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Inference vs Probability
from population to data and back

▶ Probability starts from the population, which is described by the
means of a probability distribution function, and predicts what
happens in a sample extracted from it.

Given a probability law, which is the probability of a given event?

▶ Inference starts from a sample and describes the observed data with
the aim of inferring relevant information on the population.

Given a sample, which are the parameters of the probability law that
generated my sample?



What is Inference?
In a figure



What is Inference?
a general introduction

▶ Estimate: recover some parameter explaining the phenomenon that
generates the data

▶ point estimate: a single number that is our best guess for the
parameter.

▶ interval estimate: an interval of numbers that is believed to contain
the actual value of the parameter.

▶ Hypothesis testing: using data to validate certain statements or
predictions



Random sample: A practical example

For making inference we assume that our data (collected in a sample)
come from a probability distribution. The probability distribution is
assumed to be known but its parameters are unknow

▶ We want to estimate the true proportion (𝑝) of Americans who
favor doctor-assisted suicide.

▶ We want to estimate the true mean (𝜇) of Americans who favor
doctor-assisted suicide.



Inference
Starting from the examples

▶ We want to estimate the true proportion (𝑝) of Americans who
favor doctor-assisted suicide.

𝑝 = Americans who favor doctor assisted suicide
Americans

* The population of interest is too large: we observe a random sample
and estimate such proportion on a random sample

̂𝑝 = Americans who favor doctor assisted suicide IN THE SAMPLE
Americans IN THE SAMPLE



Inference…formally speaking
Sampling distribution

▶ Suppose that, in a given sample of 𝑛 = 50 we find 35 Americans
that favour doctor assisted suicide. If, within the following days, we
collect another sample, we expect to obtain a different result. The
sample proportion has its own variability

▶ Formally speaking, when we record, for each element of the sample,
the corresponding opinion we are making a Bernoulli experiment for
each observation 𝑖 = 1, 2 … , 𝑛

𝑋𝑖 = {0 with probability 1 − 𝑝
1 with probability 𝑝



Central Limit Theorem for the proportion

▶ When we compute the proportion in a sample we are computing a
sample mean on variables that can only assume the values {0, 1}.

̂𝑝 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖

▶ For the Central Limit Theorem we can conclude that

̂𝑝 ∼ 𝑁 (𝑝, 𝑝(1 − 𝑝)
𝑛 )



Central Limit Theorem for the proportion
why?

▶ The Central Limit Theorem states that

CLT

Given 𝑛 radom variables 𝑋1, 𝑋2, … , 𝑋𝑛 that are independent and
that have the same distribution with mean 𝔼[𝑋] = 𝜇 and variance
𝔼[𝑋] = 𝜎2, the following holds

�̄�𝑛 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖 is distributed as �̄�𝑛 ∼ 𝑁 (𝜇, 𝜎2

𝑛 )



Hang on: why are we doing all of this???

▶ Due the result provided above (and many others that will follow) we
have a probability distribution associated to the results we obtained
in a given sample.

▶ Is it really useful?
▶ Example: In a survey it was reported that 33 percent of women

believe in the existence of aliens. I 100 women are selected at
random, what is the probability that more than 45 percent will say
that they believe in aliens?



Example: resolved

▶ We need to compute 𝑃( ̂𝑝 > 0.45) and we know that
̂𝑝 ∼ 𝑁 (0.33, 0.0022) since 𝑝 = .33 and 𝑝(1 − 𝑝)/𝑛 = 0.0022.

𝑃( ̂𝑝 > 0.45) = 𝑃 ( ̂𝑝 − 0.3
√0.33(1 − 0.33)/100

> 0.45 − 0.33
√0.33(1 − 0.33)/100

) =

𝑃 (𝑍 > 2.55) = 0.0054 ( where 𝑍 ∼ 𝑁(0, 1))



Sampling distribution
The case of the sample mean

▶ We want to estimate the true daily mean time spent driving their
motor vehicles by the Americans.

𝜇 = total amount of time spent by American males
total number of Americans who drive

* We use an estimate obtained from a sample

̄𝑥 = total amount of time spent by American males IN THE SAMPLE
total number of Americans who drive IN THE SAMPLE



Central Limit Theorem heps us once again

▶ To derive the sampling distibution of the sample mean we rely to
CLT which states that

�̄� ∼ 𝑁 (𝜇, 𝜎2

𝑛 )

▶ Example: A tire manufacturier claims that its tires last an average
60,000 miles with a standard deviation of 3,000 miles. 64 tires are
placed on test. What is the probability that their failure miles will be
more than 59,500 miles?

