# STATISTICS PRE-COURSE

## Part 2

#### FUNDAMENTALS OF PROBABILITY

# Alfonso Russo

Department of Economics and Finance

Tor Vergata University of Rome

September 2023

## PART II SYLLABUS

- 1 Basic definitions and recap of Set Theory
- 2 Random Variables
- 3 Discrete Probability Distributions
- 4 Continuous Probability Distributions
- 5 Expected value and Variance of a Random Variable
- Main Probability Distributions (Bernoulli, Binomial, Poisson, Uniform, Normal, Exponential, Student-t ...)
- 7 Basics of Asymptotics (Central Limit Theorem, Law of Large Numbers)

We call a phenomenon random if we are uncertain about its outcome

# **Probability** allows us to deal with randomness, by quantifying uncertainty and measuring the chances of possible outcomes

Typically, the randomness we have to deal with comes from the **sampling procedure**: when we observe data, their values comes from the units that we randomly select

- The moment when it will first start rain tomorrow
- The number of tweets Trump is going to post tomorrow
- The result of a football match
- Tomorrow's price of a stock

There follows some basic definitions we are going to use in dealing with randomness

- **Event space:** the set of all possible outcomes. Its elements are exhaustive (no possible outcome is left out) and mutually exclusive (only one event can occur)
- Event: a subset of the Sample Space corresponding to one or more possible outcomes
- **Probability:** the measure of how likely each of the elements of the sample space is

# AN EVERGREEN (ALBEIT BORING) EXAMPLE

Random phenomenon: throw of a fair die

**Event space:** all of the possible outcomes

 $\blacksquare \ \Omega = \{1, 2, 3, 4, 5, 6\}$ 

**Event**: "the die returns an even number"

 $\blacksquare E = \{2, 4, 6\}$ 

Probability:

 $\blacksquare \ \mathbb{P}(E) = \frac{3}{6} = \frac{1}{2}$ 

**Events** are mathematically treated as **Sets**.

- Sets can be finite (contain a finite number of objects) or infinite (consist of infinite elements).
- The cardinality of a given set is the measurement of objects that the set contains. E.g. if  $E = \{1, 2, 3\}$  then the cardinality of E, denoted as #E = 3.

BASIC OPERATIONS ON SETS

Consider a generic set A included in an event space  $\Omega$ 



BASIC OPERATIONS ON SETS

**Complement:**  $(A^c \text{ or } \bar{A})$  everything that is not in A



**Example:** A = "the die returns an even number";  $A^c =$  "the die returns an odd number"

BASIC OPERATIONS ON SETS

**Intersection:**  $(A \cap B)$  everything that is **both** in A and B



**Example:** A = "the die returns an even number"; B = "the die returns a number less than 5"  $\implies A \cap B = \{2, 4\}$ 

BASIC OPERATIONS ON SETS

#### **Intersection:** $(A \cap B)$ everything that is **both** in A and B



**Example:** A = "the die returns an even number"; B = "the die returns a 5"

 $\implies A \cap B = \emptyset$ 

 $\boldsymbol{A}$  and  $\boldsymbol{B}$  are disjoint

BASIC OPERATIONS ON SETS

**Union:**  $(A \cup B)$  everything that is **either** in A in B or both



**Example:** A = "the die returns an even number"; B = "the die returns a 5"  $\implies A \cup B = \{2, 4, 5, 6\}$ 

#### PROBABILITY AXIOMS

AND SOME TRIVIAL CONSEQUENCES

Given a generic set A in an event space  $\Omega$ 

 $0 \leq \mathbb{P}(A) \leq 1$  $\mathbb{P}(\Omega) = 1$  $\mathbb{P}(\emptyset) = 0$ 

As a consequence

 $\blacksquare \mathbb{P}(A^c) = 1 - \mathbb{P}(A)$ 

 $\blacksquare \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$ 

If A and B are disjoint then  $\mathbb{P}(A \cap B) = 0$ . Hence  $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ 

- In a sample of 100 college students, 60 said that they own a car, 30 said that they own a stereo, and 10 said that they own both a car and a stereo.
- Compute the probability that a student owns a car but **not** a stereo.
- Compute the probability that a student owns either a car **or** a stereo.
- Depict this information on a Venn diagram.

