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SYLLABUS
Lecture 1: One variable calculus: foundations. 30 August 10AM - 1PM

Lecture 2: One variable calculus: applications. 30 August 2PM - 5PM
Lecture 3: Exponential and logarithmic Functions 31 August 10AM - 1PM
Lecture 4: Linear algebra 31 August 2PM - 5PM

Lecture 5: Functions of several variables. 1 September 2PM - 5PM

Reference: Mathematics for Economists, C. Simon-L. Blume. W.W. Norton & Company,
Inc. ISBN 0-393-95733-0
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1.One Variable Calculus Foundations © = M@‘Hﬁ -
1.1S Definiti @ Zxt SxHL
. ome bertinitions )

o A real number 1s a value of a continuous quantity that can represent a distance along a line. It can be

rational (like 3/4 or -232) or irrational (like 7 ~23.14159265... or v/2 ~1.41421356...)

e A function (f(x)) of a real variable x with domain D 1s a rule that azssigns a unique real number to
: X
h numb D. — () =
each number x 1n >< \g A S 2 7\2’1 ,l

y=f(x) =z 7, y x: independent(exogeneous) variable y:dependent (endogenous) variable

e The domain.is the set of numbers x at which f(x) is defined. When the domain is not specified, it is
assumed that 1t includes all the real numbers for which the function takes for which the function takes

meaningful values. RQ\ 6 (
For example for ﬁ the domain is R excluding 5. >&2 _\ - b = {Q \ %" t, g

e The range (or co-domain) of a function is the set of all the possible values of it. Q(ﬂ‘*”

e.g. for |z| the domain is IR but the co-domain is BT \7(\ X — ﬂ
—— A N
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1.2 Function Types

e Polynomials : Obtained by the addition of monomials y = az” like h(z)
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5
=32>— 222 +x+3 glz)=
‘y - —— T —— ——

202 — 1
The highest exponent defines the order of the polynomial. —s 37(@ + L x4 |
-Constant function 1s polynomial of order zero: y = a 59
- A Dt roze. B%
Linear functions 1s polynomial of order one: WE =
-Quadratic function (parabola) is a polynomial of order two: y = mz? + nz + o 27
— -
-Power function is a monomial of order k: y = az® 2t~ % ’ P
| 2.4 ltbx +9 Y= {z?‘"
e Rational functions : Ratios of polynomials f(x) = hz) = X2
g(x) 17@99 t 2
-A simple example 1s Hyperbola (constant over a monomial of order one) : y =a/x ¥
Ay =
e Erponential functions - f(z) =¢e* or f(m)=10"" (/L*) A be 2
NBE - 2 /K
e Trigonometric functions : *r; =sin(z) or fly) = cos(y) 9
10/\9 = =

b N D 6056 ,_- x
%@ =9 2 2 Lleey



1.3 Basic geometric properties of a function

(g
* increasing or decreasing S =)

fis increasing if x1> x2 implies f(x1) > f(x2) \\/\

f is decreasing if x1> x2 implies f(x2) > f(x1)

 the location of its local and global minimum and maximum (if exists) \%\_}/7
The point where the function turns fraMasingto Increasing is a minimum for the function

The point where the function turns from increasing to decreasing is a maximum for the functi

X .
Wz oY | | | | \
flz) =2z +1 1s always increasing
~—

flz) =— 2z + 3 1z always decreasing
f(z) = 32* before 0 decreasing after zero increasing so it has a minimum at x=0
—_— -
f(z) =— 222 before 0 increasing after zero decreasing so it has a maximum at x=0
e ' BREY
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1.4 Linear Functions N B N} @

— , \
Q)T“Em ) > N
y=xmz+n) 1f yis distance, x 15 hours m denotes the velacity:
\ if v 15 utility, x 1s income m denotes marginal utility of income
AsaX

”
e for x = 0 y = n 1s the y-intercept, for y =0 z = = 1s the x-inctercept Yo —X\
e Knowing two points (x,.y;) and (5.5 ) the unknowns m and n for the functiogy cah 3’:1511}? be found ]
by: og m ~ 6
m = ﬁ substituting one point n = y; — Mxy or N = Ys — MI9 ( 2 _0
- 2
Exercise 1 If 0 °C equals to 32 °F and 100 °C equals to 212 °F _find °C' as a linear fukction of °F.
[>Wed S S
(')ZE\/ D‘h( s V2 ‘ @@ o= 3L 332_7<ch\
% o < i\ @00 B2 =T = 0N
’ A Z ?—-—
\o® o \2 3 - \%o \c)‘: 2u\
& woc m —

CR.C + 0 (oo _ loo
x‘.’_b F,bf/)/,,/ WO 4 N r\__./%?, —_ F" ‘%C"Eg’;‘



1.5 The slope of nonlinear functions

f\./\ /Ajz—\ﬁ)
Yo X,
[y neers

The slope of a nonlinear function of f at point (. f(xg)) is the slope of the tangent line to its graph at that
point. It is the rate of change (marginal effect) of f with respect to = at that point.