𝑍 = �̄� − 𝜇
𝜎/√𝑛 = 59, 500 − 60, 000

30, 000/
√

64 thus 𝑃( ̄𝑥 > 59, 500) =

= 𝑃(𝑍 > −1.33) = 0.4082



Confidence intervals
Why?

▶ So far we evaluated the sampling distribution of quantitites taylored
at estimating population parameters ( ̂𝑝 for estimating population
proportion 𝑝 and sample mean ̄𝑥 for estimating population mean 𝜇).
These are point estimates

▶ The sampling distribution allows us to construct intervals of
plausible values associated to the estimate of a population
parameter. These are called confidence intervals

Confidence Interval

Given 𝑛 radom variables 𝑋1, 𝑋2, … , 𝑋𝑛 and a parameter of in-
terest 𝜃, and interval [𝐿1(𝑋1, 𝑋2, … , 𝑋𝑛), 𝐿1(𝑋1, 𝑋2, … , 𝑋𝑛)] is
Confidence Interval at 1 − 𝛼 confidence if it contains with proba-
bility 1 − 𝛼 the unkwnow 𝜃 parameter



Confidence Interval: understanding the definition
Build it for the sample proportion �̂�

▶ CLT states that
̂𝑝 − 𝑝

√ ̂𝑝(1 − ̂𝑝)/𝑛
= 𝑍 ∼ 𝑁(0, 1) thus 1 − 𝛼 = 𝑃(−𝑧𝛼/2 ≤ 𝑍 ≤ 𝑧𝛼/2)

(1)

−3 −2 −1 0 1 2 3

0.
0

0.
3

Z

y

zα 2 − zα 2



Confidence Interval: understanding the definition
Build it for the sample proportion �̂�

▶ Knowing that

𝑃(−𝑧𝛼/2 ≤ 𝑍 ≤ 𝑧𝛼/2) = 𝑃 (−𝑧𝛼/2 ≤ ̂𝑝 − 𝑝
√ ̂𝑝(1 − ̂𝑝)/𝑛

≤ 𝑧𝛼/2) = 1−𝛼

▶ Doing some calculations we obtain:

𝑃 ( ̂𝑝 − 𝑧𝛼/2√ ̂𝑝(1 − ̂𝑝)
𝑛 ≤ ̂𝑝 ≤ ̂𝑝 + 𝑧𝛼/2√ ̂𝑝(1 − ̂𝑝)

𝑛 ) = 1 − 𝛼



Confidence interval for the proportion
An exercise

▶ In a random sample composed by 𝑛 = 100 persons, 77 percent of
them declared that they regularly pray. Determine a 90 percent
confidence interval for the true proportion of people that pray.

▶ ̂𝑝 = .77, √ ̂𝑝(𝑝 − ̂𝑝)/𝑛, 𝑧𝛼/ = 1.645 thus the interval

[0.77 − 1.645 × 0.042; 0.77 − 1.645 × 0.042]

contains the true proportion of persons that pray with probability
0.9.



Confidence interval for the sample mean
Same as for the proportion

▶ From CLT we know that

�̄� − 𝜇
𝜎/√𝑛 = 𝑍 ∼ 𝑁(0, 1) thus 1 − 𝛼 = 𝑃(−𝑧𝛼/2 ≤ 𝑍 ≤ 𝑧𝛼/2)

▶ Thus the following holds

𝑃(−𝑧𝛼/2 ≤ �̄� − 𝜇
𝜎/√𝑛 ≤ 𝑧𝛼/2) = 𝑃 (−𝑧𝛼/2 ≤ �̄� − 𝜇

𝜎/√𝑛 ≤ 𝑧𝛼/2) =

= 1 − 𝛼

which implies that the interval

[�̄� − 𝑧𝛼/2
𝜎√𝑛; �̄� + 𝑧𝛼/2

𝜎√𝑛] contains the true 𝜇 with probability 1−𝛼



Confidence interval for the sample mean
Same as for the proportion

▶ Exercise: A random sample composed of 𝑛 = 100 public school
teachers has a mean salary of $31, 578 with a Standard deviation of
$4, 415. Construct a 99% for the true mean salary

▶ Solution 𝑧𝛼2
is, in this case, equal to 2.575, ̄𝑥 = 31, 578, 𝑛 = 100

and 𝜎 = 4, 415. y doing some calculations we obtain that
𝜎/√𝑛 = 441.5 and 𝜎/√𝑛 × 𝑧𝛼2

and thus we are 99% confident
that the true average salary lies within the following interval

[31, 578 − 1, 136; 31, 578 + 1, 136]



Hypothesis Testing
Conceptually

Hypothesis Testing

Hypothesis Testing is an inferential procedure that allow us to quan-
tify how close are things IN THE POPULATION to our expecta-
tions or theories.



