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Part III syllabus

1 Basics of Inference

2 Confidence Intervals

3 Central Limit Theorem

4 Point Estimation

5 Statistical Models

6 Main Estimators
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Probability and Inference
from population to data and back

■ Probability starts from population, which is described by means of probability

statements and functions, and predicts what happens in a sample extracted from it.

■ Inference starts from a sample and describes the observed data in order to recover

the data generating process.

Alfonso Russo (DEF) Descriptive September 2024 3 / 42



Inference in a figure
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Inference
What do we do

■ Estimation: recover some parameters explaining the phenomena that generates the
data
■ point estimate: a single number which is our best guess for a parameter

■ interval estimate: an interval of values which is believed to contain the true value of a

parameter

■ Hypothesis testing: using data to validate certain statements or predictions
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Into Inference

■ Suppose that you are interested in the (observable) random variable X having

support X . We denote its probability law by f∗
X(x). Assume we do not know the

exact probability law of X but that we know it actually belongs to a family F of

probability laws.

■ Typically, F is a parametric family:

F = {fX(x | θ), θ ∈ Θ} (1)
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Into Inference

■ Each member of the family depends on an unknown quantity θ take can take values

in the parameter space Θ

■ In Inference we want to determine, through an observed sample, what member of F

(or what value θ∗ of θ) identifies the probability law of X.

■ In other words, we assume that we know the functional form of the probability law

(Bernoulli, Gamma, Normal, etc) but we do not know the value of the unknown

parameter(s) to characterise it.
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The elements of a Statistical Model

To characterise a random variable X, we need three basic elements:

■ X

■ fX(x | θ)

■ Θ

A statistical model is then the triple

{X ; fX(x | θ) ; Θ} (2)

Note that

■ X might be multidimensional

■ Θ ∈ R; Θ ∈ R × R
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Statistical Modelling

Formulate the following statistical models:

■ Bernoulli

■ Geometric

■ Normal

■ Uniform
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Random Sample

A Random sample is a collection of random variables X1, . . . , Xn ∼ fX1,...,Xn that are

■ independent

fX1,...,Xn =
n∏

i=1
fXi(xi) (3)

■ identically distributed

fXi(xi) = fX(xi) ∀ i (4)
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Random Sample

As a consequence

fX1,...,Xn =
n∏

i=1
fX(xi) (5)

An observed sample (x1, . . . , xn) is a specific realisation of the random sample
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How populated is the Population?

Find the difference!

■ Performance analysis of Statistics students this year: Some of your tests are

collected to assess your statistics knowledge.

■ Apple New Product: Apple has developed a new device and some units are tested

to estimate average duration.

■ How rich could Temple lawyers get?: Lawyers in Temple are surveyed to estimate

how remunerative are careers in Law.

■ Humidity in desertic areas: Deserts worldwide are sampled to study humidity levels.
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Statistical Models for random samples

X n ; fn(xn | θ) =
n∏

i=1
fX(xi | θ) ; θ ∈ Θ

 (6)
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Example

Let X1, . . . , Xn be i.i.d (independent and identically distributed) from a Poisson(λ)

The joint distribution takes form

fX1,...,Xn(x1, . . . , xn) =
n∏

i=1
fX(xi)

=
n∏

i=1

e−λλxi

xi!

= 1∏n
i=1 xi!

e−nλ λ
∑n

i=1 xi

(7)
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Basic concepts

■ Parameter: numerical characteristics of the population that we are able to recover
(typically unknown)
■ Example: λ in a Poisson

■ Statistic: a function of the sample that does not directly depend on any unknown
parameter
■ Example: S(X1, . . . , Xn) = X(n) − X(1)

■ Estimator: a statistic used to estimate a population parameter
■ Example: T (X1, . . . , Xn) = X̄ is an estimator for µ

■ Estimate: the value of an estimator corresponding to an observed sample
■ Example: T (x1, . . . , xn) = x̄ is the value of X̄ coming from (x1, . . . , xn)
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Variability of Estimators

In order to assess the IQ of Tor Vergata students, we interview 10 people and use tha

sample mean X̄ as an estimator for the population mean µ.