_ : Q(,’ﬁo'tk—\ 1 — =
f"(xm:limm Y o ((xe\ F:‘ '

Jm h = I (o)

Example 1 The slope of f(z) =x% at x = 3 : Yo ‘\6 -b\'\

f(3+h)— f(3) (34 h)? —32 0+ 6h+h2—09

F(3) = Jim h = h = R = erh=0 ot h)
fGo

i
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1.6 Rules for computing derivatives

Example 3 f(z) =2a7 f(z) = 422
2 (f—g)(z)=2z" — Jf:r% — (f—g)(z) = f'(x) — ¢'(x) = 1425 — 2z~

EXﬂmple 2 f[:f:l — TJ‘JS R ‘}M(E'} — 211 4 — ,‘ )Z v 4 , 4 ~ —
VN 2 ol 2 X
v j ¢ G\/L‘?:X (Bf) (xg) = kf'(2q) L \ ((I[
o (f*+g) (o) = F'(z0) = g'(z0) - J- y)
CORN -3 x F(3O =
O
' 6 \ g X (f.9)(za) = f(xo)g(zo) + flz0)g' (x0) «—Product rule: (f.g)' = f'g+ fg’
(SO ‘ ‘ T <
6 Example 4 flx : : - gary ﬂi"{ Y %,
—_— v T — " = 2
A’ (z = (f.9) { L@g?+z+)+(@-1).2r+1) =32 ﬂ'ﬁ .}.L 9/
\© 66 < ,/\./ YIRS M Al Lirelotzapizels (o) — Quotient rule: (1) = 112
X

E le 5 f(z)=z—1g(x)=z+1
xample 5 f(z) =z g\ == €Cx) ('C%C)nl

_\) L Ly ( z—1\  zt1—(z—1) 2 C;é )
(7% C 1\t - (m—+1) — T (@41)? T (@+)? 2 AJ
\~ -

o ([f(@)]") =n[f()]""" f'(x) —From Chain rule: & [f(g(x))] = f'(9(z))g'(«)
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1.7 Ditterentiability

s If f(x) has a tangent line at point x
Ip-

. ( hi—F(
r lima_p f{Tu+f1 flza)

ists then f(x) iz diffentiable at point / ( &ﬁ/\

o If a function iz differentiable at every point in 1t domain we say that it is a differentiable (smooth)

function.
Example 6 f(x) = |x| is not differentiable ( \ ¢ A ' J‘/b/b X
because lim LEethl—fl®e) _ R0 _ 4 [ )4 V P ! &Q/Q//‘
h—ﬂ"’ k " T ~—
, - flze)—flzeth) _ 0—h _
wheras lim_ —_ =5 =1 ﬁef \(&/ ) (Q




\ % 35 C s / 5
1. tinuity % 5 X
-020 A function 1s continuous 1f 1ts graph has no I breaks (no jumps for the same point) in its domain.
e For a function to be differentiable, it must be continuous but not vice versa. For instance f(x) = |’r| V- lo

1s not differentiable but it 1s continous.

Eor continuity, for every points in the derram—let2g) the equaht}E}) rm
r—Igp

o A continuously differentiable function is a function whose derivative 1s continuous (C1). Every poly-

nomial 15 C. C [ Czl C N o/\/‘M’LO%
Example 7 3 CQ_
ot 1@
2, x>0 x 2z, = >
flz)= { _:LTQ a’I__{,UD } is continuoys — f'(z) = { _Z;E :LT_,UD } is continuous so f(x) is C' g /
;;l/;" e r e / l 7(<:o

‘\

D | 4’“"311@ \,\

Example 8 f(x)= x5 1 5 continous but not differentiable
| U+Fﬂﬁ N —>Doafh,»~[] ]
lim = a HGL exists 50 fﬁ:} s not C

—> ocafh

|m
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Ix =T = 37{5/7_ '15’;3 ﬁzz 3/ (l(v\c S % ]

1.9 Higher order derivatives LU ) e £ =5 ¢

df

o If f(z) is C' then we can ask whether f/(f'(x)) exists that is f"(z) = dx (55) /
1

* Rabmomile e € (0 = o e

Example 9 \L

n
- flz)=32"+22° — f'(#) =212° + 62° — f"(z) = 1262° + 12z @ Cx ) =0
-0 g
Example 10 \ Y I/ — O 0‘6
’ £ 67‘\ AL &S oA l) C —_
2 . !
(z) = { —Z‘Q J»TE/U[]‘} 15 continuous and C! but — j”(;:) — { _22 x

o If f” is continuous then f is C? (twice continously differentiable)

~

e If ™) is continuous then f is C™. All polynomials are C'>

g(yw 3 %'K -/tg_LX

P Example 11 f(z) = 3x73 is Qﬂntmuou& mn its damaz’
v < T A
—Q —D —15 —7 C

fl(z) = 5T (x) = TJLT are also continuous in R
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1.10 Approxnnatlon by Difterentials =N w0 lahe/

Without limit ﬂx”—khj ﬂgﬁ/f{’rnﬁ or flxzg+h) = flzo)+ f'(70).h \[,-L) ”/2,

— 4

- /’
r Suppose e firm s currently usmg

t of labor that is the additional output

that can be achieved by ﬁaﬁng one more unit of \ (~
actual result is f'(100) = 1100% =0.025 fo1) — [ (oo) Nt _ oo
‘ JE— -_ o—
approxrimate result 1s ﬂm”?ﬂmﬂ} = 0.02494 ‘C O — 7 2’\ Z
Example 14 FEstimate the cube root of\1001,5 ptrue value=10.00499 - O o /1(161-\
o a1/3 7—2/3 — _1 - ‘
flz)==x and hence f'(x) = -We know f(1000) = 10 and f'(1080) = =55 ~©.025
We need to find f(1001.5) = f{ 1[)[)0) + £/(1000).1.5 = 10 + 3 3']0 = 10. 005
f ')
= (10002 4 { (oo 1.5 —

Example 15 The population s estimated to be t years from now f(t) = 40 t+2 _Estimate the (
population rise after 6 months? ( I '\ § ( )(o) L\

| | A st D - f () =
f(t) = ﬁz — f'(0) = 2 —the population rise ~= f'(0).0.5 = 1 e~——

—_—
=
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2.1 Using first and second derivatives to sketch graphs

1.

L = et 2

\9.
b |

—1 1

N 3

@\(74\/’ L
4.