Hypothesis Testing

▶ A statistical hypothesis is an opinion about a population parameter.
▶ There are two types of hypothesis: Null hypothesis (𝐻0) and

Alternative Hypothesis (𝐻1)

Hypothesis Statement

Your teacher claims that 60 percent of American males are married.
You feel that such proportion is higher. In a random sample of
𝑛 = 100 American males, 65 of them were marreid. Test the
teacher’s claim at 5 percent of significance.

{H0 ∶ 𝑝 ≤ 0.6
H1 ∶ 𝑝 > 0.6



Hypothesis Testing
Testing teacher claim

▶ Given that In this case ̂𝑝 = 65/100 = .65, 𝑝0, the values that I am
testing is 0.6, 𝛼 = 0.05, 𝑧𝛼 = 1.645 and from CLT we know that

𝑍𝑝 = ̂𝑝 − 𝑝0

√𝑝0(1−𝑝0)
𝑛

∼ 𝑁(0, 1)

1.645

0.05



Hypothesis testing
Final Step

▶ We reject the null hypothesis 𝐻0 if the computed value of test
statistic 𝑧 > 𝑧𝛼.▶ Since the observed 𝑧 is equal to 1.0201 < 1.645 we do not reject 𝐻0▶ Conceptually speaking,There is no sufficient sample evidence to
calim that more than 60 percent of Americans are married at 5
percent of significance. Any difference between the sample
proportion and the postulated proportioon 0.6 may be due to the
chance



Hypothesis testing
Graphically Speaking

Critical Value

Do Not Reject
α

Rejection Region

#Hypothesis Testing



Ingredients of hypothesis testing

1. Two hypotheses:
▶ NUll Hypothesis - A claim about the population parameter
▶ Alternative Hypothesis - states that there is a difference between a

parameter and a specific value
2. Test Statistic. A function of the data whose distribution is known
3. A critical value
4. A decision rule

In the forthcoming slides we comment each ingredient One by one



Hypothesis testing
Ingrendient 1: Hypotheses

▶ Hypothesis Statement. This is quite important and common within
the experiental context

1. I experiment a new medicine. I make a clinical trial and observe the
results. The starting point may be: the average effect 𝜇 is equal to
0. The alternative hypothesis will be: the new medicine HAS an
effect. Thus 𝐻1 states: 𝜇 > 0.

Hypothesis Explained

The Null Hypothesis usually refers to the status quo the thing we
are trying to find evidence against



Hypothesis testing
Ingrendient 2: Test Statistic

1. The Test Statistics is a Numerical Summary of a dataset.
2. It is used because its sampling distribution is known (it can be

calculated)
3. The sampling distribution is the corner stone of the test.

Test Statistic → Sampling Distrution
4. The sampling distribution allows us to evaluate if the difference among
the Values observed within the sample and the value stated within the
Null hypothesis is statistically significant or is a consequence of the
variability among the different samples



Hypothesis testing
Ingrendient 3: The critical value

1. The critical value separates Rejection Region from Non Rejection
Region

2. How do I choose it? Whenever you do a test, you specify the level of
significance (typical values are 1% or 5%).

H1:µ>µ0 H1:µ<µ0

Critical ValueH1:µ ≠ µ0

Critical Value

Index

1



Inference…formally speaking

Statistical Inference...formally speaking

The slides that are now displayed deal with inference in a formal
way. Those are left to the interested reader and can be used as the
corses of master goes by



Random sample: Formulas
A random sample is a collection of random variables
𝑋1, … , 𝑋𝑛 ∼ 𝑓𝑋1,…,𝑋𝑛

, that are:

▶ independent

𝑓𝑋1,…,𝑋𝑛
=

𝑛
∏
𝑖=1

𝑓𝑋𝑖
(𝑥𝑖)

▶ identically distributed

𝑓𝑋𝑖
(𝑥𝑖) = 𝑓𝑋(𝑥𝑖) ∀𝑖

As a consequence

𝑓𝑋1,…,𝑋𝑛
=

𝑛
∏
𝑖=1

𝑓𝑋(𝑥𝑖)

An observed sample (𝑥1, … , 𝑥𝑛) is a realization of the random sample.
Thus, using the previous example, every patient is a Binomial random
variable, 𝑛 is the number of trials, and 𝑝, which is unknown is the
probability that the treatment works.