#### Solution

- Let *C* representing the event "the student owns a car". Let *D* be the event "the student owns a stereo".
- We know that  $\mathbb{P}(C) = 0.6$ ,  $\mathbb{P}(D) = 0.3$  and  $\mathbb{P}(C \cap D) = 0.1$ .

 $\blacksquare \mathbb{P}(\text{"car but NOT stereo"}) = \mathbb{P}(C) - \mathbb{P}(C \cap D) = 0.6 - 0.1 = 0.5.$ 

 $\blacksquare \ \mathbb{P}(\text{"car OR stereo"}) = \mathbb{P}(C \cup D) = \mathbb{P}(C) + \mathbb{P}(D) - \mathbb{P}(C \cap D) = 0.6 + 0.3 - 0.1 = 0.8$ 



#### How do we define probability?

- Classical approach: assigning probabilities based on the assumption of equally likely events
- Frequency approach: assigning probabilities as the limit of the relative frequency of the event assuming having observed infinite repetitions of the random experiment
- Subjective approach: assigning probabilities based on assignor's judgment or external information

Regardless of the followed approach, **probability is still a measure of uncertainty**. In other words, it quantifies how much we do not know and it **strongly depends on the information available** about the random phenomenon.

#### PROBABILITY AND RELATIVE FREQUENCIES

The probabilistic relative frequency of an event's occurring is the proportion of times the event occurs over a given number of trials. If A is the event of interest, then the probabilistic relative frequency of A, denoted as  $\mathbb{P}(A)$ , is defined as

 $\mathbb{P}(A) = \frac{\text{number of occurrences}}{\text{number of trials}}$ 

Among the first 43 Presidents of the United States, 26 were lawyers. What is the probability of the event A = "selecting a President who is also a lawyer"?

$$\mathbb{P}(A) = \frac{26}{43} \approx 0.605$$

#### EXERCISES

Is there an intruder? Why?

- Choosing at random an even number from 1 to 10.
- Getting a diamond card from a deck of 52 cards.
- Drawing a red ball from a jar of 500 blue balls.
- Pick exactly our Sun at random from a jar with the names of all the Stars in the observable universe.
- In a room there are 6 volleyball players, 4 basketball players and 10 football players. If one of them is selected at random:
  - what is the probability that the selected one is an athlete?
  - what is the probability that the selected one is either a volleyball or a football player?
  - what is the probability that the selected one is not a basketball player?
- What is the probability that an Italian newborn is a girl?

# Conditional Probability

Accounting for New Information

Probability is a measure of uncertainty on the result of a random experiment. Therefore, any additional information on its outcome **affects it**.

■ Let A and B be two events. If we knew that B happened, we could update the probability of A as follows

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \tag{1}$$

**Exercise:** Back to the students, find the probability that a Student own a stereo given possession of a car.

If knowing about an event B does not affect our probability evaluation of another event A we say that A and B are **independent**.

$$\mathbb{P}(A|B) = \mathbb{P}(A) \tag{2}$$

Combining this notion with the definition of conditional probability, we can derive the **factorisation criterion** to assess if two events are independent

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \mathbb{P}(A) \implies \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$
(3)

Something to warm up

- Problem I: two coins are tossed. Each coin has two possible outcomes, head (H) and tail (T).
  - Determine the event space and its size
  - Find the probability of the event A = "the faces appearing on the two coins are different"
  - **\blacksquare** Find the probability of the event B = "the faces appearing on the two coins are two heads"

Problem II: which of the following numbers cannot be a probability?

- 1 0.5
- 2 -0.001
- 3 1
   4 0
- 5 1.01

Something to warm up

Problem III: two fair dice are rolled. Find the probabilities of the following events

- the sum is equal to 1
- the sum is equal to 4
- the sum is less than 13

Problem IV: a card is drawn at random from a deck of 52 cards. Find the probabilities of the following events

- the card is a 3 of diamond
- the card is a queen

- To compute probabilities we might often need a method to assess in how many different ways a certain phenomenon can happen. E.g. "how many times will I obtain two Heads in two tosses of a coin?".
- The table of all the 4 possible outcomes.

| 1 | Н | Н |
|---|---|---|
| 2 | н | т |
| 3 | т | Н |
| 1 | н | н |
| 4 |   |   |

**Combinatorics** is a branch of mathematics that is about counting.

#### COMBINATORICS

#### FUNDAMENTAL PRINCIPLE OF COMBINATORICS

If you have an experiment with n possible outcome and add a second experiment with m possible outcomes, then the combination of the two experiments has  $n\times m$  possible outcomes.