2.

\ L

Find the critical (stationary) points at which f/(z) = 0 or f’(x) is not defined, order those points

showing on the x axis as (—oc.zq), (21.29)...(2f, 00]

Find the sign of the f/(x) as x goes to oo for (x,.00) and —o0. Alternate the sign for the subsequent

interval if the critical point 1s not even times repeated (double, quadruple etc.). Otherwise do not
change the sign.

The function f(z) 1s increasing in the intervals with positive sign whereas it 15 decreasing in the
intervals with the negative sign. If f'(x) is positive (negative) always then f(z) is always increasing
(or decreasing).

Do the first two steps for f"(z) instead of f'(x).

The function f(x) i1s convex (upward curved, the slope of f'(x) is increasing) in the intervals with
positive sign, whereas it 1s concave (downward curved,the slope of f/(x) is decreasing) in the intervals
with the negative sign. If f”(z) is positive (negative) always then f(x) is always convex (or concave).

A N) s J L
\ Wogs e %VOM@&-) MZMJ\ < g- /\ Col\cwd“’e-'



Example 16 Sketch f(z) = z° — 3z Iyt ) — O %1;& = a al- 101:((04983
ot

——

1. f'(x) = 32? — 3 — critical points are -1 and 1 *? (7";0 Cx }:Q = O
— = O
. f'(x) is positive as x goes to oo or —oo. it changes sign and becomes negative between -1 and 1

3. Then f(x) increasing in (—oo, —1) and (1,00) and decreasing between -1 (local max) and 1 (local min)

”'f [] [ * * ”'f 3 [ [ »
. f"(x) = 62 — critical point is 0. f"(z) is positive as x goes to oo and negative as = goes to —oo

. f(z) is concave in (—oc,0) and convex in (0.00). x = 0 is the inflection point 2 as the concavity of
f(x) changes at that point. —

—SVT) '\ ‘\'/ - ir(\}tecﬁon point

> X

_O | mi
v (4~ S-S O ore T oS y

2 Inflection points are the points where the function changes its concavity. They can be stationary but cannot be local minima or maxima
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Example 17 Sketch f(z) = z* — Sz + 1822 — 11 XZ-/ é% ,Lj é (&4' b —

G

3 Saddle point is stationary point such that the curve (1D)/surface(2D) etc. i

. f(x) is convex in (—o0.1) and (3.00) . it is concave in (1. 3).

ULk L2

/—9

. f(x) = 43 — 2422 + 362 = 4x (x — %12 . Its critical points are 0 and 3. C % ’ ()4 -3 5 ZM /—}) C[) + /f 7L

. f'(z) is positive as = goes to oo and negative as x goes to —oo, positive in (0,oc) excluding z = 3 \J / >
(double root) ééw( n

Then f(x)decreasing in (—o0.0) and increasing in (0.o0c) excluding x=3. hence z=0 is the global
minimum.

f"(z) = 1222 — 482 +36 = 12 (2 — 1) (x — 3) — critical points are 1 and 3, f”(x) is positive as = goes
to oo or —oco

r =1 and z = 3 are the inflection points due to concavity changes. + = 3 is also a saddle point?

as it is a stationary (f'(3) = 0) but not an extremum point. "
H e Saddle point

i\
the neigbourhood of that point is not entirely on any side of

the tangent space at that point. In one dimension, a saddle point is a stationary inflection point.
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2.2 Graphing rational functions = =1 “ e
In addition., we need to identify the vertical and horizontal asymtotes of the tunction. '
The points (x) that make the denominator of the function zero are the vertical asymtotes. -
> < &
If f(x) becomes close to a finite number in the limit as x goes to oc or -co, than that y axis point is e £e8
. ~ orizonta
called horizontal asymtote. {Uf /X{—a OZS —> é@d ) i ; ﬁx)? §Z§A5Ymptute
For pGlj’ﬂDWing term -the monomial with the highest degree (let a[}ﬂ:k}— determines the
shape of th il of the graph whether to go oc. -o0 or an horizontal asymtote.

x| — oo if ag > 0, both tails go to -0 as |z| — oo if gg < 0

-if k is even bhoth tails go to oo as

-if k is odd one tails go to co and the other goes to -oc as |z| — oo depending on the sign of ag

k =1y 14 2lia, _ 7X / ’9‘
9(2) =@;ﬁfm-l+...+§:_il+i; > ) =@=§g:ﬁ mhs Jz] — oo —Cx _
N
ol

-if k>m [(x) is a monomial. the tails of the rational funtion goes to =00 as stated above
s ~————— -

-if k<m [(xz) — 0 Both the tails of g(x) are asymtotic to the = axis (y = 0) that is a horizontal
asymtote for g(x) e L

-if k=m l(z) — i—g Both the tails of g(x) are asymtotic to the horizontal line (y = ':;—;')

.54*& \bz\/
X LN
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Example 19 Sketch f(xz) = % \ %) b o F(x) =Y =T & herfzon
f(x) has horizontal asymtote to the z axis. Its denominator becomes zero for z = 0 (vertical asymtote)
fx) = —% has a critical point at z = 0. so f(x)is decreasing in both sides of the point.

r|'fI * ® L] * (] -

fx) = fg is positive as x goes to oo and negative as x goes to —oo, hence f(z) is convex on the

right and concave on the left of v axis. 9 )
N

XV
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Example 20 Sketch f(z) = "5 X 7(.)% X 1 > O x S heoriol)

flx) — == as |z| — oo so it has a horizontal asy mtote to the x axis : becomes zero for x = —1 e
and x = 1 W hlch are its vertical asymtotes. X L1-O
2

flx) = W has a critical points at x = —1 and x = 1. since they are double repeated f(x) is decreasing \53,0
before, after and between these points. XX S
fz) =255 (:1?2 + 3) has a critical points at t = —1, 2 = 0 and x = 1, it is positive as x goes to oo and

