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calculus and linear algebra and to provide students with the necessary tools to understand

the notions of Economics where a quantitative approach is needed.
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1



1 Preliminary notions

1.1 Set theory

A set is a well-defined collection of distinct objects, considered as an object in its own right.

In order to characterize a set we can directly specify the elements that compose it

Example 1.1. A = {a, b, c}

or it can be identified listing the features of the elements in the set

Example 1.2. A = {n|(n is odd) ∧ (n is positive)}

Once we have the defined what a set is, and we have seen how to characterize it, we can

define the notion of subset

Definition 1.1. Let A and B be two distinct sets. If every element in A is also in B we can

state that A is a subset of B, denoted by A ⊆ B. More formally:

∀a ∈ A : a ∈ A ⇒ a ∈ B ⇔ A ⊆ B (1)

A B

Figure 1: Example of B ⊆ A via Euler diagram

If A ⊆ B and B ⊆ A, then A and B coincide ⇒ A = B.

It is called empty set the unique set having no elements, ∅, and, conventionally, given

every set A, the empty set is subset of A

Definition 1.2.

∅ ⊆ A ∀A (2)

1.2 Set operations

Let X be a set, and A and B subsets of X.
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Definition 1.3. Union, denoted by A ∪ B, is the set containing the elements of A or the

elements of B

A ∪B = {x ∈ X|(x ∈ A) ∨ (x ∈ B)} (3)

A
B

Figure 2: Example of A ∪B via Euler diagram

Example 1.3. Let A = {a, b, g} and B = {a, c, g} ⇒ A ∪B = {a, b, c, g}

Definition 1.4. Intersection, denoted by A ∩B, is the set containing the elements either in

A and in B

A ∩B = {x ∈ X|(x ∈ A) ∧ (x ∈ B)} (4)

A
B

Figure 3: Example of A ∩B via Euler diagram

Example 1.4. Let A = {a, b, g} and B = {a, c, g} ⇒ A ∩B = {a, g}

Moreover,

Definition 1.5. Two sets are disjoint if

A ∩B = ∅ (5)

Definition 1.6. Difference, denoted by A\B, it is given by the set composed by the elements

of A minus the elements which are also in B ⇒ A\B = A− (A ∩B)

Example 1.5. Let A = {a, b, g} and B = {a, c, g} ⇒ A\B = {b}
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A B

Figure 4: Example of two disjoint sets via Euler diagram

A
B

Figure 5: Example of A\B via Euler diagram

1.3 Sets of numbers

Throughout this course we will use the following sets of numbers:

• Set of Natural numbers: N = {0, 1, 2, 4, ...}

• Set of Integers: Z = {0,±1,±2,±4, ...}

• Set of Rational numbers: Q = {a/b | a, b ∈ Z, b ̸= 0}

• Set of Real number R. This set includes all rational numbers, together with all irrational

numbers.

1.4 Cartesian product

The Cartesian product of two sets A and B, denoted A × B, is the set of all the ordered

pairs (a, b) where a ∈ A and b ∈ B.

Example 1.6. Let A = {0, 1} and B = {0, 2}, we have that

A×B = {(0, 0), (0, 2), (1, 0), (1, 2)} (6)

while

B × A = {(0, 0), (0, 1), (2, 0), (2, 1)} (7)
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2 One Variable Calculus

2.1 Introduction

One of the main goals of Economics is to understand mechanisms, interactions and relationships

between different variables. Mathematically these relations are described by functions.

Definition 2.1. Let X and Y be two subsets of R. A function f defined on X with values in

Y is a correspondence associating to each element x ∈ X at most one element y ∈ Y .

f : x → f(x) (8)

.

x

.

y

X
Y

f

Figure 6: Graphic representation of (8)

the variable x ∈ X is called independent, while the variable y ∈ Y is called dependent.

Roughly speaking a function will take an input (x) and through some rules will give you

back an output (y).