■ In the previous example: each coin toss has two possible outcomes; then two tosses of a coin have 2 × 2 possible outcomes.

#### PERMUTATIONS

Imagine there are 9 students attending the Statistics course. Suppose further that there are 9 chairs available positioned on a straight line where the students can sit. How many different lines can be formed by changing the position of the students?

The first student can choose his sit in 9 different ways, the second has 8 possible choices, the third can sit in only 7 alternative ways and so on. Therefore, there are

 $9 \times 8 \times 7 \times 6 \times \ldots \times 1 = 9!$ 

possible ways to place 9 students on a line.

#### PERMUTATIONS

#### PERMUTATION OF SET ELEMENTS

Given a set of  $\boldsymbol{n}$  elements, a given ordering of its components is a permutation.

There are n! possible permutations of n elements.

Suppose we want to place 23 Students on 23 chairs in a Maths class. If you have 4 classes a week and there are 52 weeks in one year, how long would it take to get through all the possible sit permutation?

#### PERMUTATIONS

#### PERMUTATION OF SET ELEMENTS

Given a set of n elements, a given *ordering* of its components is a permutation. There are n! possible permutations of n elements.

Suppose we want to place 23 Students on 23 chairs in a Maths class. If you have 4 classes a week and there are 52 weeks in one year, how long would it take to get through all the possible sit permutation?

Answer: 10 million times the current age of the Universe!

#### Combinations

I Suppose again we have n = 9 Students but this time we have to place them on k = 6 chairs only. How many ways are there to dispose these students on the available chairs regardless of the ordering?

#### COMBINATIONS

Given a set of n elements, a combination is a subset of k elements chosen without repetition and regardless of their ordering. The number of possible combinations of k elements out of a total of n is given by

$$\frac{n!}{(n-k)!k!} = \left(\begin{array}{c} n\\ k \end{array}\right)$$

Typically, we are not interested in a single outcome or events themselves but in a *function* of them

A random variable is any function from the event space to the real numbers

#### Examples:

- Toss a coin three times and count the tails
- Roll two dice and sum the values on the faces

# RANDOM VARIABLES

A random variable is any function from the event space to the real numbers.



NOTATION

- X the random variable: the random function before it is observed
- If x a realization of the random variable: the number we observe
- $\checkmark$  X the support of the random variable: the set of the possible values that X can assume
- Example: toss a coin three times and count the number of heads
   \$\mathcal{X} = \{0, 1, 2, 3\}\$

#### DISTRIBUTION OF A RANDOM VARIABLE

How to derive it

Toss a coin three times. X is the random variable representing the *number of tails* 

The distribution of the random variable  $p_x$  is a just a convenient way to summarize outcomes probabilities.

#### EXERCISE

M&M sweets are of varying colours that occur in different proportions. The proportions are as follows:

blue = 0.3, red = 0.2, yellow = 0.2, green = 0.1, orange = 0.1, tan = ?

You draw an M&M at random from the package:

Determine the value of the missing proportion

- Find the probability of getting either a blue or a red one
- Find the probability of getting one which is not yellow
- Find the probability of getting one which neither orange nor tan
- Find the probability of getting one which is either blue or red or yellow or orange or green or tan

#### DISTRIBUTION OF A DISCRETE RANDOM VARIABLE

DISCRETE = HOW MANY

When  $\mathcal{X}$  is countable, X is said to be a discrete random variable and it is characterised by:

# Probability mass function

$$p_x = \mathbb{P}(X = x) \quad \forall \, x \in \mathcal{X} \tag{4}$$

#### Cumulative distribution function

$$F_X(x) = \mathbb{P}(X \le x) = \sum_{y \le x} \mathbb{P}(X = y) = \sum_{y \le x} p_y$$
(5)

**Note:** statements like X = 1 or  $X \le 2$  are *events* and we can use unions, intersections,

complements are all the operations we have seen before!

