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Modeling Choice

Earlier we talked about economists’ model of consumer choice:

Consumers choose the best bundle they can afford.

With the language of budget sets, preferences, and utility functions we
can say this more precisely:

1. A consumer chooses the most preferred bundle in her budget set.
2. A consumer chooses a bundle that maximizes utility,  subject to the 

budget constraint.



Conditions for optimal choice

Assume we have well-behaved preferences. We want to pick the bundle
in the budget set on the highest indifference curve?

This means we want to pick a bundle on the budget line. Why?

Answer: With well-behaved preferences, we can rule out bundles inside
the budget line because more is always preferred to less!
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Now start from either corner and ask, as you move towards the center
of the budget line, “am I on a higher indifference curve?”
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The bundle (x1
∗, x2

∗) is an optimal choice because the set of more
preferred bundles does not intersect the budget set.



Optimal choice

Notice that with well-behaved preferences, the optimal bundle puts you
on an indifference curve that is tangent to the budget line.

Why?

Answer: If the indifference curve weren’t tangent, it would either:

1. Cross the budget line, in which case some more preferred bundles
would still be affordable.

2. Be above the budget line, in which case, the bundle wouldn’t be
affordable.



Is tangency necessary?
Why might the tangency condition not be necessary in all cases? kinky
preferences
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Is tangency necessary?
Why might the tangency condition not be necessary in all cases?
boundary optima
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Restrictions

Once again, we’re going to appeal to some restrictions to make the
math simpler.

If we rule out kinky preferences and boundary optima then we will
always have tangency between the indifference curve and the budget line
at the optimal bundle.

Under these restrictions, the tangency condition is called a
necessary condition for optimality.

The condition is logically necessary because the bundle couldn’t be
optimal if the condition weren’t fulfilled.



Is tangengy sufficient?
Why might the tangency condition not be sufficient? multiple optima
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Well-behaved preferences

When preferences are convex, any tangency point between the indifference
curve and the budget line must also be an optimum.

But this still doesn’t rule out multiple optima.

Why?

Answer: There could be a flat spot on the indifference curve.

But, if preferences are strictly convex, the there will be a
unique optimum for each budget line!



Return of the MRS

Our graphical analysis implies the following:

At an interior optimum, the marginal rate of substitution (MRS) must
equal the slope of the budget line.



MRS and optimality

Recall that we can think of the MRS as specifying the rate of exchange
between goods 1 and 2 at which a consumer is willing to keep their
current bundle.

When the market offers an exchange rate of −p1/p2, the
consumer can give up one unit of good 1 to buy p1/p2 units of good 2.

If the consumer has a bundle that they would prefer not to change, then
it must be the one where:

𝑀𝑅𝑆 =
−𝑝!
𝑝"



MRS and optimality

Suppose you had a bundle where your MRS was different from the
price ratio.

Say, yourMRS = ∆x2/∆x1 = −3/2 but the price ratio is 1/1.
What would you want to do?

Answer: At your current MRS, you would give up 3 units of good 2
to get an additional 2 units of good 1, but at market rates you only
need to give up 2 units of good 2 to get 2 units of good 1!

So you couldn’t be at an optimal bundle! You’d want to trade to get a
better bundle, and you’d continue to trade until you got to a bundle
whereMRS = #$!

$"
.



Optimality and demand
We call the optimal bundle, given prices and a budget, the consumer’s
demanded bundle.

Typically, when prices and income change, the demanded bundle will also
change.

For that reason, we can define a demand function that explains how the
demanded bundle (the optimal quantities of x1 and x2) changes as we change
prices and income.

𝑥" 𝑝", 𝑝#, 𝑚 𝑎𝑛𝑑 𝑥# 𝑝", 𝑝#, 𝑚

Note that the demand function will depend on the consumer’s preferences, 
and this will provide an even more convenient way to represent consumer
preferences than the utility function!
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Perfect substitutes

If goods are perfect substitutes, the consumer exclusively buys the
cheaper the two goods.

If both prices are the same, it doesn’t matter which combination of goods
the consumer buys.

Think about what happens to the previous figure when the price of good
1 increases.
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When the price of good 1 rises, the budget line rotates inward, and 
if it rises high enough, consumers will substitute good 2 for good 1.
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Perfect complements
Where does the demand function come from?

Since the goods must be purchased together to have any value, we
know the consumer buys the same quantity of each good, call it x .