Toy Example
how to compute the sample distribution

Let 𝑋1, … , 𝑋𝑛 i.i.d. (independent identically distributed) from a
Poisson(𝜆).

The sampling distribution 𝑓𝑋1,…,𝑋𝑛
can be derived as follows:

𝑓𝑋1,…,𝑋𝑛
(𝑥1, … , 𝑥𝑛) =

𝑛
∏
𝑖=1

𝑓𝑋(𝑥𝑖)

=
𝑛

∏
𝑖=1

𝑒−𝜆𝜆𝑥𝑖

𝑥𝑖!

= 1
∏𝑛

𝑖=1 𝑥𝑖!
𝑒−𝑛𝜆𝜆∑𝑛

𝑖=1 𝑥𝑖



Basic Concepts
short glossary of estimation tools

▶ Parameter: numerical characteristic of the population that we are
trying to recover (hence typically unknown)

▶ Examples: 𝜆 in a Poisson,𝜇 in a Gaussian and so on

▶ Statistics: numerical function of the sample that does not directly
depend on any unknown parameter

▶ Example: 𝑆(𝑋1, … , 𝑋𝑛) = 𝑋(𝑛) − 𝑋(1)

▶ Estimator: a statistic used to estimate the population parameter
▶ Example: 𝑇 (𝑋1, … , 𝑋𝑛) = �̄� is an estimator for 𝜇

▶ Estimate: the value of an estimator corresponding to an observed
sample:

▶ Example: 𝑇 (𝑥1, … , 𝑥𝑛) = ̄𝑥 is an estimate corresponding to �̄�



Toy example

Population Measurements

Values for 100 Subjects
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How do we define an estimator

The aim of the estimator is to try to recover the distribution that
generated the data.

The are several automatic ways to derive an estimator, depending on how
to use the data to recover the generating distribution.
ample at hand

▶ Methods of Moments:
▶ find a distribution that has some features of the observed sample

▶ Least squares:



The Likelihood Function
the basic intuition

Let 𝑋 ∼ Binomial(𝑛, 𝑝), the probability mass function gives us the
probability of observing a value 𝑥, once we know 𝑝 and 𝑛.

Assume that 𝑛 = 10 and we observe 𝑥 = 8
▶ if 𝑝 = 0.5, 𝑃(𝑋 = 8) = (10

8 )(0.5)8(0.5)2 = 0.043
▶ if 𝑝 = 0.7, 𝑃(𝑋 = 8) = (10

8 )(0.7)8(0.3)2 = 0.233

For 𝑥 = 8, the parameter 𝑝 = 0.7 seems to be more likely than 𝑝 = 0.5.

When we fix the realization 𝑥 and we consider it a function of the
parameter 𝑝, the p.m.f gives us a measure of how compatible 𝑥 is with
the value 𝑝.

This tells us how plausible a value of the parameter is, but it does not
measure its probability.



The Likelihood Function
a little more formally

▶ 𝑋1, … , 𝑋𝑛 i.i.d random variables from a discrete distribution with
parameter 𝜃, and let 𝑥1, … , 𝑥𝑛 be an observed drawn from it. The
Likelihood function 𝐿(𝜃; 𝑥1, … , 𝑥𝑛) corresponds to the
Probability Mass function when taken to be a function of the
parameter 𝜃 for a fixed value of 𝑥1, … , 𝑥𝑛.

▶ 𝑋1, … , 𝑋𝑛 i.i.d random variables from a continuous distribution
with parameter 𝜃, and let 𝑥1, … , 𝑥𝑛 be an observed drawn from it.
The Likelihood function 𝐿(𝜃; 𝑥1, … , 𝑥𝑛) corresponds to the
Probability Density function when taken to be a function of the
parameter 𝜃 for a fixed value of 𝑥1, … , 𝑥𝑛.

The log-likelihood function, denoted by 𝑙(𝜃; 𝑥1, … , 𝑥𝑛) is the logarithm
of the Likelihood function.



In conclusion: what does the likelihood do?