■ What is the probability of getting **exactly** 1 head?

**What is the probability of getting exactly** 1 head?  $p_1 = 3/8$ 

- What is the probability of getting exactly 1 head?  $p_1 = 3/8$
- What is the probability of getting **at most** 2 heads?

• What is the probability of getting exactly 1 head?  $p_1 = 3/8$ 

What is the probability of getting at most 2 heads?  $\mathbb{P}(X \le 2) = F_X(2) = p_0 + p_1 + p_2 = 7/8$ 

• What is the probability of getting exactly 1 head?  $p_1 = 3/8$ 

What is the probability of getting at most 2 heads?

 $\mathbb{P}(X \le 2) = F_X(2) = p_0 + p_1 + p_2 = 7/8$ 

■ What is the probability of **not getting** 1 head?

• What is the probability of getting exactly 1 head?  $p_1 = 3/8$ 

■ What is the probability of getting at most 2 heads?  $\mathbb{P}(X \le 2) = F_X(2) = p_0 + p_1 + p_2 = 7/8$ 

■ What is the probability of **not getting** 1 head?  $\mathbb{P}(X \neq 1) = \mathbb{P}[(X = 1)^c] = 1 - \mathbb{P}(X = 1) = 1 - p_1 = 5/8$ 

- What is the probability of getting exactly 1 head?  $p_1 = 3/8$
- What is the probability of getting at most 2 heads?  $\mathbb{P}(X \le 2) = F_X(2) = p_0 + p_1 + p_2 = 7/8$
- What is the probability of **not getting** 1 head?  $\mathbb{P}(X \neq 1) = \mathbb{P}[(X = 1)^c] = 1 - \mathbb{P}(X = 1) = 1 - p_1 = 5/8$

What is the probability of at least 2 heads?

- **What is the probability of getting exactly** 1 head?  $p_1 = 3/8$
- What is the probability of getting at most 2 heads?  $\mathbb{P}(X \le 2) = F_X(2) = p_0 + p_1 + p_2 = 7/8$

What is the probability of **not getting** 1 head?  $\mathbb{P}(X \neq 1) = \mathbb{P}[(X = 1)^c] = 1 - \mathbb{P}(X = 1) = 1 - p_1 = 5/8$ 

What is the probability of **at least** 2 heads?  $\mathbb{P}(X \ge 2) = 1 - \mathbb{P}(X \le 1) = 1 - F_X(1) = 1 - (p_0 + p_1) = 4/8$ 

#### EXAMPLE

Consider the example of tossing a coin three times

• What is the probability of getting exactly 1 head?  $p_1 = 3/8$ 

■ What is the probability of getting at most 2 heads?  $\mathbb{P}(X \le 2) = F_X(2) = p_0 + p_1 + p_2 = 7/8$ 

What is the probability of **not getting** 1 head?  $\mathbb{P}(X \neq 1) = \mathbb{P}[(X = 1)^c] = 1 - \mathbb{P}(X = 1) = 1 - p_1 = 5/8$ 

■ What is the probability of **at least** 2 heads?  $\mathbb{P}(X \ge 2) = 1 - \mathbb{P}(X \le 1) = 1 - F_X(1) = 1 - (p_0 + p_1) = 4/8$ 

What is the probability of getting either 0 or 2 heads?

#### EXAMPLE

Consider the example of tossing a coin three times

• What is the probability of getting exactly 1 head?  $p_1 = 3/8$ 

■ What is the probability of getting at most 2 heads?  $\mathbb{P}(X \le 2) = F_X(2) = p_0 + p_1 + p_2 = 7/8$ 

- What is the probability of **not getting** 1 head?  $\mathbb{P}(X \neq 1) = \mathbb{P}[(X = 1)^c] = 1 - \mathbb{P}(X = 1) = 1 - p_1 = 5/8$
- What is the probability of at least 2 heads?  $\mathbb{P}(X \ge 2) = 1 - \mathbb{P}(X \le 1) = 1 - F_X(1) = 1 - (p_0 + p_1) = 4/8$

