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1 Introduction

Identification by heteroskedasticity of the shocks has become a standard
tool in structural vector autoregressive (VAR) analysis (see, e.g., Kilian and
Lütkepohl (2017, Chapter 14)). Heteroskedasticity can complement identi-
fying restrictions based on economic theory or subject matter knowledge. A
main advantage of identification via heteroskedasticity is that the data are
in principle informative on the conditions for identification. Thus, identifi-
cation can in principle be investigated by statistical tests. The problem in
developing such tests is that the model is typically not identified under the
null hypothesis of no identification which complicates the derivation of the
asymptotic distributions of standard tests. Some authors still use standard
Wald and likelihood ratio (LR) tests for that purpose and approximate the
distribution under the null hypothesis by the usual χ2 distributions. Exam-
ples are Lanne, Lütkepohl and Maciejowska (2010), Herwartz and Lütkepohl
(2014), Lütkepohl and Velinov (2016), Velinov and Chen (2015), Netšunajev
(2013) and Lütkepohl and Netšunajev (2014). However, so far the asymp-
totic distributions of these tests have not been derived formally and it is
unlikely that the assumed χ2 distributions provide precise approximations to
the true asymptotic distributions of the test statistics. Alternatively, some
authors have proposed Bayesian methods for assessing identification in this
context (e.g., Woźniak and Droumaguet (2015) and Lütkepohl and Woźniak
(2017)).

In the following we will develop formal frequentist tests for identification
for the special case of stable VAR models with two volatility regimes of
the residuals. The distribution of the residuals is assumed to be elliptically
symmetric which covers the case of Gaussian VAR processes. We develop
Wald type tests for which we can derive the asymptotic distribution under
the null hypothesis of no identification. Our results shed further doubts on
the previously assumed test distributions for related statistics. We present
a sequence of tests which permits us to test for full identification of the
structural form VAR model and show by simulation that the asymptotic
theory is a good guide for small sample performance of the tests, if the
sample size is sufficiently large. Finally, we present examples which show the
usefulness of our tests for applied work.

The remainder of this study is structured as follows. The model is set up
in the following section. Section 3 presents the tests for identification and
their asymptotic properties. Section 4 considers the small sample properties
of the tests and two empirical examples based on US data are discussed in
Section 5. The final section concludes. The proofs of the asymptotic results
for the test statistics are provided in Appendix A.
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We use the following abbreviations and symbols throughout: DGP ab-
breviates data generating process, OLS and GLS stand for ordinary and gen-
eralized least squares, respectively, while ML and LR abbreviate maximum
likelihood and likelihood ratio, respectively. GNP signifies gross national
product, VAR stands for vector autoregressive and SVAR means structural
vector autoregressive. The expression vec is the column vectorizing operator
of a matrix and vech is the ‘half’ vectorizing operator that collects only the
columns of a square matrix from the main diagonal downward in a column
vector. The differencing operator is denoted by ∆ and E is the expectation
operator. A normal distribution with mean µ and covariance matrix Σ is sig-
nified as N (µ,Σ) and iid abbreviates independently, identically distributed.
The determinant of a matrix is signified as det, diag specifies a diagonal
matrix and IK is a (K ×K) identity matrix.

2 The Model

Consider a K-dimensional reduced-form VAR(p) model

yt = ν + A1yt−1 + · · ·+ Apyt−p + ut, (1)

where ν is an intercept term, Aj (j = 1, . . . , p) are (K×K) VAR slope coeffi-
cient matrices, and ut is a white noise error term with zero mean, E(ut) = 0,
and (positive definite) covariance matrices

E(utu
′
t) =

{
Σ1 for t ∈ T1 = {1, . . . , T1},
Σ2 for t ∈ T2 = {T1 + 1, . . . , T},

(2)

where T signifies the sample size. Thus, the errors of the model are assumed
to be heteroskedastic so that the covariance matrix changes from Σ1 to Σ2

at time T1 + 1 which we assume to be known. Moreover, we assume that for
some fixed fraction τ ∈ (0, 1), T1 is the integer part of τT , i.e., T1 = [τT ], so
that the sample size for both volatility regimes goes to infinity as T →∞.

We consider the case where the error term ut has an elliptically symmetric
distribution or briefly an elliptical distribution possessing a density

1√
det Σt

g(u′tΣ
−1
t ut),

where Σt is a symmetric positive definite matrix, g(·) is a positive function
such that the density integrates to one and the fourth moments of the dis-
tribution exist (see, e.g., Anderson (2003, Section 2.7) for further discussion
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of elliptical distributions). We also assume that the elliptical distributions
are such that all components of ut have the same kurtosis parameter. More
precisely, denoting the ith diagonal element of Σt by σ2

it, it is assumed that

E(u4it)

3σ2
it

− 1

is the same for i = 1, . . . , K (see also Anderson (2003, p. 54, Equation
(36))). We explicitly allow for the possibility that the kurtosis parameter
may be different for the different volatility regimes and define

E(u4it)

3σ2
it

− 1 =

{
κ1 for t ∈ T1,
κ2 for t ∈ T2.

Notice, however, that the case of Gaussian residuals is obtained as a special
case by choosing the kurtosis parameter equal to zero. Thus, even if the
variance changes across the sample, we may have κ1 = κ2, e.g., if the sample
is Gaussian.

A standard assumption in the related structural VAR (SVAR) literature
is that only the volatility of the shocks changes while the responses of the
variables remain time invariant. In that case the covariance matrices in (2)
can be decomposed as follows:

Σ1 = BB′, Σ2 = BΛB′, (3)

where Λ = diag(λ1, . . . , λK) is a (K × K) diagonal matrix with positive
diagonal elements and B is a nonsingular (K × K) matrix (see Lütkepohl
(2013)). Using the matrix B, the structural shocks are obtained from the
reduced form errors as εt = B−1ut, and their covariance matrices are given
by

E(εtε
′
t) =

{
IK for t ∈ T1,
Λ for t ∈ T2.

(4)

Thus, the structural errors are instantaneously uncorrelated in both volatility
regimes.

