.195 0.000
HXZ 0.166 6 10.580 0.005
SY 0.222 6 5.893 0.042
FF5CP 0.243 6 15.025 0.001 0.009 0.054
FF5CP+UMD 0.252 6 13.783 0.002
HXZCP 0.273 6 4.092 0.118
FF5CP*+UMD 0.342 6 0.000 0.791

48



Table 4
Model Comparisons with a Nontraded Liquidity Model

This table presents pairwise tests of equality of the squared Sharpe ratios between the FF3 model augmented
with the liquidity mimicking portfolio (FF3+LIQM) vs. the eight asset-pricing models with traded factors
only. The eight models include the Pastor and Stambaugh (2003) liquidity-augmented three-factor Fama and
French (1993) model (FF3+LIQT), the betting-against-beta extension of the CAPM of Frazzini and Pedersen
(2014) (MKT+BAB), the Hou, Xue, and Zhang (2015) four-factor model (HXZ), the Stambaugh and Yuan
(2017) mispricing model (SY), the Fama and French (2018) five-factor model with cash profitability (FF5CP)
as well as its extension with the momentum factor (FF5CP+UMD), the Hou, Xue, and Zhang (2015) four-
factor model with RMWCP instead of ROE (HXZCP), and a six-factor model of Fama and French (2018)
that replaces HML with HMLm (FF5CP*+UMD). The models are presented from left to right in order of
increasing squared Sharpe ratios. The sample period for our data is January 1972 to December 2015 (528
observations). We report in Panel A the sample squared Sharpe ratios of the given models minus that of
FF3+LIQM, and in Panel B the associated p-value (in parentheses) for the test of equality (zero difference).
* indicates significance at the 5% level and ** indicates significance at the 1% level.

Panel A: Differences in sample squared Sharpe ratios

FF3+LIQT MKT+BAB HXZ SY FF5CP FF5CP+UMD HXZCP FF5CP*+UMD

FF3+LIQM 0.004 0.036 0.122∗∗ 0.178∗∗ 0.202∗∗ 0.213∗∗ 0.230∗∗ 0.305∗∗

Panel B: p-values

FF3+LIQT MKT+BAB HXZ SY FF5CP FF5CP+UMD HXZCP FF5CP*+UMD

FF3+LIQM 0.885 0.295 0.006 0.000 0.000 0.000 0.000 0.000
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