■ observed sample: x = (x1 = 95, x2 = 104, x3 = 104, x4 = 95, x5 = 88, x6 =

126, x7 = 77, x8 = 112, x9 = 111, x10 = 105)

■ estimate: T (x1, . . . , x10) = x̄ = 101.7

Alfonso Russo (DEF) Descriptive September 2024 16 / 42



Variability of Estimators

If we collected another sample, we would obtain different results

■ 2nd observed sample: x′ = (123, 119, 94, 116, 106, 91, 88, 107, 91, 103)

■ estimate: T (x′
1, . . . , x′

10) = x̄′ = 103.8

Since it is a function of random objects, an estimator is a random variable, and the

estimates are its realisations
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Comments on estimators

There is no "universal estimator". We must choose it according to

■ the distribution of the data
■ we would not try to estimate the maximum of a discrete variable with a continuous value

■ the parameter of interest
■ we would not try to estimate the mean and the variance of a Normal distribution using the

same estimator

Alfonso Russo (DEF) Descriptive September 2024 18 / 42



An easy case

If the parameter of interest is the expected value of the population E[X], then the

obvious candidate is the sample mean

X̄ = n−1
n∑

i=1
Xi (8)

Good Properties:

■ from the Law of Large Numbers we know that X̄ → E[X] as n → ∞

■ the Central Limit Theorem provides us with an approximate distribution of X̄
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How do we define an estimator

The aim of an estimator is to recover and characterise the unknown distribution that

generated the data

There are several automatic ways to derive an estimator, depending on how we use the

data to estimate the generating distribution

■ Method of Moments:
■ Find a distribution that has some features in common with the observed sample

■ Maximum Likelihood:
■ find a distribution that maximises the probability of observing the sample at hand
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Method of Moments

The core idea behind the MM is to equate population and sample moments

E[X] = n−1 ∑n
i=1 Xi

E[X2] = n−1 ∑n
i=1 X2

i

E[X3] = n−1 ∑n
i=1 X3

i

. . .

. . .

(9)

The MOM gives consistent estimators for population parameters. Week assumptions

needed. However, these will be biased!
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Method of Moments

Suppose you want to estimate k unknown parameters θ = (θ1, θ2, . . . , θk) that

characterise the distribution fY (y; θ) of the random variable Y . Suppose further that

population moments (the moments of the "true" distribution) can be expressed as

functions of the unknown parameters

ϕ1 := E[Y ] = h1(θ1, . . . , θk)

ϕ2 := E[Y 2] = h2(θ1, . . . , θk)
...

...
...

...

ϕk := E[Y k] = hk(θ1, . . . , θk)

(10)
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Method of Moments

Working with a sample (y1, . . . , yn) we could use the jth sample moment as an estimator

ϕ̂j for ϕj .

More formally,

ϕ̂j = n−1
n∑

i=1
y j

i for j = 1, . . . , k (11)

The Method of Moments estimator of θ, denoted by θ̂ = (θ̂1, . . . , θ̂k) is the solution to

the following system

ϕ̂1 = h1(θ̂1, . . . , θ̂k)

ϕ̂2 = h2(θ̂1, . . . , θ̂k)
...

...
...

...

ϕ̂k = hk(θ̂1, . . . , θ̂k)

(12)
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Exercises

■ Let X1, . . . , Xn be a random sample from a population with probability law

fX(x | θ) = 1
θ

x
1−θ

θ 0 < x < 1. (13)

Find the MoM estimator for θ.

■ Consider a sample X1, . . . , Xn ∼ N (1, σ2). Find the MOM estimator for σ2.
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The Likelihood function
basic intuition

Let X ∼ Binomial(n, p). The probability mass function

P(X = x) =
(

n

x

)
px(1 − p)n−x (14)

gives us the probability of observing a specific value x.

Assume that we know n = 10 and we suddenly observe x = 8.

■ With p = 0.5: P(X = 8) =
( 10

8

)
(0.5)8(0.5)2 = 0.043

■ With p = 0.7: P(X = 8) =
( 10

8

)
(0.7)8(0.3)2 = 0.233

For x = 8 a value of the parameter p = 0.7 seems more likely than p = 0.5.
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The Likelihood function
basic intuition

When we fix a realisation x and we consider it to be a function of the unknown parameter

p, the p.m.f.
(

n

x

)
px(1 − p)n−x gives us a measure of how compatible is x is p.