Replacing the reduced form errors ut in (1) by the structural errors Bεt
yields the SVAR(p) model

yt = ν + A1yt−1 + · · ·+ Apyt−p +Bεt. (5)

For the statistical results to be obtained later we assume that the structural
errors εt or, equivalently, the reduced-form errors ut are temporally indepen-
dent. As we only consider stable models, we further assume that the VAR
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matrices Aj (j = 1, . . . , p) satisfy the usual stability condition

det (IK − A1z − · · · − Apzp) 6= 0 for |z| ≤ 1. (6)

It is well known (see, e.g., Theorem A9.9 and its proof in Muirhead (1982))
that the diagonal elements of the matrix Λ in (3) are the eigenvalues of the
matrix Σ−11 Σ2 so that they satisfy the (generalized) eigenvalue equations

det (Σ2 − λiΣ1) = 0, i = 1, . . . , K, (7)

whereas the columns of the matrix B = [b1 : · · · : bK ] are the corresponding
(generalized) eigenvectors that satisfy

(Σ2 − λiΣ1) bi = 0, i = 1, . . . , K. (8)

Furthermore, if the eigenvalues λ1, . . . , λK are distinct, the matrixB is unique
apart from permutations and sign reversals of its columns (see the aforemen-
tioned theorem of Muirhead (1982) or Lanne et al. (2010, Proposition 1)).
In what follows we assume (without loss of generality) that the eigenvalues
λ1, . . . , λK are ordered from largest to smallest so that λ1 ≥ · · · ≥ λK > 0
holds.

If the matrix B is not unique we have an identification problem in the
SVAR(p) model (5). Testing for a possible lack of identification is therefore
of interest and will be discussed in the next section.

3 A Test Procedure for Identification of B

3.1 The Testing Problem

Given that the diagonal elements of the matrix Λ are ordered from largest to
smallest, uniqueness of the matrix B obtains if λ1 > · · · > λK and the possi-
bility of sign reversals in B is eliminated. One possibility to fix the column
signs to be used in this study, is to require that the first nonzero element of
each column of B is positive. In order to test for lack of identification we
consider the pair of hypotheses

H0 : λs+1 = λs+2 = · · · = λs+r (= λ0) versus H1 : ¬H0 (9)

for s ∈ {0, . . . , K − 2} and r ∈ {2, . . . , K − s}. Thus, under the null hy-
pothesis, r consecutive eigenvalues of Λ are equal to a value λ0, implying
lack of identification. The remaining eigenvalues λ1, . . . , λs, λs+r+1, . . . , λK ,
may have multiplicities larger than one, but have to be different from λ0, the
common value under H0.
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Let y−p+1, . . . , y0, y1, . . . , yT be the available data. The reduced-form
Gaussian log-likelihood function (apart from a constant and conditioning
on the first p observations y−p+1, . . . , y0) is given by

l(ϑ,σ) = −1

2

T1∑
t=1

log det(Σ1)−
1

2

T1∑
t=1

ut(ϑ)′Σ−11 ut(ϑ) (10)

−1

2

T∑
t=T1+1

log det(Σ2)−
1

2

T∑
t=T1+1

ut(ϑ)′Σ−12 ut(ϑ),

where ϑ = vec(ν,A1, . . . , Ap), ut(ϑ) signifies ut in expression (1) when these
quantities are interpreted as functions of the underlying parameters and σ =
(σ1,σ2) with σi = vech(Σi) (i = 1, 2). If the DGP is Gaussian, maximizing
l(ϑ,σ) with respect to the parameters gives the ML estimators and if the
true distribution is not Gaussian but of a more general elliptical form, the
resulting estimators are quasi-ML estimators.

Instead of ML estimation one may use a feasible GLS procedure. In that
case (1) is estimated with equationwise OLS in a first step. The residuals ût
obtained in that way are then used for estimating the covariance matrices as

Σ̂i =
1

Ti

∑
t∈Ti

ûtû
′
t, i = 1, 2,

where T2 = T − T1. In a further step the GLS estimator

ϑ̃ =

(
T∑
t=1

Zt−1Z
′
t−1 ⊗ Σ̂−1t

)−1( T∑
t=1

(Zt−1 ⊗ Σ̂−1t )yt

)
, (11)

is computed, where Zt−1 = (1, y′t−1, . . . , y
′
t−p)

′ and Σ̂t = Σ̂i for t ∈ Ti (i =
1, 2). If the VAR process is stable, these estimators have standard asymptotic
properties and can be used accordingly (see Lütkepohl (2005, Chapter 17)).
Then the GLS residuals can be used to estimate the covariance matrices Σ1

and Σ2. In what follows, ϑ̃ can be any estimator of ϑ such that ϑ̃ − ϑ =
Op(T

−1/2).
Then one readily finds that Σ̃1 and Σ̃2 are asymptotically equivalent to

their (unfeasible) counterparts based on the reduced form errors or, specifi-
cally,

Σ̃1 =
1

T1

T1∑
t=1

ũtũ
′
t =

1

T1

T1∑
t=1

utu
′
t + op(T

−1/2) (12)

Σ̃2 =
1

T − T1

T∑
t=T1+1

ũtũ
′
t =

1

T − T1

T∑
t=T1+1

utu
′
t + op(T

−1/2), (13)
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where ũt signifies the residuals described above, i.e., ũt = yt−ν̃−Ã1yt−1−· · ·−
Ãpyt−p (cf. Proposition 3.2 in Lütkepohl (2005)). Replacing the theoretical
covariance matrices Σ1 and Σ2 in equations (7) and (8) by the estimators Σ̃1

and Σ̃2 we obtain the vector of eigenvalues λ̃ = (λ̃1, . . . , λ̃K) and the matrix
of eigenvectors B̃ = [ b̃1 : · · · : b̃K ]. Similarly to their theoretical counterparts,
the estimated eigenvalues λ̃1, . . . , λ̃K are ordered from largest to smallest and,
as they are distinct with probability one, we have λ̃1 > · · · > λ̃K > 0 almost
surely. Eliminating the possibility of sign reversals in B̃ in the same way as
in B we therefore have a one-to-one continuous correspondence between the
estimators Σ̃1 and Σ̃2 and the elements of the matrix B̃ and the vector λ̃.
Thus, B̃ and λ̃ can be viewed as unrestricted estimators of B and λ.

Deriving the asymptotic properties of estimated eigenvalues is known to
be a complicated problem when the theoretical eigenvalues are not distinct
which is the case under our null hypothesis. In the context of principal
component analysis, where the population eigenvalues satisfy equation (7)
with Σ1 = IK , and with independent observations a complete solution to
this problem is provided by Anderson (1963) (see also Anderson (2003, Sec.
11.7.3), and Muirhead (1982, Sec. 9.5 and 9.6)), whereas Anderson (2003,
Sec. 13.6.3) treats the case of a general Σ1 (again with independent obser-
vations). In what follows we adopt Anderson’s approach to our problem.

For setting up our test statistics, we also need consistent estimates of the
kurtosis parameters. One possible estimator is discussed in Schott (2001, p.
33),

κ̃m =
1

3K

K∑
k=1

zmk
wmk
− 1, m = 1, 2, (14)

where

zmk =

∑
t∈Tm(ũkt − ūmk )4 − 6σ̃4

k

Tm − 4

and

wmk =
Tm

Tm − 1

(
σ̃4
k −

zmk
Tm

)
.