Example 2.1. f(x) = x2 + 3 ⇒ f(5) = 52 + 3 = 28

The set of elements x ∈ X to which f assigns an element in Y is called the domain, while

the elements y ∈ Y associated to x are called images. The set of all the images is called range.
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Useful rules:

Function Domain

ln g(x) g(x) > 0

2n
√

g(x) g(x) ≥ 0

2n+1
√

g(x) ∀x ∈ R

k(x)

g(x)
g(x) ̸= 0

Example 2.2. Let f(x) = 1
x−2

⇒ the domain of f is given by all the elements in R except +2

Some of the most important information of a function are contained in the graph.

The graph of f is the subset of Γ(f) of the Cartesian product X×Y made of pairs (x, f(x))

when x varies in the domain of f , i.e.

Γ(f) = {(x, f(x)) ∈ X × Y : x ∈ dom f} (9)

A function may be even or odd.

Let be the function

f : x → Y (10)

Suppose that if x ∈ X it is also true that −x ∈ X (It means that the function is symmetric

with respect to the origin) then

Definition 2.2. The function f is even if

f(−x) = f(x), ∀x ∈ X (11)

Example 2.3. f(x) = x2 − 3, since (−x)2 = x2, then f(x) = f(−x)

Definition 2.3. The function f is odd if
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f(−x) = −f(x), ∀x ∈ X (12)

Example 2.4. f(x) = 3x3, since (−x)3 = −(x3) then f(−x) = −f(x)

The basic geometric properties of a function are whether it is increasing or decreasing and

the location of its local/global maxima/minima.

Definition 2.4. The function f is increasing if

∀x1, x2 ∈ dom(f) x1 < x2 ⇒ f(x1) ≤ f(x2) (13)

Conversely, it is decreasing if

∀x1, x2 ∈ dom(f) x1 > x2 ⇒ f(x1) ≥ f(x2) (14)
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Figure 7: Example of increasing function - Example of decreasing function

The point where the function turns from decreasing to increasing is a minimum for the

function and the point where the function turns from decreasing to increasing is a maximum

for the function. If there is no greater (smaller) value of the function in its range from that

maximum (minimum) then the maximum (minimum) is called global maximum (minimum).

2.2 Function types

• A Polynomial is a map of the form P (x) = anx
n︸︷︷︸

monomial

+...+a1x+a0 where n is the degree

of polynomial.

• A rational function is of the kind R(x) = P (x)
Q(x)

where P and Q are polynomials.
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• An exponential function is defined f(x) = ax, the domain it is all R and it satisfies

y(0) = a0 = 1.

• The inverse y = loga x is called logarithm and it is defined in (0,+∞).

2.3 Linear Function

Polynomials of degree 1 are interesting functions, they are also called Linear function

f(x) = ax+ b (15)
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Figure 8: Example of linear functions

the graph of a linear function is a straight line. In order to draw this function knowing two

points in the Cartesian plan is enough.

One of the main features which distinguishes two different lines is the slope (steepness)

that is given by a. This function is increasing as a > 0 and decreasing if a < 0; if a = 0 the

function degenerates to the constant function f(x) = b. The slope is given by the ratio of the

growth in y (y2 − y1) and the growth of x (x2 − x1), that is a = y2−y1
x2−x1

.

2.4 Quadratic Function

A quadratic function is a polynomial of degree 2. The graph of a univariate quadratic function

is a parabola whose axis of symmetry is parallel to the y-axis

f(x) = ax2 + bx+ c (16)
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Figure 9: Example of quadratic functions

2.5 Exponential Function

An exponential function is a function of the form

f(x) = ax, a > 0 (17)

2.6 Logarithmic Function

The logarithm is the inverse of the exponential function.

f(x) = loga x (18)

The logarithm of a given number x is the exponent to which another fixed number, the base

a, must be raised, to produce that number x. A particular case of the logarithm is the natural

logarithm which has the number e (that is e ≈ 2.718) as the base.

3 Limit and continuity

Limit is the value that a function (or sequence) approaches as the input (or index) approaches

some value.