{ﬂ’.‘ —1} 7 —_/O
negative as x goes to —oo, hence f(x) is concave (—oo, —1), convex in (—1,0),concave in (0,1) and convex \aé"'s

in (1.00) ‘ : \ 31\ |
Ao fl9-£9 4 (= | |
/c0 - /‘?’2: ()(Z_{)l | |




2.3 Maxima and Minima
D set ' rE (0,2 ]

e Finding the maximum or minimum points (extremum points) is very important in economics in order
to reach optimal values of economic variables. e.g. maximizing utility or profit, minimizing cost.

e An extremum point can be on the boundary or in the interior part of the domain.

e [fiftis an in point then it is a critical point. For the crtical points: /6-\

-if f'(2g) =0 and f"(zqg) < 0. then zg is a maxima of f(xz)

-if f/(z9) = 0 and f”(z¢) > 0. then ¢ is a minima of f(z) \ l
0) =

it f(x 0 and f”(zg) = 0, then zy can be a minima (e.g. f(z) = z*) , maxima (e.g. f(z) =-z*) or

/\
neither (e.g. f(x) =) . v Gl
X’>< L . X ~ 4+ C

Example 22 Find minima and mazima of f(x) =z* —4a3 + 42> +4 Y =°7 =

#(x) — 1222 4+ 8z = 4z (x — 1 — 2) [critical points are 0.1 and 2 . \4 l B ) z
fr()—l:w: — 242 4+ 8 > \‘/
f7(0) = f"(2) =8 >0 — 2 =0 and 2 = 2 are minimum points f”(1) = —4 <0 — z =1 is a maxima

\J ™\



Global Maxima and Minima
In three cases global maximum or minumum points are found easily:

1.

L2

When the domain of f(x) is an interval in IR 1 and it has only one critical point that is a local max

——

(min) then that point is global max (min)

The proot comes from the idea that it the point were not a global max (min) then there should be

another critical point between two max (min). . >0 ( " f/\_c,r'enql\xj

LIt fisa C 2 function whose domain is an interval and f is never zero, then j has at most*one critical

point that is a global min f”(z) > 0 and a global max /" (z) < 0

The proof: If f” = 0 always then f/ is an increasing function such that it can have a value "0" only
one time and from the previous theorem it is global min.

A continuous functions whose domain is a closed and bounded interval [a.b] must have a global max
and a global min (Weierstrass theorem).

In this case. we find critical points and evaluate the function at these points and the boundary points.
The point with largest value of f is the global maximum and the point with the smallest vlue of is the

global minimum. - ,loj é‘é L LOOO‘] \ ‘ r;_
[: L, 5 o ‘[/
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Example 23 A firm produces every book with a cost of SJ._EUE?"y book is sold for $10 and each day 10 books

are sold currently. The firm expects to sell one additional book for each dollar decrease in price. What are
the demand and profit functions and the price P that maximizes the profit?

X =mP+n.m= -1, current (X,P) = (10,10). substituting them in the demand equation we find
X = 20 — P then the profit becomes: 7 = (P —5)(20 — P) = —P? + 25P — 100
7' = —2P + 25 — P = 12.5 is the only critical point, 7"/ = —2 < 0 then P = 12.5 is the global maximum

point that maximes the profit of the firm.

b \ (%) =(lo,lo)
TXZ‘/MP*(\ T-j: _ 2o-¥F _@W OC"‘/LOHO/)

1o = -1.1o+n ne 2 O
Tl_”, (P__g) (’L@-*P)Z PFQﬁZof,lOO—}gf)—vJJ{{USP—{C’)O
: fro&fféu./\cf/wo
s —o e 250 sgbd e
P,\ZE

0

=

—

S =



2.4 Applications to Economics

2.4.1 Production Function

e [t relates the amount of output (x) to the amount of input (¢) : z = f(q)
e Continuous or maybe C?
e Increasing

e There is a level of input until which the function is convex and then it is concave

Toral product

Oruatpust

e e -




2.4.2 Cost Function

A cost funtion assigns a cost to the level of output: C'(x)

MC(xz) = C'(x) is the marginal cost that measures the additional cost incurred from the production
of one unit more when the current output is x.

The average cost is the cost per unit produced: AC(z) = C(z)/x

The essential properties of cost funtion:

C(x) is a naturally increasing function. Moreover, Let C(z) is C! then

-if MC>AC, AC is increasing (Doing better than average rises average)

-if MC<AC. AC is decreasing (Doing worse than average decreases average)

_at an interior minimum of AC. MC=AC

Clz ;l) _ C(z)xz—C(x)  C'(x)-C(z)/=x _ McC-AC

T o e o T T

The proof comes from: AC/ z) = di(



2.4.3 Revenue and Profit Functions
o How much money a firm receives from selling its x unit of output: R(z) = p(z)z

o MR(x)=R'(x)is the marginal revenue, average revenue(AR) is the unit price p(z)

¥ ¥

o Profit 7(z) = R(z) — C(z) to maximize it we solve for 7'(z*) = MR(z*) - MC(z*) =0 — MR(z*) =
MC(z*). This means optimum output (z*) for maximum profit occurs when MR = MC.