Here ūmk = T−1m

∑
t∈Tm ũkt is the mean of the residuals associated with the

mth volatility regime. Of course, if the ut are Gaussian and this fact is known
to the analyst, the kurtosis parameters can simply be replaced by zero, i.e.,
κ̃1 = κ̃2 = 0 in the test statistic. Similarly, if the distribution is such that
κ1 = κ2 the kurtosis parameter can be estimated from the full sample using
the formulas as above based on the full sample.
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3.2 The Test Statistic

We base our test statistic on the eigenvalues λ̃s+1, . . . , λ̃s+r. In principal com-
ponent analysis with Gaussian iid data the LR test for testing the equality
of eigenvalues is based on the ratio of the geometric mean and arithmetic
mean of the ML estimators of the eigenvalues assumed to be identical under
the null hypothesis (see Anderson (1963) or Anderson (2003, Sec. 11.7.3)).
Proceeding according to this pattern, we consider the test statistic

Qr(κ̃1, κ̃2) = −c(τ, κ̃1, κ̃2)2Tr log

(∏s+r
k=s+1 λ̃

1/r
k

1
r

∑s+r
k=s+1 λ̃k

)
(15)

= c(τ, κ̃1, κ̃2)
2

[
−T

s+r∑
k=s+1

log(λ̃k) + Tr log

(
1

r

s+r∑
k=s+1

λ̃k

)]
,

where κ̃1 and κ̃2 are consistent estimators of the kurtosis parameters and the
term

c(τ, κ̃1, κ̃2)
2 =

(
1 + κ̃1
τ

+
1 + κ̃2
1− τ

)−1
is included to obtain a convenient limiting distribution. Since the test statis-
tic involves unrestricted estimators only, the test is akin to a Wald test.
Of course, other distance measures could also be considered. The following
proposition gives the asymptotic distribution of the test statistic under the
null hypothesis. It is proven in Appendix A.

Proposition 1. Let ut have an elliptical distribution possessing a density
as well as finite fourth moments with kurtosis parameters κi for t ∈ Ti (i =
1, 2), where T1 = {1, . . . , T1 = [τT ]}, T2 = {T1 + 1, . . . , T} and the fraction
τ ∈ (0, 1) is assumed to be known and fixed. Furthermore, let λ1 ≥ · · · ≥ λK
be ordered from largest to smallest and let Qr(κ̃1, κ̃2) be the test statistic
defined in equation (15) for testing the pair of hypotheses

H0 : λs+1 = λs+2 = · · · = λs+r(= λ0) versus H1 : ¬H0

for s ∈ {0, . . . , K − 1} and r ∈ {2, . . . , K − s}. Suppose that λs 6= λs+1

for s > 0 and λs+r 6= λs+r+1 for s < K − r. Furthermore, let κ̃1 and κ̃2 be
consistent estimators of κ1 and κ2, respectively. Then

Qr(κ̃1, κ̃2)
d→ χ2(1

2
(r + 2)(r − 1)).

�
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The asymptotic χ2 limiting distribution requires that r eigenvalues are
equal to λ0 and all other eigenvalues are different from λ0, i.e., λs 6= λs+1

and λs+r 6= λs+r+1. In order to ensure this condition, suitable sequences of
null hypotheses have to be tested. If

H0 : λ1 = · · · = λK

does not hold, we know that λ1 6= λK and we can test

H0 : λ1 = · · · = λK−1, H0 : λ2 = · · · = λK .

If these two null hypotheses are false, we can test all null hypotheses involv-
ing K − 2 consecutive eigenvalues etc.. If all null hypotheses tested in this
sequence of hypotheses are false, we can finally test

H0 : λ1 = λ2, . . . ,H0 : λK−1 = λK .

If all the null hypotheses are rejected, the tests support that all the structural
parameters are identified via heteroskedasticity.

For example, for K = 4 we have to test

H0 : λ1 = λ2 = λ3 = λ4.

Proposition 1 implies that this null hypothesis can be tested using Q4(κ̃1, κ̃2)
with a χ2(9) distribution. If the null hypothesis is false, it follows that
λ1 6= λ4 so that we can test

H0 : λ1 = λ2 = λ3 and H0 : λ2 = λ3 = λ4

using Q3(κ̃1, κ̃2) statistics with a χ2(5) distributions. If both null hypotheses
are false, the conditions of Proposition 1 are satisfied for the following three
null hypotheses:

H0 : λ1 = λ2, H0 : λ2 = λ3 and H0 : λ3 = λ4.

They can then be tested with Q2(κ̃1, κ̃2) tests based on asymptotic χ2(2)
distributions. Rejecting the latter null hypotheses is evidence of a fully iden-
tified structural model via heteroskedasticity.

In the previous literature a related Wald test for equality of two eigenval-
ues of a similar type is sometimes used with a χ2(1) distribution (e.g., Lanne
et al. (2010), Velinov and Chen (2015)). Even if somewhat different volatility
models are used in these publications, Proposition 1 suggests that the χ2(1)
distribution is a poor approximation to the actual asymptotic distributions
of the test statistics. An adjustment of the degrees-of-freedom (df) param-
eter is likely to be useful. Note that increasing the df parameter increases
the correspondingly assumed p-values and, hence, may reduce the number of
rejections.
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4 Small Sample Properties of Tests for Iden-

tification

4.1 Experimental Design

We consider a range of DGPs to investigate the small sample properties of our
tests. All DGPs have zero intercept, ν = 0. We still fit VARs with intercept.
Although all our DGPs are either VAR(0) or VAR(1) processes, we also fit
VAR(p) models with p > 1 to the data. The error distributions are either
Gaussian, ut ∼ N (0,Σt), or have t distributions with 5 degrees of freedom.
The DGPs are chosen such that we can explore the possible dependence of
the small sample properties on the dimension of the underlying process, the
location of the volatility change point and the persistence of the process.
Therefore our choice of DGPs varies these features. In particular, we use the
following DGPs:

DGP1 Bivariate (K = 2) VAR(0) process yt = ut, with volatility change
at T1 = τT , where τ = 0.5 and 0.2. The errors ut are Gaussian,
ut ∼ N (0,Σt), with Σ1 = I2 and Σ2 = Λ, where

Λ = diag(λ1, λ2) with (λ1, λ2) = (2, 2), (2, 1).

DGP2 The second DGP is also a bivariate VAR(0) with the same param-
eter values as DGP1 but the error distribution is a multivariate t-
distribution with 5 degrees of freedom. More precisely, the components
of ut = (u1t, u2t)

′ have independent t(5) distributions for t ≤ T1 and√
λi × t(5) distributions for t > T1 and i = 1, 2.

DGP3 The third DGP is a bivariate VAR(1) process

yt =

[
a 0
0 0

]
yt−1 + ut

with a = 0.5 and 0.9. For a = 0.9 the process has one persistent
variable. The error process ut is the same Gaussian process as for
DGP1 with τ fixed at 0.5 and

Λ = diag(λ1, λ2) with (λ1, λ2) = (2, 2), (2, 1).