𝐿(𝜃; 𝑑𝑎𝑡𝑎) = 𝑃 (𝑑𝑎𝑡𝑎; 𝜃)

The equation above says that the probability density of the data
given the parameters is equal to the likelihood of the parameters
given the data. But despite these two things being equal, the
likelihood and the probability density are fundamentally asking
different questions — one is asking about the data and the other
is asking about the parameter values



Maximum Likelihood Estimator

The Maximum Likelihood Estimator (MLE) is the value of the
parameter that maximizes the Likelihood:

̂𝜃𝑀𝐿𝐸 = arg max 𝐿(𝜃; 𝑥1, … , 𝑥𝑛) = arg max 𝑙(𝜃; 𝑥1, … , 𝑥𝑛)

Operationally the steps to find the MLE are:

1. Compute the derivative of the log-likelihood and equate it to 0:
𝑑𝑙(𝜃; 𝑥1 … , 𝑥𝑛)/𝑑𝜃 = 0

2. Isolate 𝜃 to find the candidate for the MLE (i.e. the critical point)
3. Check the sign of 𝑑2𝑙(𝜃; 𝑥1 … , 𝑥𝑛)/𝑑𝜃2 in the candidate 𝜃 to

verify that this is not a min or a saddle



Example
Maximum Likelihood for the parameter 𝜆 of a Poisson:

Remember that if 𝑋1, … , 𝑋𝑛 random sample, with 𝑋𝑖 ∼ Poisson(𝜆)
then:

▶ joint distribution

𝑝𝑋1,…,𝑋𝑛
(𝑥1, … , 𝑥𝑛; 𝜆) =

𝑛
∏
𝑖=1

[𝑒𝜆𝜆𝑥𝑖

𝑥𝑖!
] = 𝑒−𝑛𝜆𝜆∑𝑛

𝑖=1 𝑥𝑖

∏𝑛
𝑖=1 𝑥𝑖!

▶ Likelihood

𝐿(𝜆; 𝑥1, … , 𝑥𝑛) = 1
∏𝑛

𝑖=1 𝑥𝑖!
𝑒−𝑛𝜆𝜆∑𝑛

𝑖=1 𝑥𝑖

▶ log-Likelihood

𝑙(𝜆; 𝑥1, … , 𝑥𝑛) = log ( 1
∏𝑛

𝑖=1 𝑥𝑖!
) − 𝑛𝜆 +

𝑛
∑
𝑖=1

𝑥𝑖 log(𝜆)



Example
Maximum Likelihood for the parameter 𝜆 of a Poisson:

1. Compute the derivative of 𝑙(𝜆; 𝑥1, … , 𝑥𝑛) and equate it to 0:

𝑑𝑙(𝜆; 𝑥1, … , 𝑥𝑛)
𝑑𝜆 = −𝑛 + 1

𝜆
𝑛

∑
𝑖=1

𝑥𝑖 = 0

2. Isolate 𝜆 to get the MLE estimate:

−𝑛 + 1
𝜆

𝑛
∑
𝑖=1

𝑥𝑖 = 0 ⟺ �̂�𝑀𝐿𝐸 = ∑𝑛
𝑖=1 𝑥𝑖
𝑛 = ̄𝑥𝑛

CAVEAT Even if 𝑝𝑋1,…,𝑋𝑛
(𝑥1, … , 𝑥𝑛; 𝜆) denotes a discrete distribution,

it is a continuous function in 𝜆, hence we can compute derivatives to
find the max.



Core of the Likelihood

The multiplicative factor depending on the data but not on the
parameter 1

∏𝑛
𝑖=1 𝑥𝑖! disappeared when we computed the derivative. This

is always true:

▶ if 𝐿(𝜆; 𝑥) = ℎ(𝑥)𝑔(𝑥, 𝜃), then 𝑙(𝜆; 𝑥) = log(ℎ(𝑥)) + log(𝑔(𝑥, 𝜃))

▶ the derivative of log(ℎ(𝑥)) does not depend on 𝜃
𝑑𝑙(𝜃; 𝑥)

𝑑𝜃 = 𝑑 log(ℎ(𝑥))
𝑑𝜃 + 𝑑 log(𝑔(𝑥, 𝜃))

𝑑𝜃 = 𝑑 log(𝑔(𝑥, 𝜃))
𝑑𝜃

The function 𝑔(𝑥, 𝜃) is called the core of the likelihood and it contains
all the information we need from the data.

Since we can replace 𝐿 with 𝑔 without loss of information, when we
talk about Likelihood we actually talk about its core.



Maximum Likelihood: A brief recap

Likelihood based inference is probably the most widely used. In the
example we maximized the likelihood function of a Poisson random
variable, the same could be done for all the famous probability
distributions analyzed so far. For the sake of brevity we report here a
table containing, for each probability distribution, the corresponding
MLE.

Table 1: MLE Estimators

Distribution MLE
𝑈𝑛𝑖𝑓(0, 𝜃) max{𝑋1, … , 𝑋𝑛}
𝐵𝑖𝑛(𝑛, 𝑝) ∑𝑛

𝑖=1 𝑋𝑖/𝑛
𝑃𝑜𝑖𝑠(𝜆) ∑𝑛

𝑖=1 𝑋𝑖/𝑛
𝑁(𝜇, 𝜎) ∑𝑛

𝑖=1 𝑋𝑖/𝑛
𝐸𝑥𝑝(𝜆) ∑𝑛

𝑖=1 𝑋𝑖/𝑛



Methods of Moments
for point estimation

The core idea is to equate sample moments to population moments, i.e.