Then, we must have:

𝑝!𝑥 + 𝑝"𝑥 = 𝑚

Then we can solve for x to get:

𝑥! = 𝑥" = 𝑥 =
𝑚

𝑝! + 𝑝"



Neutral and Bads

If either good is a neutral or a bad, the consumer will spend all of her
money on the good she likes and none of it on the neutral or bad.

So the demand functions, supposing good 2 is the neutral (bad) will
be:

𝑥! =
𝑚
𝑝!

𝑥" = 0



Discrete goods

When a consumer chooses between discrete goods and 
spending money on everything else, the bundles can be written
as (1,m − p1), (2,m − 2p1), (3,m − 3p1) . . .

Then we just want to find out which bundle has the highest
utility.

We can also do this graphically...
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The optimal bundle is the one on the highest indifference curve.
As the price of good 1 falls, the consumer will continue not to
purchase it until some threshold.
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Cobb-Douglas preferences

Recall the Cobb-Douglas utility function 𝑢(𝑥!, 𝑥") = 𝑥𝑐𝑥𝑑 .

We want to find the demand function that gives the optimal choices
(𝑥!, 𝑥") for all prices (𝑝!, 𝑝") and m.

Before we solve this particular case, let’s go back and look at the
utility maximization problem more generally.



Utility (preference) maximization

The reason we developed the utility function representation of  
preferences was so that we can treat the consumer’s choice
problem as a simple maximization problem (hopefully you
remember these from calculus).

The goal is to solve this maximization problem.

The good news is that we already have the tools to do it!



Optimal choice and MRS
Recall that an optimal choice, that is, a bundle (𝑥1, 𝑥2) that solves the
utility maximization problem, must satisfy the following condition:

𝑀𝑅𝑆 𝑥1, 𝑥2 = −
𝑝!
𝑝"

And recall from the Utility lecture (Chapter 4) that the MRS can be
expressed as:

𝑀𝑅𝑆 𝑥1, 𝑥2 = −
⁄𝜕𝑢 𝑥1, 𝑥2 𝜕𝑥!
⁄𝜕𝑢 𝑥1, 𝑥2 𝜕𝑥"

= −
𝑝!
𝑝"

And the negative signs cancel out.



Optimal choice and MRS

From the Budget Set lecture (Chapter 2) we also know that optimal
choice must satisfy:

𝑝!𝑥! + 𝑝"𝑥" = 𝑚

Therefore, we’re left with two equations and two unknowns, and we
just need to solve for the optimal choices of x1 and x2  as a function of
prices and income.



Solution concept #1: substitution
We can solve the budget constraint for one of the choices and then substitute that
choice into the MRS condition.

E.g. we can solve the budget constraint for x2:

𝑥! =
𝑚
𝑝!
−
𝑝"
𝑝!
𝑥"

When we substitute that into the MRS condition, we get:

𝜕𝑢(𝑥",
𝑚
𝑝!
− 𝑝"𝑝!

𝑥")/𝜕𝑥"

𝜕𝑢(𝑥",
𝑚
𝑝!
− 𝑝"𝑝!

𝑥")/𝜕𝑥!
=
𝑝"
𝑝!

Since this equation only has one unknown (𝑥"), it can then be solved for 𝑥" in terms of
(𝑝",𝑝!,m), and substitution back in  the budget constraint will yield a solution for 𝑥!.



Back to Cobb-Douglas
How can we solve for the general form of the demand function with
Cobb-Douglas utility?

𝑢(𝑥1, 𝑥2) = 𝑥!/𝑥"0

First, to make life easier, let’s take a monotonic transformation:

ln 𝑢(𝑥1, 𝑥2) = 𝑐 ln 𝑥! +𝑑 ln 𝑥"

Then, we can write the maximization problem:

max
(2!,2")

𝑐 ln 𝑥! +𝑑 ln 𝑥"
𝑠. 𝑡. 𝑝!𝑥! + 𝑝"𝑥" = 𝑚



Solution #1

Using the expression for the MRS from Chapter 4:

𝑐𝑥"
𝑑𝑥!

=
𝑝!
𝑝"

𝑝!𝑥! + 𝑝"𝑥" = 𝑚

These are two equations in two unknowns, so we can solve them by
substituting the second equation into the first:

𝑐( ⁄𝑚 𝑝" − ⁄𝑥!𝑝! 𝑝")
𝑑𝑥!

=
𝑝!
𝑝"



Solution #1

Then, cross multiplying the last expression gives:

𝑐 𝑚 − 𝑥!𝑝! = 𝑑𝑝!𝑥!

We can rearrange this to get:

𝑐𝑚 = 𝑐 + 𝑑 𝑝!𝑥!