DGP4 The fourth DGP is a five-dimensional (K = 5) VAR(1) process

yt =


a1 0 0 0 0
0 a2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 yt−1 + ut,
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where a1 = 0.9 and a2 = 0.5. The error process is again Gaussian,
ut ∼ N (0,Σt), and the volatility change occurs in the middle of the
sample, τ = 0.5. Moreover,

Λ = diag(λ1, . . . , λ5) with

(λ1, . . . , λ5) = (2, 2, 2, 2, 2) and (5, 4, 3, 2, 1).

The first set of λi’s allows us to study the size of the tests and the
second set of λi’s is chosen to investigate the power. Although the λi’s
in the latter set of relative variances are chosen in equidistant steps,
they may reflect differences in power. For example, the tests may have
different power for H0 : λ1 = λ2 and H0 : λ4 = λ5 because, in relative
terms, λ1 and λ2 are closer together than λ4 and λ5. In fact, λ4 is twice
as large as λ5.

We fit VAR models with intercept to the data and, for DGP1 and DGP2,
compare with the situation where the test statistics are computed directly
for the ut (the VAR(0) case). Estimation of the VAR slope coefficients is
done by GLS and then the λi are estimated by optimizing the concentrated
likelihood function (10) numerically. Alternatively, we could have obtained
the λ̃i as generalized eigenvalues using (7) with estimated covariance matrices
Σ̃1 = T−11

∑T1
t=1 ũtũ

′
t and Σ̃2 = (T − T1)

−1∑T
t=T1+1 ũtũ

′
t, where ũt are the

GLS residuals. Even for the Gaussian processes we pretend that we do not
know the true distribution and fit models with possibly two distinct kurtosis
parameters.

We also vary the sample size because it is expected to affect the properties
of the tests as well. Specifically, T = 100, 250, 500 are used. The number of
replications of all simulation experiments is 1000.

4.2 Simulation Results

The results for the bivariate DGPs (DGP1 - DGP3) are presented in Tables
1 - 3 and the results for the five-dimensional DGP4 are shown in Table 4.
We will first discuss the results for the bivarite DGPs.

4.2.1 Bivariate DGPs

Considering the panels for (λ1, λ2) = (2, 2) in Table 1, it can be seen that
the tests are slightly oversized for small sample sizes when higher order VAR
models are fitted. For the VAR(4) models and sample size T = 100 the
rejection frequencies are well above 10% instead of the nominal 5%. The
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Table 1: Relative Rejection Frequencies of Tests for DGP1 (Nominal Signif-
icance Level 5%)

VAR(0) VAR(4)
(λ1, λ2) T Q2(0, 0) Q2(κ̃1, κ̃2) Q2(0, 0) Q2(κ̃1, κ̃2)

τ = 0.5
(2, 2) 100 0.067 0.064 0.144 0.148

250 0.050 0.044 0.079 0.075
500 0.050 0.048 0.060 0.062

(2, 1) 100 0.338 0.323 0.443 0.429
250 0.678 0.677 0.707 0.702
500 0.946 0.946 0.948 0.946

τ = 0.2
(2, 2) 100 0.051 0.054 0.136 0.130

250 0.052 0.050 0.073 0.072
500 0.058 0.059 0.067 0.070

(2, 1) 100 0.312 0.305 0.431 0.423
250 0.672 0.668 0.701 0.693
500 0.946 0.940 0.945 0.943

situation improves when the sample size gets larger and the empirical size is
close to 5% in all cases when T = 500. If a VAR(0) is considered the size is
close to the nominal level for all sample sizes.

The results in Table 1 also indicate that the location of the break date
(represented by τ) does not seem to affect the properties of the tests substan-
tially, at least if one considers break dates not very close to the beginning
or end of the sample. The rejection frequencies in corresponding entries in
Table 1 for τ = 0.2 and τ = 0.5 are in fact very similar. Thus, size and power
of the tests do no seem to depend much on the break date.

Another feature that can be seen in Table 1 is that it does not matter
much whether the true kurtosis parameters κ1 = κ2 = 0 are used in the
test statistics or the parameters are estimated. The rejection frequencies of
the corresponding test statistics Q2(0, 0) and Q2(κ̃1, κ̃2) are in all cases very
similar.

The situation is very different in Table 2, where the true residual dis-
tribution is a t distribution. In that case the test based on Q2(0, 0), which
incorrectly assumes kurtosis parameters of a Gaussian distribution, is sub-
stantially oversized while the test based on Q2(κ̃1, κ̃2) has size properties
similar to those in Table 1, where the DGP is Gaussian. Comparing the
results for (λ2, λ2) = (2, 1) in Tables 1 and 2 it can be seen that the power of
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Table 2: Relative Rejection Frequencies of Tests for DGP2 (Nominal Signif-
icance Level 5%)

VAR(0) VAR(4)
(λ1, λ2) T Q2(0, 0) Q2(κ̃1, κ̃2) Q2(0, 0) Q2(κ̃1, κ̃2)

τ = 0.5
(2, 2) 100 0.173 0.047 0.266 0.123

250 0.187 0.048 0.229 0.067
500 0.214 0.048 0.231 0.060

(2, 1) 100 0.400 0.195 0.475 0.294
250 0.618 0.391 0.646 0.425
500 0.802 0.598 0.819 0.627

τ = 0.2
(2, 2) 100 0.175 0.046 0.280 0.149

250 0.216 0.060 0.244 0.086
500 0.259 0.067 0.277 0.078

(2, 1) 100 0.406 0.235 0.481 0.329
250 0.614 0.389 0.644 0.433
500 0.822 0.611 0.828 0.636

the tests based on estimated kurtosis parameters is slightly smaller for the t
distributed errors than for the Gaussian processes. Thus, the actual distribu-
tion may have an impact on the power of our tests. In any case, considering
the size properties, the recommendation from the results in Table 2 is to use
the test statistics with estimated kurtosis parameters if, as usual in practice,
the true distribution is unknown.

In Table 3, the impact of the persistence of the DGP can be seen. It
presents the rejection frequencies for the Gaussian DGP3 with persistence
parameters a = 0.5 and a = 0.9. Clearly, the corresponding entries in the ta-
ble for both values of a are very similar. Hence, the persistence of the process
does not matter much for the properties of the tests. In fact, the VAR(4)
results in Table 3 are not much different from the corresponding VAR(4)
results in Table 1, meaning that it does not make much difference whether
the true DGP is a Gaussian VAR(1) or a VAR(0). The more important issue
appears to be the order of the process which is fitted to the data. Clearly,
estimating more VAR parameters has a negative impact on the empirical size
of the tests in small samples. More precisely, the tests become oversized if
larger models are fitted and the sample size is small.