£ £

o [n a model of pertect competetion (with many firms and no individual firm can control the output price
by its production activity) the market price for any firm receives for its output is constant: p(z) = p
Rlz)=pr MR=AR=p



[

C
X

C

N = — -
x X/

MR = AR = 0
P X P zo("l“”‘-c\j e N

red area

g 3
o T— /iﬂk RS s 5

e NC curve gives the locus of optimal price output combinations. MNMC curve is the firm’s supply curve
which relates the market price to the amount produced.

e Optimal revenue is the area of ABCO., total cost AC(x)x is the area of ADEQO. optimal profit is the
area of BCDE

e Under perfect competetion 7/(x) =p — C'(x) — 7" (x) = —C"(x)
Profit maximizing «”(z) < O.implies C”(x) > 0 At the optimal output the firm experiences increasing
MC.
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3 Exponential and Logarithmic Functions

) — ot ohar ‘< callec 1 Fimetic - I
f(t) =a where a > 0 1s called an exponential function. 2 = -
if t 1s a positive integer then t means “multiply a by itselt t times” N b
y o L S -
if t=0 f(¢) = 1 by definition 2 —a- y
| “ﬁ 4 Hed
if t=1/n f(t) = ¥a nth root of a —L
if t=m/n f(f) = {/a™ mth power of the nth root of a
T 0 #(4) — ¢ \1 hat is tl iorocal of 1t Vs ]
it t<0 f(t) =a" = —rer that 1s the reciprocal ol a Qa - ,|o\
"'('9 -5 N c\‘ ‘2 — a ::Sa
oy = & QA - — 5
\
e ==
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Example 28 Graphs of 271,571,872 5% and 8¢ Q("\: ‘,‘:Q (o3 - L

Negative exponents are the mirror image of the pozitive ones with respect to v axis. As the base
increases the function becomes steeper.

'S y— 52 S_"iy 14__ & 5¢ N

f
o i
O\\\— - Q ’Lq'<5 12 +




Euler’s number (e), logarithm and In

- n
e The number e = li_lknq_ ('l + %) (g'w\ A (\+ %': \ = 2.3}

- A
[f one deposits A Euro in an account which pays an annual interest rate r compounded continously,

then aT’tEJ t yvears the account will grow to Ae™

. n I_ T l ™I
QQ ) C lim (1 + i) = lim ('l + ?) let = =m — lim (1 + —) =e"
n m

N N \ \
1 (H —%—(: 1 (1+%) A%(l + _r;i) (H{—;;)

n—00 n— 00 — r n— 00 J— J-
T c
™ (A e ) _ A"
Logarithm is the inverse of exponent. If a¥ = : then the power hi st raise :

vield z is y = log, = al%a? = log, a® = = Y —
o, (@Vz(2)
e Base 10 logarithm=Log vy = Logxr — 10Y¥ =2 Logl000 = Log103 =3

e Base e logarithm=In Inx =y —eY ==z \t\)ﬁ: Qo%
(] c,"‘;)‘
e The graphs of e*, Inx ,10%, Logx for which the logarithms are the mirra@image of the exponential
functions with the same base with respect to y = = line. As the base increases logarithm functions

becomes less steeper and closer to ¥ axis as © — o

= {i;)_':ac“






The properties of exponent c+5
S

1) a"a® = i_.ILTJrS —> 2,S ;’E - 2-ﬂ o\r.o\ = Q LB 9 LO - A
2) a” " = = A P - T

_r o af _ .C=S é'z-)
3) = =ad"° _g 9—-5’ -a A\S 3 L°9(°°-2. I-% =2,
Oy = A (a . a o o
5) @ =1

The properties of logarithm (assuming in base a)

: o L oo - LO
1) log(rs) :~l£? + log s . \G\ 93‘?—0‘3 vb)?’ 1 Lﬂj ,
let w=logr and v = log s — log(rs) = log(a“a") = u\—i— v=Ilogr+logs [ /
2) log(1) = —logs \ (L « =\oa$S — bl - O,S
log(g):loga V= v=—logs i S) J - lo {-o
3) log(%) = logr —log s C 1 l-loaS o
log(z—z) — log(a" ") =u—v =1logr —logs \% (' 2 9 °9 aQ l A
4) logr® = slogr S c \o °9—=_0
log (a*)® = su = slogr \°6 (- = 3 \oa ué 9 \ Q
5) log1 =0 - \036?_10 2 \oy > -
loga® =0 \ l \ 3
- O -~ bxto
Example 29 2°% = 10 '01 ( ‘ ) 5‘{6— \932 03 2 9L o

pounded continuously?






\ J

d . @E;l
Q@/.)« ) < L/\;d ‘m"‘
4.1 Derivatives of exponential and logarithm:

/3' a) @
d _ r . ) n—1 1 . ) n—1
dx

(§ ( lim (1 + ;)n} = lm n (l + %) == lm (l + %) = lim (1 + %)n as n— oo
E»_:C'_/ M—00 n—00 TN—00
b)(Inx) :%
(Inz) = ;llin%] ln(ﬁhﬁ_ln{m) = }%12% = In(Zth) = }{12% In(1+ h’)% = }1113%} In(1+ %)% = Inet/? =1/x
c) (e = ) o/ (x) obtained by chain rule l

d) (In(u(z)) = 1;{(:6)) if u(x) > 0 obtained by chain rule CG,\ X) - 4
e) (b%) = b%.1nb X

(b*) = (e*!"%)" using ¢) (b*) =e*™2. Inb=0".Inb

() ¢ L) RN
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Example 31 The sketch of standart normal density function

_ 1 =2 1 ‘ [/
j(;&) = e 2 =t _ ~——1/ —»
1 T v eXt
. 2 . :
flz) = ——e 7 goes to 0 when ‘r| — og._hence x axis 1s the horizontal asymtote o
2w
./ 1 _ =% - . . .. L . . . . 1
f'(z) = ——xe 2 the critical point is z = 0, f is decrasing to the right and increasing to the left
. L 2 . = " . ] . - . - . 4 - . -
f"(z) = ——(z” —1)e” = the critical points are -1 and Ja Convex in (—oo,—1),concave in(—1,1), convex in (1,00)
— . .