Which is equivalent to:

𝑥! =
𝑐

𝑐 + 𝑑
𝑚
𝑝!



Solution #1

To get the demand function for x , we can substitute back into the
budget constraint to get:

𝑥" =
𝑚
𝑝"
−
𝑝!
𝑝"

𝑐
𝑐 + 𝑑

𝑚
𝑝!

=
𝑑

𝑐 + 𝑑
𝑚
𝑝"

Notice, these demand functions imply that with Cobb-Douglas
preferences, the consumer will spend a fixed percentage of her income
on each good!



Constrained maximization

We can also use the calculus conditions for maximization to 
solve the following constrained maximization problem:

max
(2!,2")

𝑢(𝑥!, 𝑥")

𝑠. 𝑡. 𝑝!𝑥! + 𝑝"𝑥" = m

This says that we want to choose x1 and x2 to maximize the  
objective (utility) function, subject to the (budget) constraint
that the chosen bundle must be affordable.

There are two ways to solve this problem.



Solution concept #2: convert to uncostrained
maximization
The first is to solve the budget constraint for one of the variables (say 𝑥#) and
then to substitute it into the objective function.

E.g. given 𝑥", the amount of 𝑥# needed to ensure we’re on the budget line, that
is 𝑥# as a function of 𝑥", is:

𝑥# 𝑥" =
𝑚
𝑝#
−
𝑝"
𝑝#
𝑥"

Then, substitute this back into the objective function to get:

max
)#

𝑢(𝑥",
𝑚
𝑝#

−
𝑝"
𝑝#
𝑥")

Which is an unconstrained maximization problem.



Solution concept #2

Then, all we need to do is differentiate (take the partial derivative of)
the new objective function with respect to x1 and set the result equal to
0 to get the first-order condition:

𝜕𝑢(𝑥!, 𝑥" 𝑥! )
𝜕𝑥!

+
𝜕𝑢(𝑥!, 𝑥" 𝑥! )

𝜕𝑥"
𝑑𝑥"
𝑑𝑥!

= 0

The first term shows how utility changes as x1 increases.
The second term shows:
1. The rate of increase of utility as x2 increases
2. The rate of decrease of x2 as x1 increases in order to continue to

satisfy the budget constraint



Solution concept #2

Differentiate the equation for 𝑥# 𝑥" in order to get the second part of the
second term:

𝑑𝑥#
𝑑𝑥"

= −
𝑝"
𝑝#

Then, substituting that back into our equation from the last slide gives:

𝜕𝑢(𝑥"∗, 𝑥#∗)/𝜕𝑥"
𝜕𝑢(𝑥"∗, 𝑥#∗)/𝜕𝑥#

=
𝑝"
𝑝#

Which just says (again) that the MRS between 𝑥" and 𝑥# must equal the price
ratio at the optimal choice (𝑥"∗, 𝑥#∗), which must  also satisfy the budget
constraint 𝑝" 𝑥"∗ + 𝑝# 𝑥#∗ = 𝑚, giving us two equations and two unknowns.



Solution #2

Let’s try this concept out with the Cobb-Douglas Utility function.

We can also just substitute the budget constraint into the maximization
problem:

max
2!

𝑐 ln𝑥! +𝑑 ln( ⁄𝑚 𝑝" − ⁄𝑥! 𝑝! 𝑝")

Then take the derivative w.r.t. x1 to get the first-order condition:

𝑐
𝑥!
− 𝑑

𝑝"
𝑚 − 𝑝!𝑥!

𝑝!
𝑝"
= 0



Solution #2

Then, 𝑝! cancels out to give:  

𝑐
𝑥"
−

𝑑𝑝"
𝑚 − 𝑝"𝑥"

= 0

Adding the second term to both sides and multiplying by x1 gives:

𝑐 =
𝑑𝑝"𝑥"

𝑚 − 𝑝"𝑥"

Multiplying both sides by the denominator and adding cp1x1 to both sides leaves:

𝑐𝑚 = 𝑑𝑝"𝑥" + 𝑐𝑝"𝑥" = (𝑐 + 𝑑)𝑝"𝑥"



Solution #2

Finally, divide by (𝑐 + 𝑑)𝑝! to get:

𝑥! =
𝑐

𝑐 + 𝑑
𝑚
𝑝!

Again, by substituting into the budget constraint, we can solve 
for 𝑥" :

𝑥" =
𝑑

𝑐 + 𝑑
𝑚
𝑝"

Which is the same solution we got before!



Solution concept #3: Lagrange multipliers

We can also solve the maximization problem using Lagrange Multipliers.