In summary, based on our specific bivariate DGPs it appears that the
volatility change date and the persistence of the VAR process does not matter
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Table 3: Relative Rejection Frequencies of Tests for DGP3 (Nominal Signif-
icance Level 5%)

VAR(1) VAR(4)
(λ1, λ2) T Q2(0, 0) Q2(κ̃1, κ̃2) Q2(0, 0) Q2(κ̃1, κ̃2)

a = 0.5
(2, 2) 100 0.067 0.063 0.119 0.120

250 0.052 0.053 0.067 0.070
500 0.047 0.047 0.057 0.056

(2, 1) 100 0.362 0.348 0.440 0.430
250 0.692 0.680 0.707 0.699
500 0.932 0.934 0.939 0.937

a = 0.9
(2, 2) 100 0.069 0.068 0.121 0.129

250 0.067 0.066 0.082 0.083
500 0.054 0.058 0.062 0.061

(2, 1) 100 0.333 0.331 0.421 0.439
250 0.699 0.698 0.715 0.720
500 0.942 0.942 0.943 0.943

much for the empirical size and power. The number of lags and, hence, the
size of the model affects the rejection frequencies. Larger models result in
oversized tests in small samples. Rather large samples are necessary to move
the empirical rejection frequencies close to the nominal significance level. If
the true distribution of the DGP is not known to be Gaussian, then it always
makes sense to use the test statistics based on estimated kurtosis parameters
because they display very similar rejection frequencies in the Gaussian case
to the test statistics based on known kurtosis parameters and their empirical
size is much closer to the nominal size if the true distribution is non-Gaussian.

4.2.2 Five-dimensional DGP

Looking now at the results for the five-dimensional DGP4 in Table 4, it
becomes clear that the tests are substantially oversized. For these large
models the size also improves for increasing sample sizes, but the rejection
frequencies still exceed the nominal 5% for T = 500. For example, for the
VAR(4) with (λ1, . . . , λ5) = (2, 2, 2, 2, 2) the rejection frequencies of the tests
for T = 500 are still around 17% rather than the desired 5%. Thus, for
very large models, the sample sizes also have to be rather large for precise
inference.

The size distortions also make it difficult to assess the power results for the
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Table 4: Relative Rejection Frequencies of Tests for DGP4 (Nominal Signif-
icance Level 5%)

VAR(1) VAR(4)
(λ1, . . . , λ5) H0 Qr(0, 0) Qr(κ̃1, κ̃2) Qr(0, 0) Qr(κ̃1, κ̃2)

T = 100
(2, 2, 2, 2, 2) λ1 = λ2 = λ3 = λ4 = λ5 0.228 0.218 0.904 0.892

λ1 = λ2 = λ3 = λ4 0.080 0.077 0.641 0.622
λ1 = λ2 = λ3 0.033 0.034 0.362 0.341
λ1 = λ2 0.019 0.019 0.186 0.172

(5, 4, 3, 2, 1) λ1 = λ2 = λ3 = λ4 = λ5 0.902 0.889 1.000 0.999
λ1 = λ2 = λ3 = λ4 0.466 0.447 0.892 0.883
λ2 = λ3 = λ4 = λ5 0.706 0.677 0.951 0.942
λ1 = λ2 = λ3 0.181 0.176 0.541 0.532
λ3 = λ4 = λ5 0.454 0.428 0.761 0.755
λ1 = λ2 0.052 0.049 0.231 0.229
λ4 = λ5 0.256 0.247 0.430 0.423

T = 250
(2, 2, 2, 2, 2) λ1 = λ2 = λ3 = λ4 = λ5 0.098 0.102 0.306 0.315

λ1 = λ2 = λ3 = λ4 0.025 0.020 0.097 0.097
λ1 = λ2 = λ3 0.008 0.008 0.038 0.033
λ1 = λ2 0.006 0.007 0.018 0.017

(5, 4, 3, 2, 1) λ1 = λ2 = λ3 = λ4 = λ5 0.999 0.999 1.000 1.000
λ1 = λ2 = λ3 = λ4 0.764 0.763 0.863 0.857
λ2 = λ3 = λ4 = λ5 0.992 0.989 0.998 0.998
λ1 = λ2 = λ3 0.292 0.281 0.423 0.409
λ3 = λ4 = λ5 0.908 0.909 0.941 0.942
λ1 = λ2 0.075 0.073 0.121 0.119
λ4 = λ5 0.646 0.641 0.726 0.724

T = 500
(2, 2, 2, 2, 2) λ1 = λ2 = λ3 = λ4 = λ5 0.086 0.085 0.171 0.166

λ1 = λ2 = λ3 = λ4 0.021 0.021 0.047 0.043
λ1 = λ2 = λ3 0.008 0.009 0.014 0.014
λ1 = λ2 0.006 0.006 0.011 0.010

(5, 4, 3, 2, 1) λ1 = λ2 = λ3 = λ4 = λ5 1.000 1.000 1.000 1.000
λ1 = λ2 = λ3 = λ4 0.987 0.987 0.991 0.992
λ2 = λ3 = λ4 = λ5 1.000 1.000 1.000 1.000
λ1 = λ2 = λ3 0.570 0.570 0.621 0.624
λ3 = λ4 = λ5 1.000 1.000 1.000 1.000
λ1 = λ2 0.154 0.150 0.194 0.193
λ4 = λ5 0.916 0.915 0.921 0.920
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DGPs with (λ1, . . . , λ5) = (5, 4, 3, 2, 1) in Table 4. It is noteworthy, however,
that there are distinct power differences for the different null hypotheses.
Testing equality of λi’s which are further apart in relative terms leads to
larger rejection frequencies than for null hypotheses for relatively more similar
λi’s. For example, for the VAR(1) and sample size T = 500, testing H0 :
λ1 = λ2 leads to relative rejection frequencies of 0.154 and 0.150 for Qr(0, 0)
and Qr(κ̃1, κ̃2), respectively, whereas the corresponding numbers for testing
H0 : λ4 = λ5 are 0.916 and 0.915.

In Table 4, it can also be seen that the rejection frequencies of correspond-
ing tests based on estimated versus known kurtosis parameters (Qr(0, 0) ver-
sus Qr(κ̃1, κ̃2)) are again very similar. Thus, even for our largest models
the properties of the tests do not deteriorate if estimated rather than known
kurtosis parameters are used. This result confirms the conclusion from the
bivariate processes that it is a good idea to always use estimated kurtosis
parameters in practice.