⎧{{
⎨{{⎩

𝔼[𝑋] = 1
𝑛 ∑𝑛

𝑖=1 𝑋𝑖
𝔼[𝑋2] = 1

𝑛 ∑𝑛
𝑖=1 𝑋2

𝑖
𝔼[𝑋3] = 1

𝑛 ∑𝑛
𝑖=1 𝑋3

𝑖
…

Example:
Consider a random sample 𝑋1, … , 𝑋𝑛 ∼ Unif(0, 𝜃), for which
𝔼[𝑋] = 𝜃/2.
The MOM estimator is found by equating 𝔼[𝑋] = 𝜃/2 with
�̄� = 1

𝑛 ∑𝑛
𝑖=1 𝑋𝑖:

𝜃/2 = �̄� ⇒ ̂𝜃𝑀𝑂𝑀 = 2�̄�



Exercise:

Let 𝑋1, … , 𝑋𝑛 ∼ Unif(𝑎, 𝑏)
▶ compute the MOM estimator for 𝑎 and 𝑏.
▶ find the maximum likelihood estimator
▶ What can we conclude about those estimators?

Remember that

𝑋 ∼ Unif(𝑎, 𝑏) ⇒ 𝔼[𝑋] = 𝑏 + 𝑎
2 𝕍[𝑋] = (𝑏 − 𝑎)2
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Evaluating Point estimators

▶ An estimator 𝑇 for a parameter 𝜃, is said to be unbiased if
𝔼[𝑇 ] = 𝜃.

▶ a “good” estimator is on average close to the real value of the
parameter of interest

▶ An estimator 𝑇 is precise if its variance 𝕍(𝑇 ) is small.
▶ a “good” estimator is always on target

The Mean Squared Error (MSE) evaluates the performance of the
estimator combining these two desiderata:

𝑀𝑆𝐸(𝑇 ) = 𝕍(𝑇 ) + Bias(𝑇 )2



MSE

▶ if 𝔼[𝑇 ] = 𝜃 we say that the estimator is unbiased and the MSE
reduces to its variance

Consistency

▶ the MSE can be alternatively defined as

𝑀𝑆𝐸(𝑇 ) = 𝔼[(𝑇 − 𝜃)2]

▶ when
lim

𝑛→∞
𝑀𝑆𝐸(𝑇 ) = 0

we have that as 𝑛 grows 𝑇 becomes closer and closer to real value
of the parameter 𝜃. This important property is called consistency,
and reassures us that adding more observations improves the
performances of the estimator



Bias and MSE: An example(I)

Let 𝑋1, 𝑋𝑥, … , 𝑋𝑛 ∼ 𝐵𝑖𝑛(𝑝). Consider the estimator given by
�̄� = 1

𝑛 ∑𝑛
𝑖=1 𝑋𝑖.

▶ Compute its expected value.

𝔼[�̄�] = 𝔼 [ 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖] = 1
𝑛𝔼 [

𝑛
∑
𝑖=1

𝑋𝑖] = 1
𝑛 × 𝑛𝑝 = 𝑝

The estimator is unbiased
▶ Compute the MSE (rember that MSE ie equal to variance if the

estimator is unbiased:

𝕍[�̄�] = 𝕍 [ 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖] = 1
𝑛2

𝑛
∑
𝑖=1

𝑝(1 − 𝑝) = 𝑝(1 − 𝑝)
𝑛



Bias and MSE: An example(II)

Let 𝑋1, … , 𝑋𝑛 ∼ (𝑁, 𝜎2). Consider the two estimators:

▶ 𝑇1(𝑋) = 1
𝑛 ∑𝑛

𝑖=1 𝑋𝑖
▶ 𝑇2(𝑋) = 𝑋(1)+𝑋(𝑛)

2

Let us compute the bias:

▶ 𝔼[𝑇1(𝑋)] = 𝔼[𝑋1]+𝔼[𝑋2]
2 = 𝜇+𝜇

2 = 𝜇
▶ 𝔼[𝑇2(𝑋)] = 𝔼 [∑𝑛

𝑖=1 𝑋𝑖
𝑛 ] = 𝑛𝜇

𝑛 = 𝜇

The estimators are both unbiased (what does it mean?)