We start by defining a new function called the Lagrangian:

𝐿 = 𝑢 𝑥", 𝑥! − 𝜆(𝑝"𝑥" + 𝑝!𝑥! −𝑚)

The new variable 𝜆 is known as the Lagrange multiplier, because it multiplies the
constraint. Lagrange’s theorem says that an optimal choice 𝑥"∗, 𝑥!∗ must satisfy:

𝜕𝐿
𝜕𝑥"

=
𝜕𝑢(𝑥"∗, 𝑥!∗)

𝜕𝑥"
− 𝜆𝑝" = 0

𝜕𝐿
𝜕𝑥!

=
𝜕𝑢(𝑥"∗, 𝑥!∗)

𝜕𝑥!
− 𝜆𝑝! = 0

𝜕𝐿
𝜕𝜆

= 𝑝"𝑥"∗ + 𝑝!𝑥!∗ −𝑚 = 0



Solution concept #3
The three equations are just the partial derivatives of the Lagrangian with respect to
x1,x2 and λ.

Now we have 3 equations and 3 unknowns, and we can solve for x1 and x2 in terms of
(p1,p2,m).

Note that we will not need to prove Lagrange’s Theorem (or necessarily to use it),
but in some cases you may find it convenient to use.

But note, that by dividing the first condition by the second, we end up with:

𝜕𝑢(𝑥"∗, 𝑥!∗)/𝜕𝑥"
𝜕𝑢(𝑥"∗, 𝑥!∗)/𝜕𝑥!

=
𝑝"
𝑝!

And the budget constraint (condition 3) as before, and we’re back to 2 equations
and 2 unknowns.



Solution #3: Cobb-Douglas
As before, we start with 𝑢(𝑥!, 𝑥") = 𝑐 ln 𝑥! + 𝑑 ln 𝑥"

Set up the Lagrangian:

𝐿 = 𝑐 ln 𝑥! + 𝑑 ln 𝑥" − 𝜆(𝑝!𝑥! + 𝑝"𝑥" −𝑚)

Differentiate to get the three first-order conditions:

𝜕𝐿
𝜕𝑥!

=
𝑐
𝑥!
− 𝜆𝑝! = 0

𝜕𝐿
𝜕𝑥"

=
𝑑
𝑥"
− 𝜆𝑝" = 0

𝜕𝐿
𝜕𝜆

= 𝑝!𝑥!∗ + 𝑝"𝑥"∗ −𝑚 = 0



Solution #3
To solve them, let’s start by solving for 𝜆. 

Rearranging and cross multiplying the first two equations leaves us with:

𝑐 = 𝜆𝑝"𝑥"

𝑑 = 𝜆𝑝#𝑥#

Adding these together gives us:

𝑐 + 𝑑 = 𝜆 𝑝#𝑥# + 𝑝#𝑥# = 𝜆𝑚

Which implies:

𝜆 =
𝑐 + 𝑑
𝑚



Solution #3

Then, substituting back into the first two equations and solving for 𝑥!
and 𝑥" gives us:

𝑥! =
𝑐

𝑐 + 𝑑
𝑚
𝑝!

𝑥" =
𝑑

𝑐 + 𝑑
𝑚
𝑝"

Which is the same solution as in the other two cases!



Cobb-Douglas utility
To summarize, the Cobb-Douglas utility function:

𝑢 𝑥", 𝑥! = 𝑥"$𝑥!%

Generates demand functions (found in many ways):

𝑥" =
𝑐

𝑐 + 𝑑
𝑚
𝑝"

𝑥! =
𝑑

𝑐 + 𝑑
𝑚
𝑝!

Which imply that the consumer will always spend a fixed percentage of her
income on each good.

This is why it is convenient to normalize the exponents so that they sum to 1!

𝑢 𝑥", 𝑥! = 𝑥"&𝑥!"'&



The utility of utility functions

One situation in which you might expect people to have
Cobb-Douglas preferences is where good 1 is something like the 
percent of income that people spend on housing and good 2 is the
percent left over for everything else.

There’s some evidence that this is pretty stable within countries (e.g.
15-20% in the UK).

So then the utility function might look like:

𝑢 𝑥!, 𝑥" = 𝑥!
!
6𝑥"

7
6



The utility of utility functions

Since 𝑥! is a composite good we can assume 𝑝! is 1.

Suppose m = 1000, and suppose the population is growing. The government is
considering a policy that would restrict the ability of developers to build new units.

With a growing population and a fixed supply, suppose that would raise the price of 1
“unit of housing”, say 1000 sq. ft., (p1) from 100 to 200.