For five-dimensional DGPs we can also explore what happens when the
tests are applied in situations not covered by our asymptotic theory. Note
that Proposition 1 does not apply for null hypotheses H0 : λ1 = λ2 = λ3 = λ4,
H0 : λ1 = λ2 = λ3 and H0 : λ1 = λ2 when (λ1, . . . , λ5) = (2, 2, 2, 2, 2) because,
under the assumptions of Proposition 1, the λi’s not included in the null
hypothesis have to be different from those included in the null hypothesis.
For large sample sizes the corresponding tests reject much less frequently
than specified by the nominal size. In other words, they are undersized.
For a VAR(4) and sample size T = 250, the rejection frequencies are still
larger than the nominal size for H0 : λ1 = λ2 = λ3 = λ4, while the rejection
frequencies for this case are markedly lower than for the null hypothesis
H0 : λ1 = λ2 = λ3 = λ4 = λ5. Thus, the fact that the tests over-reject for
smaller sample sizes may just be a reflection of their bias for large models
and small sample sizes.

Rejecting less often than specified by the nominal significance level in
cases where many relative variances are equal is perhaps not a big problem
in practice because the correct conclusion of equal variances would be drawn
more often then assumed on the basis of the chosen significance level. On
the other hand, the excessive rejection rates in small samples could be a
problem in applied work. The investigator could be misled to the conclusion
that there is more identifying information in the second moments than there
really is.

Overall the results for the five-dimensional DGP confirm some basic con-
clusions from bivariate DGPs. The tests tend to be oversized for large models
and small sample sizes. Rather large sample sizes are necessary for an em-
pirical size close to the nominal size. The test statistics based on estimated
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kurtosis parameters should be used in practice because the small sample
properties of the tests do not suffer from using estimated kurtosis parame-
ters and they protect against assuming an incorrect distribution.

5 Empirical Examples

We present two empirical examples to illustrate the use of our tests for iden-
tification. The first one reconsiders a bivariate model for US data originally
proposed by Blanchard and Quah (1989) and the second one has been used
to analyze the interaction between US monetary policy and the stock market.

5.1 Blanchard-Quah Model

Blanchard and Quah (1989) identify demand and supply shocks in a bivariate
macro model for US economic growth and unemployment by assuming that
the demand shocks have no lung-run effects on output. Their model has be-
come a textbook example for identification by restrictions on the long-run ef-
fects of the structural shocks (see, e.g., Breitung, Brüggemann and Lütkepohl
(2004), Lütkepohl (2005, Chapter 9), Kilian and Lütkepohl (2017, Chapter
10)). Chen and Netšunajev (2016) use seasonally adjusted quarterly data
for the period 1970q1 - 2007q4 and use identification through heteroskedas-
ticity to investigate the validity of the long-run neutrality of demand shocks
in a VAR(2) model for yt = (∆gnpt, Ut), where gnpt denotes the log of
GNP and Ut is the unemployment rate. They model volatility changes by a
smooth transition in the reduced form error covariance matrices. Their esti-
mated change in the variances turns out to be a decline in the error variances
around 1983q1 which is roughly the time where the Great Moderation starts
in the US (see also Figure 1 of Chen and Netšunajev (2016)). Therefore it is
plausible to use the VAR model (1) with a change in the residual covariance
matrix in period 1983q1.

We have used the data from Chen and Netšunajev (2016) and estimated
a VAR(2) model with error covariance change as in expression (2) with T1 =
1982q4. Since we have a sample size of T = 152, the corresponding sample
fraction of the break is τ = 0.34. The estimated relative variances (λi’s)
together with estimated standard errors are presented in Table 5. Both λ̃1
and λ̃2 are smaller than one so that the second part of the sample clearly is
associated with lower residual volatility.

The estimated λi’s are clearly distinct and, based on the standard errors
in Table 5, one may expect that they are significantly different. This less
formal evidence is in fact used by Chen and Netšunajev (2016) to justify the
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Table 5: Estimated Relative Variances of Blanchard-Quah Model

Relative variance Estimate Standard deviation
λ1 0.457 0.154
λ2 0.152 0.041

Table 6: Identification Test for Blanchard-Quah Model

H0 Q2(κ̃1, κ̃2) degrees of freedom p-value
λ1 = λ2 8.600 2 0.014

assumption of distinct relative variances. Using this assumption they test
the long-run neutrality of demand shocks and find evidence against long-run
neutrality. Using our test statistic Q2(κ̃1, κ̃2), we can now formally test the
null hypothesis H0 : λ1 = λ2. The associated p-value is given in Table 6.
It is clearly smaller than 5% so that H0 is rejected at a common level of
significance. Thereby we support the assumption underlying the analysis
of Chen and Netšunajev (2016). Note that we use the test statistic with
estimated kurtosis parameters to avoid the assumption of a Gaussian error
distribution.

5.2 A US Monetary Macro Model

Our second example is based on a benchmark study by Bjørnland and Leit-
emo (2009) who investigate the interaction between US monetary policy and
the stock market using a structural VAR analysis. The relation between
US monetary policy and the stock market has been investigated in a num-
ber of other articles as well (e.g., Park and Ratti (2000), Cheng and Jin
(2013)). Bjørnland and Leitemo consider a five-dimensional system of vari-
ables, yt = (qt, πt, ct,∆spt, rt)

′, where qt is the linearly detrended log of an
industrial production index, πt denotes the annual change in the log of con-
sumer prices (CPI index), ct is the annual change in the log of the World
Bank (non energy) commodity price index, spt is the log of the real S&P500
stock price index deflated by the consumer price index to measure the real
stock prices and rt denotes the Federal Funds rate.

Bjørnland and Leitemo (2009) identify monetary policy and stock mar-
ket shocks by zero restrictions on the impact effects and the long-run effects.
These restrictions are controversial and have been questioned by other au-
thors. Notably, Lütkepohl and Netšunajev (2017a, 2017b) consider identifi-
cation through heteroskedasticity to investigate the validity of the Bjørnland-
Leitemo identifying assumptions.
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Table 7: Estimated Relative Variances of US Monetary Macro Model

Relative variance Estimate Standard deviation
λ1 0.939 0.155
λ2 0.873 0.152
λ3 0.577 0.089
λ4 0.318 0.052
λ5 0.054 0.005

Lütkepohl and Netšunajev (2017a, 2017b) use monthly US data for the
period 1970m1 - 2007m6 and more sophisticated volatility models than our
simple shift in the covariance matrices. However, the smooth-transition mod-
els used by Lütkepohl and Netšunajev (2017b) indicate that considering a
VAR model such as (1) with error covariances (2) and a shift date in 1984 may
provide a reasonable approximation (see in particular Figure 1a of Lütkepohl
and Netšunajev (2017b)). Therefore we use their data and fit a VAR(3)
model with a shift in the error covariance matrix after time T1 = 1983m4
which again roughly corresponds to splitting the data at the time when the
Great Moderation started. The total sample size in this case is T = 450 and,
hence, the fraction of the first volatility regime is τ = 0.37.