Let X, Y ⊆ R and f : X → Y be a function of real variables. If

lim
x→x0

f(x) = l (19)

means that f(x) can be made to be as close to l as desired, by making x sufficiently close

to x0. Or equivalently, f(x) goes to l as x approaches x0
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In the most simple cases, if f(x) is a real valued function which goes to l as x goes to x0,

we can find l (the limit) substituting x0 in the function.

Example 3.1.

lim
x→2

(3x− x2) = 3 · 2− 22 = 2 (20)

Example 3.2.

lim
x→2

ln(x− 1) = ln(2− 1) = ln(1) = 0 (21)

The limit of the function can be also +∞/−∞. In order to find these limits, it is important

to know the graph of the function.

Example 3.3.

lim
x→+∞

ex = +∞ (22)

In calculus, a one-sided limit is either of the two limits of a function f(x) of a real variable

x as x approaches a specified point either from the left or from the right

Definition 3.1. Right limit

lim
x→x+

0

f(x) = l (23)

Definition 3.2. Left limit

lim
x→x−

0

f(x) = l (24)

The limx→x0 f(x) = l exists only if the right limit and the left limit exist and they are equal.

Example 3.4. Suppose

f(x) =
1

x− 1
(25)

We want to study

lim
x→1

1

x− 1
(26)

When x → 1 the function will assume infinite values; more precisely if x → 1 with x > 1

the function will tend to +∞, but if x → 1 with x < 1 the function will tend to −∞. In this

case,

lim
x→1

1

x− 1
(27)

does not exist since

lim
x→1+

f(x) = +∞ and lim
x→1−

f(x) = −∞ (28)
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3.1 Mathematical operations

lim
x→x0

[f(x)± g(x)] = lim
x→x0

f(x)± lim
x→x0

g(x) (29)

lim
x→x0

f(x)g(x) = lim
x→x0

f(x) lim
x→x0

g(x) (30)

lim
x→x0

f(x)

g(x)
=

limx→x0f(x)

limx→x0 g(x)
(31)

We may end up in a indeterminate form

0

0
,
∞
∞

, 0×∞,∞−∞ (32)

Example 3.5.

lim
x→0

2x2 − 3x5

x+ 2x2
= lim

x→0

2x2(1− 3x3/2)

x(1 + 2x)
= lim

x→0

2x(1− 3x3/2)

1 + 2x
= 0 (33)

Example 3.6.

lim
x→+∞

2x3 + 5x2 − x+ 7

4x3 − x2 + x− 3
=

2x3(1 + 5
2x

− 1
2x2 +

7
2x3 )

4x3(1− 1
4x

+ 1
4x2 − 3

4x3 )
=

1

2
(34)

Example 3.7.

lim
x→+∞

ex −
√
x = +∞ (35)

3.2 Continuity

We could say if a function is continuous just looking at the graph. A function is continuous if

its graph has no breaks (no jumps for the same point) in its domain. However, more rigorously,

let f : X → Y and x0 ∈ X. f(x) is continuous in x0 if

lim
x→x0

f(x) = f(x0) (36)

3.3 Differential

Steepness is a key concept in Economics. We are often interested in evaluating what is the

effect an increase of the independent variable to the dependent variable. As we have already

seen, regarding linear function the steepness is easily given by the slope coefficient. However,
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most of the economic functions are non-linear. How do we measure the marginal effects of these

nonlinear functions?

Let f : X → Y and x0 ∈ X. If x increases by ∆x, e.g. from x0 to x0+∆x, also the function

f(x) will increase as follows

∆f(x) = f(x0 +∆x)− f(x0) (37)

Δx

x0 x0 + Δx

Δ f (x0)f (x0 + Δx)
f (x0)

Figure 10: Graphic representation of (37)

However, mostly, it is more interesting studying Difference quotient

∆f(x)

∆x
=

f(x0 +∆x)− f(x0)

∆x
(38)

particularly, when ∆x is very small

lim
∆x→0

f(x0 +∆x)− f(x0)

∆x
(39)

the limit of the difference quotient as h approaches zero, if it exists, should represent the

slope of the tangent line to (x0, f(x0)). This limit is defined to be the derivative of the function

f at x0:

lim
∆x→0

f(x0 +∆x)− f(x0)

∆x
= f ′(x0) (40)

if the limit of the difference quotient does not exist f(x) is said to be not not differential.