Then demand for x1 and x2 at initial prices is:

𝑥" =
1
5
1000
100

= 2

𝑥! =
4
5
1000
1

= 800

And the initial utility is: 𝑢(𝑥", 𝑥!) = 2
#
$800

%
$ = 241.4



The utility of utility functions

After the building restriction is imposed and 𝑝" = 200, the demand becomes:

𝑥" =
1
5
1000
200 = 1

𝑥# =
4
5
1000
1 = 800

Which generates utility: 𝑢 𝑥", 𝑥# = 1
#
$800

%
$ = 210.1

Remember, the actual number is meaningless. What is important is that the
policy moves the consumer to a lower indifference curve (e.g. to a smaller
housing unit).

What might be some of the other responses by homeowners?



More on the MRS

Think about it, if:
1. The market generates a single price for each good, say butter and

milk, (as is often the case in well-organized markets),
2. Everyone is choosing optimally,
3. Everyone is at an interior solution

Then, everyone must have exactly the same MRS for butter and milk!

The market offers everyone the same rate of exchange for milk and
butter to everyone, and everyone is adjusting their consumption until
their own marginal valuation of the two goods equals the market’s
marginal valuation.



More on the MRS

Crucially, this is true regardless of income and preferences!

Some people will value their total consumption differently, and some will
have more milk while others will have more butter.

And wealthier people may have more of both.

But, everyone who has optimized consumption will have exactly the same
marginal rate of substitution.

Which says that everyone will agree on the rate at which they would
exchange one good for the other.

And because everyone has consumed to the point where that rate equals the
market exchange rate, no one will want to engage in further trade.



More on the MRS

Now, we might doubt that people actually optimize perfectly. . .

BUT the combination of utility-driven choice and market prices will
allow choices to tend in the direction of optimality over time.

Prices contain information, and that information creates incentives.

Just thinking about a) how policies/events change relative prices and
b) how changes in relative prices will change choices will help you
understand a lot about how the world works.



The role of the entrepreneur

Entrepreneurs get rich by finding a way to transform goods at better
than the current market rate of exchange!

If the current exchange rate has 1 quart of milk going for $2 and 1
pound of butter for $2, then an entrepreneur can profit by finding a
way to convert butter to milk more efficiently.

Suppose she develops a technology that converts a pound of butter
into 2 quarts of milk!

She can then buy up pounds of butter for $2, convert them to 2 quarts
of milk and sell the result for a $4!



The role of prices

This all points to one of the most important insights in economics, the
resolution to the water-diamond paradox:

Prices are not arbitrary numbers, they tell us how people value goods
at the margin.

Diamonds are more expensive than water because of their value at the
margin which is caused by their scarcity.



Tax policy

Quantity taxes impact the budget constraint by increasing the price of one
good, and the optimal bundle will satisfy:

𝑝" + 𝑡 𝑥"∗ + 𝑝#𝑥#∗ = 𝑚

This tax raises total revenue 𝑅∗ = 𝑡𝑥"∗

Income taxes impact the budget constraint by reducing income (for this
example, we’ll use a revenue-equivalent lump sum tax).

𝑝"𝑥" + 𝑝#𝑥# = 𝑚 − 𝑅∗

Which can be rewritten as:

𝑝"𝑥" + 𝑝#𝑥# = 𝑚 − 𝑡𝑥"∗



Tax policy

Under the income tax the budget line will have the same slope as it did
initially.

And a revenue-equivalent, lump-sum income tax will ensure that the
optimal bundle under the quantity tax will still be available.

This is true because when we rearrange the budget constraint under the
quantity tax, we get:

𝑝!𝑥! + 𝑝"𝑥" = 𝑚 − 𝑡𝑥!∗

Thus, it will be affordable under the income tax, but will it be 
optimal?



Tax policy
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This shows the effect of a tax on good 1.



Tax policy

Answer: No, the consumer is better off with an income tax (and the
government gets the same revenue)!
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Optimal choice

o The optimal choice is the bundle in the budget set that puts the
consumer on the highest indifference curve. This is what we mean
by the best bundle a consumer can afford.

o For well-behaved preferences the optimal bundle will usually
require 𝑀𝑅𝑆 = −𝑝!/𝑝" = slope of the budget line.

o We can use choice data to estimate utility functions (see the 
textbook for an example), and these functions can be used to
evaluate policy proposals.

o When everyone faces the same prices for two goods, then
everyone will have identical MRSs and will be willing to trade
off the two goods in the same way!