This is called the Likelihood of p.

NB The Likelihood tells us how plausible a value of the parameter is, but it does not

measure its probability
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The likelihood function
More formally

■ Given a statistical model {X n ; fn(xn | θ) ; θ ∈ Θ}, the function L : Θ → R+

defined as

L(θ | xn) ∝ fn(xn | θ) , θ ∈ Θ (15)

is called the likelihood function associated to the observed sample xn.

■ Since xn = (x1, . . . , xn) ∈ R, L(·) is a function of θ.

■ Values of θ for which L(θ | xn) is higher, are the most "compatible" with the

observed sample.
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Maximum Likelihood Estimator

The Maximum Likelihood Estimator (MLE) for a parameter θ, is the solution to the

following maximisation problem

θ̂MLE = arg max
θ

L(θ | x1, . . . , xn)

= log
(

L(θ | x1, . . . , xn)
)

= ℓ(θ | x1, . . . , xn)

(16)
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Maximum Likelihood Estimator

Operationally, the steps to find the MLE are:

1 Compute the derivative of the log-likelihood and equate it to 0

dℓ(θ | x1, . . . , xn)
dθ

= 0 (17)

2 Isolate θ to find a candidate for the MLE

3 Check second derivative
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Bernoulli Model

■ Consider a Bernoulli model for a generic sample of dimension n.

L(θ | xn) = fn(xn | θ) =
n∏

i=1
θxi(1 − θ)1−xi = θ

∑n

i=1 xi (1 − θ)n−
∑n

i=1 xi (18)

■ I run the experiment 10 times and we observe
∑n

i=1 = 8.

■ The likelihood function is therefore

L(θ | xn) = θ8(1 − θ)2 , θ ∈ [0, 1] (19)
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Bernoulli maximum likelihood

■ From visual inspection of the likelihood function
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Example

Let X1, . . . , Xn be a random sample with Xi ∼ Poisson(λ). Then:

■ likelihood function:

L(λ | x1, . . . , xn) = 1∏n
i=1 xi!

e−nλλ
∑n

i=1 xi (20)

■ log-likelihood:

ℓ(λ | x1, . . . , xn) = log
( 1∏n

i=1 xi!

)
− nλ + log(λ)

n∑
i=1

xi (21)
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Example

■ Compute the derivative of ℓ(λ | x1, . . . , xn) and equate it to 0

dℓ(λ | x1, . . . , xn)
dλ

= −n + 1
λ

n∑
i=1

xi = 0 (22)

■ Isolate λ to get the MLE estimate

−n + 1
λ

n∑
i=1

xi = 0 =⇒ λ̂MLE = 1
n

n∑
i=1

xi = x̄n (23)

NB Even if pX1,...,Xn(x1, . . . , xn | λ) denotes a discrete distribution, the Likelihood is still

a continuous function in λ, hence it can be differentiated and maximised.
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Exercises

■ Consider a sample X1, . . . , Xn of discrete random variables where

Xi ∼ Geometric(θ) with probability mass function given by

fX(x|θ) = θ(1 − θ)x−1 ∀ x ∈ N+ and 0 < θ < 1 (24)

Find the MLE for θ.

■ Let X1, . . . , Xn be a random sample with pdf

f(x | x0, θ) = θxθ
0x−θ−1 (25)

Suppose x0 > 0 is known and given. Find the MLE for θ.
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Evaluating point estimators

Consider an estimator T for an unknown population parameter θ.

The estimator T is said to be unbiased if

E[T ] = θ (26)

The estimator T is precise if its variance V[T ] is small

A "good" estimator is, on average, close to the real value of the parameter it is trying to

recover and is always "on target".

The Mean Squared Error (MSE) evaluates the performance of an estimator T

combining the concepts of Bias and Variance

MSE(T ) = V[T ] + [Bias(T )]2 (27)

If E[T ] = θ the estimator T is unbiased and its MSE reduces to its variance.
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MSE

Consistency

■ the MSE can be alternatively defined as

MSE(T ) = E[(T − θ)2] (28)

■ when we get that

lim
n→∞

MSE[T ] = 0 (29)

the estimator T becomes closer and closer to the true parameter value θ as n grows.

This important property is called consistency and it reassures us that increasing the

sample size will improve the performance of our estimator
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