What is the probability of getting either 0 or 2 heads?  $\mathbb{P}(X = 2 \cap X = 0) = \mathbb{P}(X = 2) + \mathbb{P}(X = 0) = p_2 + p_0 = 4/8$ 

#### Properties

# Probability mass function

- $\blacksquare p_x \ge 0$
- $\blacksquare p_x \le 1$
- $\blacksquare \sum p_x = 1$

# Cumulative distribution function

- $\bullet \ 0 \le F(X) \le 1$
- $\blacksquare \ F(X) \text{ is non-decreasing}$
- $\blacksquare \ F(X) \text{ is right-continuous}$



#### EXERCISE

CONSTRUCTING A PROBABILITY DISTRIBUTION

- A lottery is organised each year in Manchester. A thoudand tickets are sold at the price of 1£ each. Each ticket has the same probability of winning the lottery. First price is set at 300£, second price at 200£ and third price is 100£.
- Let X denote the gain from purchasing one ticket. Construct the distribution of X.
  Find the probability of winning any money from the lottery.

#### EXAMPLE

Suppose a random variable X has the following probability distribution

| x                 | 1    | 3    | 4    | 7    | 9    | 10   | 14   | 18 |
|-------------------|------|------|------|------|------|------|------|----|
| $\mathbb{P}(X=x)$ | 0.11 | 0.07 | 0.13 | 0.28 | 0.18 | 0.05 | 0.12 | ?  |

- Fill in the missing value
- Write down the distribution function

÷.

- Evaluate the following probabilities:
  - $\blacksquare$  X is at least 10
  - $\blacksquare X \text{ is more than } 10$
  - X is less than 4

Consider a random variable X with distribution as shown in the table of slide 37.

Evaluate the following probabilities:

- $\blacksquare$  X is at least 4 and at most 9
- $\blacksquare$  X is more than 3 and less than 10
- X is at least 4
- X is at most 10

#### DISTRIBUTION OF A CONTINUOUS RANDOM VARIABLE

CONTINUOUS = HOW MUCH

When  $\mathcal{X}$  is not countable, the random variable X is said to be **continuous**.

If  $\mathcal X$  is not countable, is not possible to put mass on any values of  $\mathcal X$ , meaning that

$$\mathbb{P}(X=x) = 0 \quad \forall x \in \mathcal{X} \tag{6}$$

#### **Cumulative distribution function:**

$$F_X(x) = \mathbb{P}(x \le x) = \int_{-\infty}^x f_X(x) \, dx \quad \forall \, x \in \mathcal{X}$$
(7)

#### Probability density function:

$$f_X(x) = \frac{\partial F_X(x)}{\partial x} \quad \forall \, x \in \mathcal{X}$$
(8)

#### PROPERTIES

# Probability density function

 $f_X(x) \ge 0$  $\int_{-\infty}^{+\infty} f_X(x) = 1$ 

# Cumulative distribution function

- $\bullet \ 0 \le F(X) \le 1$
- $\blacksquare \ F(X) \text{ is non-decreasing}$
- $\blacksquare \ F(X) \text{ is right-continuous}$



#### EXERCISE

Let  $\boldsymbol{X}$  be a continuous random variable with the following probability density function

$$f_X(x) = \begin{cases} cx(1-x) & \text{if } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$
(9)

determine c such that this is a proper probability density function

- evaluate  $\mathbb{P}(X = 0.5)$
- evaluate  $\mathbb{P}\left(X \leq \frac{1}{2}\right)$

Let  $\boldsymbol{Y}$  be a continuous random variable with the following cumulative distribution function

$$F_Y(y) = \begin{cases} 1 & \text{if } y \ge 1 \\ 3y^2 - 2y^3 & \text{if } 0 \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$$
(10)

• evaluate 
$$\mathbb{P}\left(Y \leq \frac{1}{2}\right)$$
 using  $F_Y(y)$ 

DISCRETE VS CONTINUOUS

**a** X discrete rv with pmf  $p_x$ **b**  $\mathbb{P}(X \in A) = \sum_{x \in A} p_x$ 

If 
$$A = \{x_1, \dots, x_k\}$$
 then  
 $\mathbb{P}(X \in A) = \sum_{i=1}^k p_{x_i}$ 