Bias and MSE: An example(III)

Let us compute the MSE which is equal to the variance

▶ 𝕍[𝑇1(𝑋)] = 1
𝑛2 𝕍[𝑋𝑖] = 1

𝑛2 𝑛𝜎2 = 𝜎2
𝑛

▶ 𝕍[𝑇2(𝑋)] = 1
𝑛2 𝕍[𝑋1] + 𝕍[𝑋𝑛] = 1

2(𝜎2 + 𝜎2)

𝑇1 has a smaller MSE; so it is better than 𝑇2 (Did you expect
that?)



Interval Estimates: General Idea.

With a point estimator we provide an estimate of the unknown
parameter. We also to provide a set of plausible interval of values for the
unknown parameter. To do that let us provide this results which is
related to the Central Limit Theorem and states that, for large 𝑛

∑𝑛
𝑖=1 𝑋𝑖/𝑛 − 𝜇

𝑆/√𝑛 ∼ 𝑁(0, 1)

where 𝑆 is the square root of the sample variance

𝑆2 = 1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥)2



Interval estimate
Let us now observe that:

𝑃 (−1.96 < ∑𝑛
𝑖=1 𝑋𝑖/𝑛 − 𝜇

𝑆/√𝑛 < 1.96) = .95



Interval Estimates: How to build them?

𝑃 (−1.96 < ∑𝑛
𝑖=1 𝑋𝑖/𝑛 − 𝜇

𝑆/√𝑛 < 1.96) = .95

means that the the true unkown mean 𝜇 is contained within the interval
with following probability

𝑃 (
𝑛

∑
𝑖=1

𝑋𝑖/𝑛 − 1.96𝑆/√𝑛 < 𝜇 <
𝑛

∑
𝑖=1

𝑋𝑖/𝑛 − 1.96𝑆/√𝑛) = .95

And thus the confidence interval for the mean at a condifence level of
95% is given by:

[
𝑛

∑
𝑖=1

𝑋𝑖
𝑛 − 1.96𝑆/√𝑛,

𝑛
∑
𝑖=1

𝑋𝑖
𝑛 + 1.96𝑆/√𝑛]



Interval Estimates

A Brief recap:

▶ The quantity 𝑆/√𝑛 is called standard error
▶ 1.96 comes from the table of the standard normal distribution: the

area under the standard normal density curve between −1.96 and
1.96 is 0.95

▶ If we want to increase the level of confidence of the interval we have
to choose another value from the table of the standard Normal
distribution. If we want to increase the level of confidency up 99%
we ha have to choose the value such that the area under the curve is
equal to 0.99



Interval Estimates (formally)

A interval estimator for a parameter 𝜃 is a random interval
[𝐿(𝑋1, … , 𝑋𝑛), 𝑈(𝑋1, … , 𝑋𝑛)], containing the most believable values
for the parameter.

Intuitively, it is very difficult to predict the exact value of the unknown
parameter (if 𝑇 is a continuous random variable, this is even impossible,
as by definition 𝑃(𝑇 = 𝜃) = 0), hence is more reasonable to ask for a
range of possible parameters.

In addition a set of plausible values is more informative on the
phenomenon than just a single guess.



The ingredients

A confidence interval of level 1 − 𝛼 is a random interval [𝐿, 𝑈], where
𝐿 and 𝑈 are two statistics, such that

𝑃(𝜃 ∈ [𝐿, 𝑈]) = 1 − 𝛼

The confidence level (1 − 𝛼) is probability that the interval contains the
true value of the parameter 𝜃, before the sample is observed. Typically
this value is chosen to be high (0.95 or 0.99).

Typically a confidence interval is built using the formula

𝑇 ± 𝑒𝑟𝑟

where 𝑇 is the point estimator for 𝜃 and 𝑒𝑟𝑟 measures how accurate the
point estimate is and depends on the level of confidence as well as 𝕍[𝑇 ].



Confidence
a word of caution

BE CAREFUL: once we observe the sample, and we have an estimate of
the confidence interval [𝑙, 𝑢], the probability that the parameter lies in
this interval is either 0 or 1.

However, remembering the definition of probability as the limit of the
relative frequency of an event, we can be confident that if we build a
large number of confidence intervals, the parameter will be contained in
the 95% of them.



Toy example
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Exercise

▶ When a General Social Survey asked 1326 subjects, “Do you believe
in science?”, the proportion who answered yes was 0.82.