If a function is differentiable then it continous the opposite it is not true.
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Some derivatives

Function Derivative Function Derivative

f(x) = k f ′(x) = 0 f(x) = sin(x) f ′(x) = cos(x)

f(x) = x f ′(x) = 1 f(x) = cos(x) f ′(x) = − sin(x)

f(x) = xα, α ∈ R f ′(x) = αxα−1 f(x) = cot(x) f ′(x) = − 1
sin2(x)

f(x) = αx f ′(x) = αx ln(α) f(x) = tan(x) f ′(x) = 1
cos2(x)

f(x) = ex f ′(x) = ex f(x) = arcsin(x) f ′(x) = 1√
1−x2

f(x) = logα(x) f ′(x) = 1
x ln(α)

f(x) = arccos(x) f ′(x) = − 1√
1−x2

f(x) = ln(x) f ′(x) = 1
x

f(x) = arctan(x) f ′(x) = 1
1+x2

f(x) = |x| f ′(x) = |x|
x

f(x) = arccot(x) f ′(x) = − 1
1+x2

3.4 Derivative of elementary function

• f(x) = k, then f ′(x) = 0, proof;

lim
∆x→0

f(x+∆x)− f(x)

∆x
= lim

∆x→0

k − k

∆x
= 0

• f(x) = x, then f ′(x) = 1, proof;

lim
∆x→0

f(x+∆x)− f(x)

∆x
= lim

∆x→0

x+∆x− x

∆x
= 1

• D [αf(x)] = αDf(x), α ∈ R,

• D [f(x) + g(x)] = Df(x) +Dg(x)

• D [f(x)g(x)] = [Df(x)] g(x) + f(x [Dg(x)])

• if g(x) ̸= 0, D
[
f(x)
g(x)

]
= f ′(x)g(x)−f(x)g′(x)

[g(x)]2

For a function to be differentiable, it must be continuous but not vice versa.

Example 3.8. f(x) = |x| is continuous but not differentiable ∀x ∈ D

f ′(0) = lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

|h|
h

(41)

Therefore, f(x) = |x| is not differentiable in 0.
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3.5 Higher order derivative

If f(x) be a differentiable function, and f ′(x) its derivative. If f ′(x) is again differentiable,

D[f ′(x)] = f ′′(x) is its second derivative. If we can do the same with the second derivative

we will have the third derivatie, and so on and so forth. Generally, we can talk about higher

order derivative, defined as f (n)(x).

3.6 Max and min

Let f : X → R be a function, and x0 a point in the domain in X of f(x). We can state that

• x0 is a minimum if ∃Ix0 s.t.

f(x) > f(x0) ∀x ∈ Ix0\{x0} (42)

• x0 is a maximum if ∃Ix0 s.t.

f(x) < f(x0) ∀x ∈ Ix0\{x0} (43)

• If x0 is a max/min, then f ′(x0) = 0.

• If f ′(x) > 0 ∀x ∈ (a, b), then f(x) is increasing in (a, b)

• If f ′(x) < 0 ∀x ∈ (a, b), then f(x) is decreasing in (a, b)
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Figure 11: Example of Minimimum - Example of Maximum
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4 Integral

The indefinite integral represents a class of functions (antiderivative) whose derivative is the

integrand.

Definition 4.1. Let f(x) be a function in (a, b). If a function F (x) exists and it is continous

in [a, b] and it is also differentiable in (a, b) such that

F ′(x) = f(x) ∀x ∈ (a, b) (44)

F (x) is said to be the antiderivative of f(x).

If F (x) is an antiderivative function of f(x), also G(x) = F (x)+c, c ∈ R is an antiderivative

of f(x), given that

G′(x) = D[F (x) + c] = F ′(x) = f(x) (45)

Definition 4.2. Let f(x) be a function in (a, b) and let it have antiderivatives. All the an-

tiderivatives of f(x) are defined as

∫
f(x)dx (46)

f(x) is said to be the integrand.