17(0) < 0 so that x = 0 is the maximum point.




C cr«\—‘\ eC. ¥
4.2 Applications - - Fc.\’

4.2.1 Present Value

If we put B Euros into a saving account with annual interest rate » which 1s compounded continuously. then
after t years it becomes A = Be" .Conversely in order to generate A Euros t years from now in an account
compunded interest rate r continuously, we would have to invest B = Ae~ " Euros that is the present value
(PV) of B Euros t years from now.
Annuity 1s a sequence of payments at regular intervals over a specified period. The present value of an
anuity that pays A Euros at the end of the next N years with an interest rate r of continous compounding.
PV = Ae™ " + Ae_)r L ﬂ;F_:Lf_ A(e ™ + e 2" 4 ... Le ™) Using the property of geometric series’ :
R o

- l—e—

Example 33 Assuming 10% interest rate compunded continuously. what is the present value of an annuaity
- S
thay pays 500 Eumwmw\ n=% p - 0.\
N
—D 5 [

a)for the next J vears: \D — 1870 6
b)forever: % — 4754.2
\__/ V

D

X=a+a'+..+a" = ﬂ(%‘;ﬁ (Found by subtracting X/a from X))



— 11O A= (1+0).PV Pv=_BA
\90 o, | ( )"j’ | tv

Annual compounding (A C""‘(,U‘a A
Z s Py V= "/
e [t 1s sometimes covenlent to compute PV of an annuity using annual compounding ( ) (L 0
A
PV = ..+ ———— using again geometric series expansion
(1+17) i i

A 1 1 "
o r l _|__?= g

il
_

= —asn— oo
.?5
s

In order to generate A Eums per year from an account paying apnual interest with rate r one must
deposit int1 the account - ? mitially.

Example 34 Redo the previous example with annual compunding?

: \ 43 _
. o0 - "3 -
a)for the next 5 years: 500 (1 — (L)J) = 1895.4 — \ A.

0.1 1.1

o.\
b)torever: % — 5000 %’ ~— o0



4.2.2 Optimal Holding Time

Suppose the market value of your real estate will be V(¢) Euros t years from now. If the interest rate
remains constant (r) and continuously compunded during this period then the present value of the real

-

estate is V' (¢)e~"".Maximizing the present value gives the optimal time to sell it.

(Ve™) = V(e ™ —rV(t)e ™ =0
I___r,'(t)
V(t)

— r at the optimal selling time

percent growth rate of the value of the real estate =percent rate of change of money in the bank

1
Example 37 The value of a land is increasing according to the formula V = 2000et* .If the interest rate is

10%. how long it should be held to max its present value? —~———

SN

InV = In2000 + t3 — (InV) = Zj{f{f}) =7r=3t"%2 —r=0.1 then ¢t = 3.39

N
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5 Linear Algebra X, ¥,

In general, an equation 1s linear if it has the form 3 X Z-YL -
\
a121 + a2x2 + ...+ anxy, =0 L‘\s 4 1t = y A

where the letters ay.ao...,a,,b are the fixed numbers and therefore the are called parameters wheras
r1,Zo,.... 2, stand for the variables.

As a key feature of linear equations, each term contains at most one variable and that variable can have only
the first power. Linear equations are easy to handle (they build on the techniques learned in high school,
such as the solution of two linear equations in two unknowns such as substitution or elimination of variables
and they build on simple geometry of the plane and the cube which are easy to visualize). These equations
can often have exact solutions unlike nonlinear systems. With suitable assumptions or linearizations they
can be good approximations of the nonlinear systems. Moreover, some of the most frequently studied models

are linear.
¥ty 2 5
9 - U
1=ty
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5.1.1 Tax benefits of charitable contributions

A firm earns before-tax profits of $100,000. It has agreed to dunate 10% percent of its after-tax profits tu
a charity tund. It must pay a state tax of 5 ‘pelcent of 1ts pI¢ ' the donation) and a federal tax ot
40 percent of its profits (atter the donation and state taxes are pald) How much does the company pay in
state taxes, Tederal taxes, and charitable donation? Lnd %

e Let S, F and C are state taxes, federal taxes, and charitable donation. After tax profits are 100.000-
(S+F) so C becomes C' = 0.1(100,000 — (S + F)) - C +0.1S4+0.1F = 10 ﬂQﬂ-(“'
___—

\
e S is 5% of profits net of the donation then S = 0.05(100.0Q0 — ¢') — 0.05C' + S = 5,000
— —EE————

e Federal taxes are 40% the profit after deducting C and S — F = 0.4(100.000 — ¢’ — ‘_i’) — 0.4C+0.45 +
F = 40,000

In summary we get three linear equations, subsituting the second equation to the others we get two equation
with two unknowns:

v
A A> 1o / C+0.1(5000—0.05C}+o,¢: - 10,000 _ A g?a
D W °°’ we ., 0.4C + 0.4(5000 — 0.05C) + }/ — 40,000 Ry

Then the solution becomse C=5956 S=4702 F=35737 and after tax&contribution profit is $53605

Without donation the after tax profits become $57000 meaning that $5956 donation costs $3395 to the firm.