The estimated relative variances together with estimated standard errors
are shown in Table 7. Again the second volatility regime is associated with
lower volatility because all relative variances are smaller than one. However,
given the large estimated standard errors of some of the relative variances,
it is clearly not obvious from Table 7 that the λi’s are all distinct, although
one may expect that some of the differences may be statistically significant.

To investigate the statistical significance of differences in the λi’s for-
mally we use again our tests with estimated kurtosis parameters. Since our
set of variables includes a stock market index, an assumption of Gaussian
model errors may be questionable and, hence, it is reasonable to allow for
distributions with more kurtosis. Some test results are presented in Table 8.

The null hypothesis that all five λi’s are identical is very strongly rejected
at any conventional significance level. Thus, there is strong evidence that
there is some additional identifying information in the second moments of
the process. This result also allows us to test that the first four or last four
relative variances are identical. The null hypothesis H0 : λ1 = λ2 = λ3 = λ4
results in a p-value of 0.138 and, hence, at conventional significance levels,
it cannot be rejected. In contrast, the hypothesis H0 : λ2 = λ3 = λ4 = λ5 is
strongly rejected.

Given these results, we cannot be sure that the conditions for our tests
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Table 8: Identification Tests for US Monetary Macro Model

H0 Qr(κ̃1, κ̃2) degrees of freedom p-value
λ1 = λ2 = λ3 = λ4 = λ5 75.328 14 2.060e−10
λ1 = λ2 = λ3 = λ4 13.565 9 0.138
λ2 = λ3 = λ4 = λ5 65.565 9 1.120e−10
λ1 = λ2 = λ3 2.671 5 0.751
λ2 = λ3 = λ4 9.997 5 0.075
λ3 = λ4 = λ5 47.474 5 4.548e−9
λ1 = λ2 0.054 2 0.973
λ2 = λ3 1.737 2 0.420
λ3 = λ4 3.565 2 0.168
λ4 = λ5 28.654 2 5.995e−7

hold for null hypotheses H0 : λ1 = λ2 = λ3 and H0 : λ2 = λ3 = λ4. Recall
that Proposition 1 requires that λ4 is different from λ3 to test the former
hypothesis and λ1 is different from λ2 to test the latter hypothesis using the
asymptotic distribution given in the proposition. Thus, the corresponding p-
values in Table 8 may be unreliable. On the other hand, taking them at face
value, they are consistent with the first four λi’s being equal. In contrast,
our test of H0 : λ3 = λ4 = λ5 has a p-value smaller than 0.001 and hence the
hypothesis is strongly rejected. Note that this test is justified by Proposition
1 and the result is consistent with the previous tests.

Using the arguments of the previous paragraph, Proposition 1 only pro-
vides a basis to test the final null hypothesis in Table 8, H0 : λ4 = λ5. Also
this hypothesis is clearly rejected at any common significance level thereby
providing support for λ5 being different from all other λi’s. On the other
hand, our tests do not support that λ1, λ2, λ3 and λ4 are different.

It may be worth noting that Lütkepohl and Netšunajev (2017b) use their
model to test hypotheses regarding identifying zero restrictions on the im-
pact and long-run effects of the shocks which are not overidentifying in a
conventional structural VAR model and, hence, would not be testable with-
out additional identifying information. Such tests become feasible, of course,
if heteroskedasticity provides at least some identifying information. In fact,
Lütkepohl and Netšunajev (2017b) reject most of the restrictions of interest
in their study implying that heteroskedasticity apparently provides sufficient
information for the tests to have power. Our tests enable the researcher
to assess in more detail how much additional identifying information can
be expected from heteroskedasticity and ideally also which hypotheses can
reasonably be tested. Finally, we remind the reader that Lütkepohl and
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Netšunajev (2017b) considered a different volatility model so that our results
strictly speaking do not apply to their model. Clearly, it would be of interest
to have identification tests similar to our new tests for more sophisticated
volatility models as well.

6 Conclusions

In this study we have developed frequentist tests for identification through
heteroskedasticity in structural vector autoregressive models. We consider
VAR models with two volatility states. The change point of the volatility
is assumed to be known. The tests are Wald type tests such that only the
unrestricted model has to be estimated. The model errors are assumed to be
from the class of elliptical distributions. This class of distributions includes
the Gaussian distribution. We propose test versions where the kurtosis of
the distribution is assumed to be known and also allow for the possibility
that the kurtosis is estimated rather than known.

The asymptotic null distributions of the test statistics are derived and are
shown to be χ2 distributions although the models are not identified under
the null hypothesis. We have also explored the small sample properties of
the tests by Monte Carlo simulations and we have found that the tests are
oversized for large models when the sample size is small. However, for larger
samples and smaller models, size and power of the tests is quite reasonable
and the properties of the tests do not depend on the timing of the volatility
break. Also the small sample properties are very little affected by estimating
the kurtosis parameters. Thus, in practice we recommend to use the test
versions which are based on estimated kurtosis parameters.

Two empirical examples are considered to illustrate the usefulness of the
tests. The first example considers a bivariate model for US data. Our tests
support the assumption of earlier studies that the model is identified by het-
eroskedasticity. The second example is based on a five-dimensional model for
US data. It has been used to analyze the interaction between US monetary
policy and the stock market. We find that there is some identifying informa-
tion from heteroskedasticity but there is little support for a fully identified
structure.

There are a number of desirable extensions of our tests. First, it would
be useful if tests for more than two volatility regimes could be developed.
Moreover, the volatility model is very special. It assumes that the change
in volatility is extraneously generated. Other models have been used in the
literature on identification through heteroskedasticity. It is desirable to have
tests for identification also for other related models.
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A Proof of Proposition 1

We assume that the ut have an elliptical distribution possessing a density as
well as finite fourth moments as in Proposition 1.

We study λ̃1, . . . , λ̃K , the eigenvalues of Σ̃−11 Σ̃2, and follow the pattern of
proof in Anderson (2003, Sections 13.6.1 and 13.6.2). As in Anderson (2003,
eqn. (9) on p. 550), for the theoretical developments that follow it will be
convenient to transform the estimators Σ̃1 and Σ̃2 and consider the matrices

Ω̃1 = B−1Σ̃1B
′−1 and Ω̃2 = B−1Σ̃2B

′−1.

(As before, we here assume that the first nonzero element on each column
of B is positive.) With this transformation, the asymptotic distributions of
Ω̃1 and Ω̃2 below will depend only on Λ and not on B (note also that the
theoretical counterparts of Ω̃1 and Ω̃2 are B−1Σ1B

′−1 = IK and B−1Σ2B
′−1 =

Λ). Furthermore, as λ̃1, . . . , λ̃K are the eigenvalues of Σ̃−11 Σ̃2, they are also

the eigenvalues of Ω̃−11 Ω̃2 or, equivalently, the eigenvalues of Ω̃
−1/2
1 Ω̃2Ω̃

−1/2
1 .