■ X continuous rv with pdf  $f_X(x)$ ■  $\mathbb{P}(X \in A) = \int_A f_X(x) dx$ 

If A = [a, b] then  $\mathbb{P}(X \in A) = \int_a^b f_X(x) \, dx = F_X(b) - F_X(a)$ 

#### Comparison

DISCRETE VS CONTINUOUS

$$A = \{x_1, \dots, x_k\}$$
$$\mathbb{P}(X \in A) = \sum_{i=1}^k p_{x_i}$$

$$A = [a, b]$$
$$\mathbb{P}(X \in A) = \int_a^b f_X(x) \, dx$$



## SUMMARIES

MEASURING THE CENTRE OF THE DISTRIBUTION

The distribution of a random variable fully characterize it but it may not be immediate to gain insight from it.

There is a bunch of alternatives to summarize the information contained in the distribution:

- **Mode:** the value that is the "most likely" (maximises the density)
- Median: the value that "splits in half" the distribution, denoted by m

$$\mathbb{P}(X \le m) = \mathbb{P}(X > m) = 0.5 \tag{11}$$

THE KING OF ALL SUMMARIES

The **Mean** or **Expected Value** is the "average" of the elements in the support of X, weighted by the probabilities of each outcome.

The Expected Value gives a rough idea of what to expect as the average of the observed outcomes in a **large repetition** of the random experiment (not what we are going to get after a single trial!!)

**\blacksquare** X discrete rv with pmf  $p_x$  **\blacksquare** X continuous rv with pdf  $f_X(x)$ 

$$\mathbb{E}(X) = \sum_{x \in \mathcal{X}} x p_x \tag{12}$$

$$\mathbb{E}(X) = \int_{x \in \mathcal{X}} x f_X(x) dx \qquad (13)$$

Watch out: the EV may not exist

## PROPERTIES OF EXPECTED VALUE

Given a continuous random variable X (respectively discrete) whose expectation exists and is finite, and any function g we have that

$$\mathbb{E}[g(X)] = \int_{\mathcal{X}} g(x) f_X(x) dx \qquad \left(\mathbb{E}[g(X)] = \sum_{x \in \mathcal{X}} g(x) p_x\right) \tag{14}$$

The **Expected Value** gives a rough idea about the centre of the distribution but it does not provide any information about the dispersion of the possible observable values

*Example:* two investment plans that gives exactly the same expected payout; we would like to chose the one with lower variability

We need some further definitions and concepts since:

- average deviation from the mean  $\mathbb{E}[X \mathbb{E}(X)]$  (not informative!)
- absolute average deviation from the mean  $|\mathbb{E}[X \mathbb{E}(X)]|$  (computationally challenging)

#### The Variance

QUEEN OF ALL SUMMARIES

The **variance** of a random variable X

$$\mathbb{V}(X) = \mathbb{E}[(X - \mathbb{E}(X))^2]$$
(15)

tells us **how much** the rv oscillates around its mean.

**\blacksquare** X discrete rv with pmf  $p_x$  **\blacksquare** X continuous rv with pdf  $f_X(x)$ 

$$\mathbb{V}[X] = \sum_{x \in \mathcal{X}} [x - \mathbb{E}(X)]^2 p_x \qquad (16) \qquad \mathbb{V}[X] = \int_{x \in \mathcal{X}} [x - \mathbb{E}(X)]^2 f_X(x) dx \quad (17)$$

#### PROPERTIES OF THE VARIANCE

- lalways **non-negative**  $\mathbb{V}(X) \ge 0$  and is 0 only when X is constant
- the square root of the variance  $sd(X) = \sqrt{\mathbb{V}(X)}$  is called **standard deviation**. It roughly describes how far the values of the random variable fall, on average, from the expected value of the distribution
- the variance is insensitive to the location of the distribution but depends **only on its scale**

$$\mathbb{V}(aX+b) = a^2 \mathbb{V}(X) \tag{18}$$

#### a computationally-friendlier formula for the variance

$$\mathbb{V}(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2$$
(19)

(i) Show that  $\mathbb{V}(X)$  can be calculated by equation (19).