5.1.2 Linear Model of Production

As a simplification constant return to scale production is assumed that is the amount of output linearly
proportional to the amount of input. e.g. 50 cars need 50 times the input of one car.

e In an open Leontief system of economy, the production of a good i (there are n+1 goods in the economy)
can be described by a set of input output coefficients where a;; denotes the input of good 1 needed
to produce one unit of good j. The output of good 1 must be allocated between production activities
and consumption. Good 0 is labor that is supplied by consumers so the consumption (demand) for
each good 1 is given exogenously (this is why it is called open system) that is not solved for in the
model. Each good i is used for producing other goods and consumption (¢;). Good "0" is labor that
1s supplied by consumers so its consumption cp is negative. o) A

T; — ;101 + a2 + ... + QinTyp + C; x‘ = X| + o LVLJO‘Q&
V/ N . .

e Explicitly (gross output=used as input+consumption):

(1 — all)xl —12L2 — .uunnnn. — ATy = C] -~ ____—~
~ . -—
; [ 3
—a21T1 + (l - (ng);’l?g T e — ULy — C2
—anl1dl An2X2 .+ (l ann)xn — Cn



5.1.3 Markov Models of Employment

e Using transition probabilities from unemployment to employment or from employment to uneployment,
these models are commonly used to understand the log run employment behaviour.

e Let x; and y; are the number of employed and unemployed, q and p are the probability of employment
for them respectively. Assuming finding job or leaving job are independent of number of weeks worked.
Then the number of employed and unemployed in the next period (say week) is given as:

| N A
=, Tiy1l = QT+ PYt >

yrr1 = (1 —q)ze + (1 —p)ys
S— —
e Normalizing the total numberfof employed and unemployed to 1. in the M
r = qr+py
y = (I-qaz+(1-py
x+y = 1

e The first two equations are the same equations with minus sign so }

1—¢g
1+p—gq

e Then =z = and y =

P
1+p—q

R &

————
e Using ¢ = 0.998 and p = 6.13(;9'(3.11.1966) for US white males in 1966 ‘)/

R 0.136 _ v — 1 e — 1 AV AF slea wrar . avaeraca 11
T = {T0136_0998s — 0986 y=1—-a= 1.4% of white males were unemployed on average in 1966.




5.1.4 IS-LM Analysis

IS (Investments, Savings) and LM(Liquidity, Money) analysis is a linear model of a closed economy with
total national income (Y) total national spending (Consumption, Investment and Government expenditures)

Y=C+I+G Y- bY = saving

(1 -hY Y

e For IS analysis, on the consumer side spending is proportional to total income C' =bY (0 < b < 1)
where b 1s called marginal propensity to consume, while s=1-b is the marginal propensity to sgye

e On the firms side, either they invest to keep their money in the bank with an interest_rate (r) so
investment 1s a decreasing function of r.

I=1°—ar
—
e Putting these together gives the IS schedule: T
/\A—\ ¢

5o b O_ _;
Y =0 +1" —ar+G f"o,t é
sY M A Y

Or we write 1t as Y‘.’,
sY+tar=1°+G g

IS equation describes the real side of the economy by summarizing consumption, investment and saving
decisions.



On the other hand, the LM equation i1s determined by the money market equilibrium condition that money
supply (Ms) equals money demand (My). My has two components: the transactions or precautionary
demand (Mg ) and the speculative demand (Mg, ). The transactions demand derives from the fact that most
transactions are denominated in money. Thus, as national income rises, so does the demand for funds. So
that Mg = mY

The speculative demand comes from the portfolio management problem faced by an investor in the economy.
The investor must decide whether to hold bonds or money. Money 1s more liquid but returns no interest,
while bonds pay at rate r. It is usually argued that the speculative demand for money varies inversely with
the interest rate (directly with the price of bonds). The simplest such relationship is the linear one:

My, = M° — hyr M N

Equating the supply to the demand:
M, =mY + M° — hr
Y

Hence we can write IS-LM system of equations as:

sY 4+ar = I'+G
mY —hr = M, — M°

where the solution (Y, r) depend upon the policy parameters M., and GG and on the behavioral parameters
a,h,I° m,M° and s.



Example 38 Consider the above model with no fiscal policy (G = 0). Suppose that M, = MP°: that is. the
intercept of the LM curve is 0. Suppose that I° = 1000,s = 0.2. h = 1500, a = 2000. and .m = 0.16. Write
out the explicit IS-LM syslem of equations. Solve them for the equilibrium GNP Y and the interest rate r.

The solution 1s r=0.26 and Y=2419

)

/

¥

'N\s
— @L o led _ 5000

sY+ar = I'"+G
0.2Y 4+ 2000 = 1000
mY —hr = 0
0.16Y —1500r =
a0 1
000 |
a0 | LM
000 !
2000 ':' IS
1000 T ,’
0 - I f- I I
0.0 0.2 0.4 0.6

¢

( o LM _\'LOOOr:\Ob

Y

—

\t:ZUﬁ



5.2 Systems of Linear Equations

There are essentially three ways of solving systems of linear equations: substitution.elimination of variables,

and
matrix methods.

5.2.1 Substitution and elimination of variables methods

e Substitution is simply made by writing one variable in terms of other(s) using an equation and
substituting this relation into the other equation(s).

e Elimination of variables i1s generally more conducive to the theoretical analysis. It 1s done by
multiplying equations and adding them up such that eliminating unknown(s) to solve the equation
with less unknowns. This i1s called Gauss elimination.