As the derivative, the integral is a linear operator, therefore

∫
[αf(x) + βg(x)]dx = α

∫
f(x)dx+ β

∫
g(x)dx

= α[F (x) + c1] + β[G(x) + c2]

= αF (x) + βG(x) + c, c ∈ R

(47)

The integration by part rule is presented here:

∫
f ′(x)g(x)dx = f(x)g(x)−

∫
f(x)g′(x)dx+ c, c ∈ R (48)

Sometimes, in order to evaluate

∫
f(x)dx (49)
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∫
xαdx xα+1

α+1
, c ∈ R if α ̸= −1∫

1
α

ln |x|+ c, c ∈ R∫
[f(x)]αf ′(x)dx [f(x)]α+1

α+1
+ c, c ∈ R if α ̸= −1∫ f ′(x)

f(x)
dx ln |f(x)|+ c, c ∈ R∫

ef(x)f ′(x)dx ef(x) + c, c ∈ R∫
exdx ex + c, c ∈ R∫
cos[f(x)]f ′(x)dx sin[f(x)] + c, c ∈ R∫
sin[f(x)]f ′(x)dx − cos[f(x)] + c, c ∈ R

it is useful to make a change of variables. For instance, let g(t) be a derivable function, and

assume

x = g(t) (50)

then, dx is changed with

dx = g′(t)dt (51)

Therefore, we can evaluate Equation (48) as

∫
f(g(t))g′(t)dt = G(t) + c, c ∈ R (52)

and then solving

t = g−1(x) (53)

Sometimes, we are interested in evaluating the definite integral; it can be interpreted infor-

mally as the signed area of the region in the xy-plane that is bounded by the graph of f(x), the

x-axis and the vertical lines x = a and x = b. If f(x) is a continuous real-valued function de-

fined on a closed interval [a, b], then, once an antiderivative F (x) of f(x) is known, the definite

integral of f(x) over that interval is given by

∫ b

a

f(x)dx = [F (x)]ba = F (b)− F (a) (54)
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5 Matrix algebra

The analysis of many economic models reduces to the study of systems of equations. We will,

look at the simplest possible system if equations - linear system.

Definition 5.1. Generally, an equation is said to be linear if it has the form

a1x1 + a2x2 + ...+ anxn = b (55)

where a1, ..., an are parameters and x1, ..., xn are variables.

We can solve linear system of equations using matrices.

6 Matrix algebra

We can generate Rn by n-ary Cartesian product of R. Therefore, we can represent R2 and R3

though arrows which connect the origin of the cartesian plan to the coordinates given by the

pair (x1, x2) or (x1, x2, x3)

20

3

x

y

Figure 12: Graphic representation of the vector in R2 v = (2, 3)

Definition 6.1. Let v1 = (x1, ..., xn) and v2 = (y1, ..., yn) be two vectors, their are said to be

equal if xi = yi, ∀i = 1, 2, .., N .

Definition 6.2. Let v1 = (x1, ..., xn) and v2 = (y1, ..., yn) be two vectors, v3 = (x1+y1, ..., xn+

yn) is the sum of former vectors

We can multiply a vector by a scalar, and we will obtain cv1 = (cx1, ..., cxn)

Given m vectors v1, v2, ..., vm of Rn and m scalars c1, c2, ..., cm in R, a linear combination of

the vectors v1, v2, ..., vm with coefficients c1, c2, ..., cm the vector given by
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Figure 13: Graphic representation of the vector in R3

x =
m∑
k=1

ckvk (56)

Definition 6.3. A sequence of vectors (v1, v2, . . . , vk) from a vector space V is said to be

linearly dependent, if there exist scalars a1, a2, . . . , ak, not all zero, such that

a1v1 + a2v2 + · · ·+ akvk = 0

On the other hand, two vectors are said to be linearly independent if there is no linear

combination which gives as a result the null vector expect for the one with null coefficients.

6.1 Matrix algebra

A matrix is a rectangular array of numbers. The size of a matrix is indicated by the number

of its rows and number of its columns. A matrix with k rows and n columns is called a k × n

matrix. The element in row i and column j is called the (i, j)th entry, and it is often written

as aij. A matrix with the number of columns equal to the number of rows is called square

matrix.