(ii) Let X be the number showing if we roll a die. Calculate expected value and variance.

(*iii*) Find the expected value of the following density function.

$$f_X(x) = \sin(x) \quad 0 \le x \le \frac{\pi}{2} \tag{20}$$

#### EXERCISES

(iv) The random variable X is given by the following PDF. Find  $\mathbb{V}(X)$ 

$$f_X(x) = \begin{cases} x & \text{if } 0 < x < 1\\ 2 - x & \text{if } 1 < x < 2\\ 0 & \text{otherwise} \end{cases}$$
(21)

(v) Calculate the Median of X which is distributed according to

$$f_X(x) = 2xe^{-x^2}$$
 for  $x \ge 0$ 

 $\left(vi\right)$  Let X be a continuous random variable with the following probability density

function. Calculate  $\mathbb{E}(X)$ ,  $\mathbb{V}(X)$  and sd(X)

$$f_X(x) = \begin{cases} 3x^2(1-x) & \text{if } 0 < x \le 1\\ 0 & \text{otherwise} \end{cases}$$
(22)

If we have two random variables X and Y the **covariance** gives us a measure of the association between them

$$\mathbb{C}ov(X,Y) = \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))] = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$
(23)

The sign of  $\mathbb{C}ov(X,Y)$  informs on the nature of the association

The higher  $|\mathbb{C}ov(X,Y)|$  the stronger the association

## INDEPENDENCE OF RANDOM VARIABLES

Two random variables X and Y are independent if

$$F_{X,Y}(x,y) = \mathbb{P}(X \le x \cap Y \le y)$$
  
=  $\mathbb{P}(X \le x)\mathbb{P}(Y \le y)$   
=  $F_X(x)F_Y(y) \quad \forall x, y \in \mathbb{R}$  (24)

Intuitively, if X and Y are independent, the value of one does not affect the other Ramark: If  $X_1, \ldots, X_n$  are independent then

$$p_{x_1, x_2, \dots, x_n} = p_{x_1} \cdot p_{x_2} \cdots p_{x_n}$$
$$f_{X_1, X_2, \dots, X_n} (x_1, x_2, \dots, x_n) = f_{X_1}(x_1) \cdot f_{X_2}(x_2) \cdots f_{X_n}(x_n)$$

# INDEPENDENCE OF RANDOM VARIABLES



If X and Y are independent then  $\mathbb{E}(XY)=\mathbb{E}(X)\mathbb{E}(Y)$ 

As a consequence

$$\mathbb{C}ov(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = 0$$
(26)

Watch Out: the converse is not necessarily true. If  $\mathbb{C}ov(X,Y) = 0$  the two random variables may still be associated.

#### EXERCISE

(i) Prove formula (23) ; (ii) Find  $\mathbb{V}(X+Y)$ 

(iii) Let X and Y be two random variables with marginal distribution functions

$$F_X(x) = \begin{cases} 0 & if \ x < 0 \\ 1 - e^{-x} & if \ x \ge 0 \end{cases}$$

$$F_Y(y) = \begin{cases} 0 & if \ y < 0 \\ 1 - e^{-y} & if \ y \ge 0 \end{cases}$$
(27)
(28)

Determine if the two random variable are independent given that

$$F_{X,Y}(x,y) = \begin{cases} 0 & \text{if } x, y < 0\\ 1 - e^{-x} - e^{-y} + e^{-x-y} & \text{if } x, y \ge 0 \end{cases}$$
(29)

#### EXERCISE

Let X and Y be two jointly continuous random variables.

Let also  $\mathcal{T} = \{(x, y)' \in \mathbb{R}^2 : 0 \le x \le 1 \text{ and } 0 \le y \le 1\}$ 

Knowing that

$$f_{XY}(x,y) = \begin{cases} x + ky^2 & \text{if } (x,y)' \in \mathcal{T} \\ 0 & \text{otherwise} \end{cases}$$

(30)

find k; find  $f_X(x)$  and  $f_Y(y)$ ; calculate  $\mathbb{P}\left(X \leq \frac{1}{2}, Y \leq \frac{1}{2}\right)$