1. Construct the 95% confidence interval. Interpret it in context.
**Here we are dealing with a proportion. A proportion is exactely
like a sample mean. The values that we are averaging are either 0 or
1. Assuming that 𝑝 is the **true** proportion in the population and
̂𝑝 estimated proportion, the following holds:

𝑍𝑝 = ̂𝑝 − 𝑝
√ �̂�(1−�̂�)

𝑛

∼ 𝑁(0, 1)

Thus the confidence interval for 𝑝 at a confidence level of 95%, as
for the sample mean, is given by:

[ ̂𝑝 − 1.96√ ̂𝑝(1 − ̂𝑝)
𝑛 , ̂𝑝 + 1.96√ ̂𝑝(1 − ̂𝑝)

𝑛 ]



Exercise

1. How does the result in (2) change if you construct a 99% confidence
interval?

2. Another source claims, ”75% of people believe in science.” Does the
confidence intervals support this claim?

3. Describe the effect of the sample size on the confidence interval.



Hypothesis Testing

The main goal of statistical testing is to check whether the data
support certain statements (hypothesis), usually expressed in terms of
population parameters for variables measured in the study.

Usually, an hypothesis on the parameter 𝜃 is formalized as follows:

▶ 𝜃 = 𝜃0 punctual hypothesis
▶ 𝜃 ≥ 𝜃0 or 𝜃 ≤ 𝜃0 one-sided hypothesis
▶ 𝜃 ≠ 𝜃0 two-sided hypothesis



Hypothesis

In a hypothesis test we compare two alternative hypothesis 𝐻0 and 𝐻1:

▶ The Null Hypothesis (𝐻0) is the hypothesis that is held to be true
unless sufficient evidence to the contrary is obtained.

▶ The Alternative Hypothesis (𝐻1) represent the new theory we
would like to test.

Example: We want to test whether an astrologer can correctly predict
which of 3 personalities charts applies to a person.

▶ 𝐻0 ∶ 𝑝 = 1/3
▶ the astrologer doesn’t have any predictive power (the probability of

guessing the personality is 1/3)
▶ 𝐻1 ∶ 𝑝 ≥ 1/3

▶ the astrologer does have predictive power



Test logic
Innocent until proven guilty

𝐻0 is true 𝐻0 is false
Accept 𝐻0 Type II Error
Reject 𝐻0 Type I Error

▶ If we want to completely avoid Type II Error we should always
Reject 𝐻0▶ If we want to completely avoid Type I Error we should always
Accept 𝐻0

It is impossible to simultaneously avoid both: which one is more
important?

As 𝐻0 represent the current condition, we would like to subvert it only
when the data provide strong evidence against it



Testing procedure:

How to solve a test 𝐻0 = 𝜃 ≤ 𝜃0 versus 𝐻1 = 𝜃 > 𝜃0:

1. Choose a level 𝛼 of significance (i.e. the probability of Type I Error),
typically 𝛼 = 0.05

2. Choose a test statistic 𝑇 , i.e. a statistic that describes how far that
point estimate falls from the parameter value given in the null
hypothesis

3. Given an observed sample (𝑥1, … , 𝑥𝑛), compute the
𝑡 = 𝑇 (𝑥1, … , 𝑥𝑛)

4. Compute the p-value, 𝑃(𝑇 > 𝑡|𝐻0) = 𝑝, a measure of how
compatibles the data are with 𝐻0

5. If 𝑝 ≤ 𝛼, reject 𝐻0, otherwise do not reject it



Toy Example

▶ A principal at a certain school claims that the students in his school
are above average intelligence. A random sample of thirty students
IQ scores have a mean score of 112. Is there sufficient evidence to
support the principal’s claim? The mean population IQ is 100 with a
standard deviation of 15.

▶ Step 1: State the Null hypothesis. The accepted fact is that the
population mean is 100, so: 𝐻0 ∶ 𝜇 = 100

▶ Step 2:State the alternative hypothesis. The claim is that the
students have above average IQ scores, so: 𝐻1 ∶ 𝜇 > 100

▶ Step 3: Find the rejection region area (given by your 𝛼 level equal to
0.05) from the 𝑧-table. An area of 0.05 is equal to a z-score of 1.645.

▶ Step 4:Find the test statistic using this formula: 𝑍 = �̄�−𝜇0
𝜎/√𝑛 = 4.56

▶ Step 5:The value of 𝑍 is greater than 𝑧𝛼 (4.56 > 1.645), so you can
reject the null.



Exercise

In a sample of 402 TorVergata first-year students, 174 are enrolled into
Statistics course.

1. Find the sample proportion.
2. Is the proportion of students enrolled into Statistics course in the

population of all Tor Vergata first-year students different from 0.50
at the significance level 𝛼 = 0.05?