Ak,n =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

ak,1 ak,2 · · · ak,n

 (57)

6.2 Operations

Definition 6.4. Let A and B two matrices kxn, their sum is the matrix C whose elements are

cij = aij + bij ∀i, j
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a11 · · · a1n
... aij

...

ak1 · · · akn

+


b11 · · · b1n
... bij

...

bk1 · · · bkn



=


a11 + b11 · · · a1n + b1n

... aij + bij
...

ak1 + bk1 · · · akn + bkn


(58)

Matrices may be multiplied by scalars. This operation is called scalar multiplication.

More generally:

Definition 6.5. The product of the matrix A and the number α, denoted αA, is the matrix

whose elements are αaij ∀i, j

α


a11 · · · a1n
... aij

...

ak1 · · · akn

 =


αa11 · · · αa1n
... αaij

...

αak1 · · · αakn

 (59)

We can define the matrix product AB iff:

number of columns of A = number of rows of B (60)

To obtain the (i, j)th entry of AB, multiply the ith row of A and the jth column of B as

follows

(
ai1 ai2 · · · aim

)
·


b1j

b2j
...

bni

 = ai1b1j + ai2b2j + · · ·+ aimbmj (61)

In other words, the (i, j)th entry of the product AB is defined to be

m∑
n−1

ainbhj

If A is a k ×m and B is m× n, then the product C = AB will be k × n.

Usually, AB ̸= BA.
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The n× n matrix

I =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 (62)

with aii = 1, ∀i and aij = 0, ∀i ̸= j, has the following property

AI = A (63)

for any mxn matrix A. I is called identity matrix.

Definition 6.6. The transpose of a kxnmatrix A is the nxk matrix obtained by interchanging

the rows and the columns.

 a11 a12 a13

a21 a22 a23

T

=


a11 a21

a12 a22

a13 a23

 (64)

Definition 6.7. A Triangular matrix is a square matrix containing element different from

zero only above/below the main diagonal.

Example 6.1. Upper Triangular

A =


1 −3 −1

0 1 1

0 0 −2

 (65)

Example 6.2. Lower Triangular

A =


1 0 0

−2 1 0

3 5 −2

 (66)

Definition 6.8. To any square matrix is associated a determinant, |A|. From a geometric

point of view, it represents the area (volume) of the parallelogram generated by the vectors of

the matrix.
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Let A be a 2x2 matrix,

A =

 a11 a12

a21 a22

 (67)

the determinant is |A| = a11a22 − a12a21

In case of a n × n matrix with n > 3, in order to find the determinant, we can use the

minor of the matrix.

Definition 6.9. A minor of a matrix A is the determinant of some smaller square matrix, cut

down from A by removing one or more of its rows and columns. Minors obtained by removing

just one row and one column from square matrices (first minors) are required for calculating

matrix cofactors, which in turn are useful for computing both the determinant and inverse of

square matrices.

The cofactor is:

Aik = (−1)i+kMik (68)

where Mik is a minor of the matrix.

Therefore, using the Laplace theorem we can obtain the determinant of a matrix n × n

as the sum of the product, of any row or column, by their cofactor.

The rank of A is the largest order of any non-zero minor in A.

Definition 6.10. Let A be a n × n matrix. The n × n matrix A−1 is an inverse for A if

AA−1 = A−1A = In

A matrix can have at most one inverse

⇒ Nor every matrix are invertible. In order to be invertible, |A| ≠ 0

Definition 6.11. Any symmetric A is:

• Positive semidefinite if x′Ax > 0, ∀x ̸= 0

• Positive definite if x′Ax ≥ 0, ∀x ̸= 0

• Negative definite if x′Ax < 0, ∀x ̸= 0

• Negative semidefinite if x′Ax ≤ 0, ∀x ̸= 0
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6.3 Linear system of equations

As we have stated above, we can use matrix to solve linear system of equations.