Thus, as far as asymptotic properties of the eigenvalues λ̃1, . . . , λ̃K or their
functions are concerned, we can use the matrices Ω̃1 and Ω̃2 instead of Σ̃1

and Σ̃2.
From (12) and (13) it follows that the asymptotic distributions of Ω̃1 and

Ω̃2 can be derived by using the (independent) errors ut in place of the residuals
in the definitions of Σ̃1 and Σ̃2. For simplicity, denote T2 = T − T1 and note
that, due to the assumption T1 = [τT ] for some τ ∈ (0, 1), both T1 →∞ and
T2 → ∞ when T → ∞. From Theorem 3.6.2 in Anderson (2003, p. 102),

we can thus conclude that T
1/2
1 (Ω̃1 − IK) = Z̃1 and T

1/2
2 (Ω̃2 − Λ) = Z̃2, say,

converge jointly in distribution as T → ∞ to the matrices Z1 = [z1,ij] and
Z2 = [z2,ij] (i, j = 1, . . . , K). Here Z1 and Z2 are independent, their elements
are jointly normally distributed, and their functionally independent elements
are statistically independent. Furthermore, their elements have mean zero
and covariance structure given by

Cov[vec(Z1)] = (1 + κ1)(IK2 + K)(IK ⊗ IK) + κ1vec(IK)vec(IK)′

and

Cov[vec(Z2)] = (1 + κ2)(IK2 + K)(Λ⊗ Λ) + κ2vec(Λ)vec(Λ)′,

where K (K2×K2) is a commutation matrix. The Gaussian case is obtained
as a special case by choosing κ1 = κ2 = 0. In what follows, the null hypothesis
is assumed to hold unless otherwise stated.

As in Tyler (1983, p. 413, the paragraph following equations (1)), we can
describe the elements of Cov[vec(Z1)] as follows. The distinct off-diagonal
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elements of Cov[vec(Z1)] are uncorrelated with each other and uncorrelated
with the diagonal elements, and each of them has variance 1 + κ1. All di-
agonal elements have variance 2 + 3κ1 and the covariance between any two
diagonal elements is κ1. In the special case where Λ = λ0IK the same de-
scription clearly applies to the elements of Cov[vec(Z2)] with κ1 replaced by
κ2, provided the variances and covariances are multiplied by λ20, and by the
definition of the commutation matrix the same is true when Z2 is replaced
by the matrix [z2,ij]

s+r
i,j=s+1 and Λ is replaced by Λ2 = λ0Ir.

Theorem 1 of Amemiya (1990) implies that T 1/2(λ̃s+1−λ0, . . . , λ̃s+r−λ0)
converges in distribution to an (r× 1) random vector consisting of the eigen-
values of the matrix U = [uij]

r
i,j=1 = [(1−τ)−1/2z2,ij−λ0τ−1/2z1,ij]s+ri,j=s+1. The

elements of U are jointly normally distributed with mean zero and covari-

ances given in the following equations where c(τ, κ1, κ2)
2 =

(
1+κ1
τ

+ 1+κ2
1−τ

)−1
and i, j = s+ 1, . . . , s+ r:

E[u2ij] =
(1 + κ2)λ

2
0

1− τ
+

(1 + κ1)λ
2
0

τ
= λ20c(τ, κ1, κ2)

−2 for i 6= j

E[u2ii] =
(2 + 3κ2)λ

2
0

1− τ
+

(2 + 3κ1)λ
2
0

τ

= 2λ20c(τ, κ1, κ2)
−2 + λ20

(
κ2

1− τ
+
κ1
τ

)
E[uiiujj] = λ20

(
κ2

1− τ
+
κ1
τ

)
for i 6= j.

Distinct off-diagonal elements of U are independent of each other and the
off-diagonal and diagonal elements of U are independent.

Now define the (infeasible) test statistic

Qr(κ1, κ2) = c(τ, κ1, κ2)
2

[
−T

s+r∑
k=s+1

log(λ̃k) + Tr log

(
1

r

s+r∑
k=s+1

λ̃k

)]

for which we have

Qr(κ1, κ2)
d→ c(τ, κ1, κ2)

2

λ20

∑
i<j

u2ij +
c(τ, κ1, κ2)

2

2λ20

 s+r∑
i=s+1

u2ii −
1

r

(
s+r∑
i=s+1

uii

)2


def
= Q∗1,r(κ1, κ2) +Q∗2,r(κ1, κ2).

Here Q∗1,r(κ1, κ2) and Q∗2,r(κ1, κ2) are independent and Q∗1,r(κ1, κ2) has a χ2

distribution with 1
2
r(r − 1) degrees of freedom. As to Q∗2,r(κ1, κ2), defining
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ws as

ws =
c(τ, κ1, κ2)√

2λ0
(us+1,s+1, . . . , us+r,s+r),

and the (r×r) projection matrix Pr as Pr = Ir− 1
r
1r1

′
r, where 1r = (1, . . . , 1)

is an (r × 1) vector, we have

Q∗2,r(κ1, κ2) = w′sPrws.

Hence, it follows that the random vector ws is normally distributed with zero
mean and covariance matrix (see the above expressions of E[u2ii] and E[uiiujj]
(i 6= j))

Cov[ws] = Ir +
c(τ, κ1, κ2)

2

2

(
κ2

1− τ
+
κ1
τ

)
Ir

+
c(τ, κ1, κ2)

2

2

(
κ2

1− τ
+
κ1
τ

)
(1r1

′
r − Ir)

= Ir +
c(τ, κ1, κ2)

2

2

(
κ2

1− τ
+
κ1
τ

)
1r1

′
r.

Thus, we have PrCov[ws] = Pr and we find that Q∗2,r(κ1, κ2) has a χ2 dis-
tribution with r − 1 degrees of freedom. This fact can be justified by a
well-known result of quadratic forms of normal random vectors (see, e.g.,
result (vii) in Rao (1973, p. 188)).

From the preceding discussion we can now conclude that Qr(κ1, κ2)
d→

Q∗1,r(κ1, κ2) + Q∗2,r(κ1, κ2), where Q∗1,r(κ1, κ2) and Q∗2,r(κ1, κ2) are indepen-
dent and have χ2 distributions with degrees of freedom 1

2
r(r − 1) and r − 1.

Therefore, the infeasible test statistic Qr(κ1, κ2) has an asymptotic χ2 dis-
tribution with 1

2
(r + 2)(r − 1) degrees of freedom, and the same is true for

its feasible version Qr(κ̃1, κ̃2), where κ̃1 and κ̃2 are consistent estimators of
κ1 and κ2, respectively. This proves Proposition 1.
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Lütkepohl, H. and Netšunajev, A. (2017a). Structural vector autoregressions
with heteroskedasticy: A review of different volatility models, Econo-
metrics and Statistics 1: 2–18.
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