Recall: Generally, an equation is said to be linear if it has the form

a1x1 + a2x2 + ...+ anxn = b (69)

where a1, ..., an are parameters and x1, ..., xn are variables.

The solution of the linear equation is given by (x1, ..., xn) which substituted into the equation

solving it.

If there are several linear equations which have to be true all toghether we talk about Linear

System of equations

Example 6.3. 

a11x1 + a12x2 + ...a1nxn = b1

a21x1 + a22x2 + ...a2nxn = b2
...

am1x1 + am2x2 + ...amnxn = bm

(70)

The solution of the system is given by (x1, x2, ..., xn) which solves all the equations contem-

poraneously.

The system above, can be expressed much more compactly using matrix notations. Let A

denote the coefficient matrix of the system:

A =


a11 · · · a1n
... aij

...

am1 · · · amn

 (71)

Also, let

x =


x1

...

xn

 and b =


b1
...

bm

 (72)

Then, the system of equations can be written as

22




a11 · · · a1n
... aij

...

am1 · · · amn

 ·


x1

...

xn

 =


b1
...

bm

 (73)

or simply as

Ax = b (74)

Then, if A is nonsingular (|A| ≠ 0), we can solve the system as x = A−1b. To solve a

linear system of simultaneous equations we can use also the Cramer’s rule. If the matrix A

is nonsingular, the linear system of system of n linear equations and n unknowns. Then the

theorem states that in this case the system has a unique solution, whose individual values for

the unknowns are given by:

xi =
det(Ai)

det(A)
i = 1, ..., n (75)

where Ai is the matrix formed by replacing the ith column of A by the column vector b.

Example 6.4. Solve the following system
x− 2y + z = 1

3x+ y − 7z = 0

x− z = 1

(76)

Since |A| ≠ 0, we can use Cramer’s rule
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x =

det


1 −2 1

0 1 −7

1 0 −1


6

= 2

y =

det


1 1 1

3 0 −7

1 1 −1


6

= 1

z =

det


1 −2 1

3 1 0

1 0 1


6

= 1

(77)

In Economics, we may be interested in system of the following form

Ax = λx (78)

where A is a square matrix.

It is equal to write:

(A− λI)x = 0 (79)

Definition 6.12. The values λ that solve det(A− λI) = 0 are called eigenvalues.

Definition 6.13. While the non-trivial vectors, x, obtained as the solution of (A − λI)x = 0

is called eigenvector.

From a geometric point of view, the eigenvector (x) is the vector which is only scaled by a

value λ when we apply to it a transformation A.

7 Function of several variables

As we have seen before, in Economics is interested looking what is the effect of a change in one

variable with respect to another one. However, in most real cases, variables depend on several

variables. We may be interested in f : Rn → R.
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Figure 14: The graph of f(x, y) = x2 + y2

Figure 15: The graph of f(x, y) = x2 − y2

We can graph function up to R3.

There is another way to visualize function from R2 to R1 which requires only two dimensional

sketching: the level curves. They are given by

Lc = (x, y) : f(x, y) = c (80)

It is like to slice the function in many pieces.

7.1 Calculus of several variable

When we deal with function of several variable, we are often interested in the partial variation

- the variation brought about by the change in only one variable. We will talk, therefore, about

partial derivative.

Definition 7.1. Let f : Rn → R. Then for each variable xi at each point x0 in the domain of

f

∂f

∂xi

(
x0
1, . . . , x

0
n

)
= lim

h→0

f
(
x
(0)
1 , . . . , x0

i + h, . . . , x0
n

)
− f (x0

1, . . . , x
0
i , . . . , x

0
n)

h
(81)
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From a practical point of view, we can apply the same rules we apply to one variable

function; we take the derivative with respect one variable treating all the other variables as

constant.

If we are interested in the behavior of a function F (x, y) of two variables in the neighborhood

of a given point (x⋆, y⋆), we can, therefore, look at the effect of the change from x⋆ (y⋆) to x⋆+∆x

(y⋆ +∆y) respectively:

F (x∗ +∆x, y∗)− F (x∗, y∗) ≈ ∂F

∂x
(x∗, y∗)∆x (82)

F (x∗, y∗ +∆y)− F (x∗, y∗) ≈ ∂F

∂y
(x∗, y∗)∆y (83)

or we can look at the effect of a change of x and y simultaneously as follows

F (x∗ +∆x, y∗ +∆y)− F (x∗, y∗) ≈ ∂F

∂x
(x∗, y∗)∆x+

∂F

∂y
(x∗, y∗)∆y (84)

7.2 Higher-order derivatives

The partial derivative ∂f/∂xi is itself a function - as we have seen in the case of the second

derivative. When we take the first derivative with respect to a variable and the second one

with respect to another variable we talk about mixed partial derivatives and it is usually

written as

∂2f

∂xj∂xi

(85)

with i ̸= j.

If a function has n variables, then, it will have n2 second order partial derivatives. It is

common to arrange these n2 partial derivatives into an n×n matrix whose (i, j)th entry is the

(∂2f/∂xj∂xi) (x
∗). This matrix is called Hessian matrix:

D2fx =



∂2f
∂x2

1

∂2f
∂x2∂x1

· · · ∂2f
∂xn∂x1

∂2f
∂x1∂x2

∂2f
∂x2

2
· · · ∂2f

∂xn∂x2

...
...

. . .
...

∂2f
∂x1∂xn

∂2f
∂x2∂xn

· · · ∂2f
∂x2

n

 (86)

Since ∂2f
∂xj∂xi

= ∂2f
∂xi∂xj

, the Hessian matrix is often symmetric.
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8 Optimization

We want to find the point (x, y) s.t. f ′(x) = 0, this point is called stationary point (critical

point).

A critical point may correspond to:

• Maximum
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• Minimum
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• Saddle point
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Once we have found the stationary point with f ′(x) = 0 (first order condition), we can check

what kind of stationary point is looking at the second derivative (second order conditions)

• if f ′′(x) < 0 ⇒ max
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• if f ′′(x) > 0 ⇒ min

• if f ′′(x) = 0 ⇒ No clue. It can be max, min or saddle point

in x⋆ we have a local max if f(x⋆) ≥ f(x), ∀x in the of x⋆

8.1 Optimization with several variables

The gradient vector is the vector whose components are the partial derivatives of f.

∇f(p) =


∂f
∂x1

(p)
...

∂f
∂xn

(p)

 (87)

The Hessian Matrix is the n× n matrix whose (i, j)th entry is the (∂2f/∂xj∂xi) (x
∗).

D2fx =



∂2f
∂x2

1

∂2f
∂x2∂x1

· · · ∂2f
∂xn∂x1

∂2f
∂x1∂x2

∂2f
∂x2

2
· · · ∂2f

∂xn∂x2

...
...

. . .
...

∂2f
∂x1∂xn

∂2f
∂x2∂xn

· · · ∂2f
∂x2

n

 (88)

In order to have a stationay point ∇f(p) = 0

In order to attain the second order conditions:

• If the Hessian is positive definite (equivalently, has all eigenvalues positive) at a, then f

attains a local minimum at a

• If the Hessian is negative definite (equivalently, has all eigenvalues negative) at a, then f

attains a local maximum at a

• If the Hessian has both positive and negative eigenvalues then a is a saddle point for f

(and in fact this is true even if a is degenerate).

In those cases not listed above, the test is inconclusive.
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8.2 Constrained optimization

Let f and h be C1 functions of two variables. Suppose that x⋆ = (x⋆
1, x

⋆
2) is a solution of the

problem

maximize f (x1, x2)

subject to h (x1, x2) = c
(89)

Suppose that (x⋆
1, x

⋆
2) is not a critical point of h. Then, there is a real number µ⋆ s.t.

(x⋆
1, x

⋆
2, µ

⋆) is a critical point of the Lagrangian function

L (x1, x2, µ) ≡ f (x1, x2)− µ [h (x1, x2)− c] (90)

In other words at (x∗
1, x

∗
2, µ

∗)

∂L

∂x1

= 0,
∂L

∂x2

= 0, and
∂L

∂µ
= 0 (91)
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