Xty - 5 5 \X\-\—k\gf/ 5 7(*\3-6
X -y = Ly =5 * '3"’_

/ -2 _ C

&\\—A A d\b‘\'l Xcﬁ\i\‘/ 3 L()l -

——
S —



Example 40 An ezample for linear production model (look section 5.1.2 for detail) of 3 goods (x1, x2. x3)
gwen thewr production input-output proportions and exogenous consumption amounts (130.74.95) can
be written as:

o = 0.2214+0.1222 + 0.1425 + 74 — —0.2::1+ 0.882z2 — 0.14253 = 74
3 = 0.521 +0.225+0.0525 +95 — —0.521 — 0.225 + 0.9525 = 95

substituting,x; = 0.4x + 0.323 4+ 130 into the other equations :

—0.2(0.425 + 0325 + 130) + 0.88z5 — 0.14a 74 ) Leqns
0.5 (0425 + 0325 + 130) — 0225 + 0.9525 = 05 L L asenowS
Y3 Y

Simplifying them we get:

N 7(2—: {OO—{O-ZW}

0.820 —0.223 = 100
—0.42o + 08z = 160 S

-~

1004+0.225 _ 12

55 5+ 0.25x3 into the other equation :

ubstituting zo, =

—0.4(125 4 0.2523) + 0.8z = 160

Warp= 3007

100 + 0225
T, = — 200
—- 0.8

1 = 0.4zs + 0.323 + 130 = 300



Example 41 We do the previous example with elimination of variables. Multiplying the first one by 0.2 and
adding it to second to eliminate xy ; multiplying the first one by 0.5 and adding it to the third to eliminate
.

0.2(x1 — 0.425 — 0.3z3) = 0.2 % 130
+ —0.2x1 +0.8825 — 0.1425 = 74
0.825 — 0.223 = 100

—0.425 + 0.823 = 160 Then multiplying the above found by 0.5 and adding it to the this:

0.5(0.8z9 — 0.223) = 0.5 % 100
+ —0.42s + 0.8z5 = 160
0725 = 210,

means our system transforms into

0.8z9 —0.223 = 100
0.723 = 210

x3 = 300 by back subtitution into the others we find x5 = 200 and x; = 300



6. Matrix Algebra

e We can write a hIL'ir system of equations in matrix form.

_ h Co - _ -
a1 . . . a|[zn b11 L w 1
\L("ou}b . aij . : = . " v — A ?2 —
/ i (L;;;l . . . C.f.-};n rkl A | bkl | X A lo
) TR

e In compact form we can write as Az = b Where the matrix A is the coefficient matrix, = vector of
variables, b vector of constants

e For example:
0.8z2 —0.225 = 100

ik [l

_04 160 \o,(, Y2 _(_03 - -lC,O

N ) 0.8 —0.2 - . .
e Where the matrix A = ( ] 1s the coefficient matrix, o — [ iz ] vector of variables.
T3

—04 08

@_\/ — [ iggjictor of c:oniagt-s A K = L

’ ’ ! .y y . )‘ : > - 2 .- . 2 y 2 ] - - 2 ) - . - -
e The size of a matrix 1s n x k where n 1s the number of rows and k 1s the number of columns: for
(2Y

q . . . . .
example, a 2 x 3 1s a matrix with 2 rows and . s 0 X N matrix is called

square matrix (same number of rows and columns)




o {204 ] Can

, *35 10 A row of a matrix is said to have k leading zeros if the first k elements of the row are zeros
(k+1)th element of the row is not zero.
leading zeros than the row preceeeding it.

C
and the

A matrix 1s in row Echelon form if each row has more

R ‘ 0 0 JI=10 1 0 |.and | O are 1n row Echelon form. { 9 l 1 ] A9 0 | are
(, ’5 ‘/\QQUO 0 0 1 0 0 0 2

/710t mn row Echelon form

e The rank of a matrix i1s the maximal number of linearly independent columns of A. Rank can be found
by writing the matrix using some row operations (interchanging two rows of a matrix, adding to rows,
nultiplying each element of a row with a scalar) in row Echelon form. Number of nonzero rows in
its row Echelon form, gives the rank of the matrix.

Example 42 Find the rank of the following matrix? (Denote r1 as first row, ro as second row and r3

(<~ as the third row to show row opeations)
\
12 1] {1 21} [1 2 1 ] [1 21}
—2 -3 11 —=2r14+r:710 1 3| —=-=3ri+r3:70 1 3 —7r9+4+r3: [ 0 1 3
[3 5 OJ {SSOJ [0 —1 —SJ [OOOJ

so 1ts rank 1s 2

X "("?.\Q:\
X "*\o:\ﬁy
4

2 T
|

2 wa konus
Need

2
hneev

\
rn Alf



10 <@

6.1 Addition or subtraction 2’20 'ézf\\j

e In order to perform algebraic operations, matrices must meet some 1equuementa about thelir size.
For addition or subtraction, they have to be the same 51ze/E§ch element of the matrix added to or
subtracted from the element in the same position. A+B

L xn % N
a1 . . . Q1p b11 . . . bln alliiibll . . . aln,i:bln
i a1 . . . Qpn ) i bkl . . . bkn ) i &kliiibkl . . . Gkn,iibkn |

6.2 Scalar multiplication

There 1s no size requirement for scalar multiplication. Each element 1s multipled by the scalar. rA

aqy . . . Aln ray . . . Ty

ij Qij

agp1 . . . Qpn ) ragp, . . . Tlpn



6.3 Matrix multiplication

e We can define the matrix product AB if and only 1t

My —

number of columns of A=number of rows of B

S — ___>

e If A i1sk xm matrix and B 1s m x n matrix AB becomes k x n :

= (kxn)

(kxm) (maxn)

e /A = A where I = (kxk) Identity matrix (with all ones on the diagonal and other terms 0)

Y W

ey
o [oo
1] [_601,]

e To obtain the (i.j)th entry of AB, multiply the ith row of A and the jth column of B as the following:

[ ;1 Q432 Qim }

bgj

B b'mj i

b

e For example:Note that AX can be done but XA cannot (2 x2 3x 2)

_|

"a b
AX = d

T

\l\

WV

4 3.A
1A\

Xa+Zb Tb+Ya

Xe+ Zd Td+Ye
Xe+ Zf Ye+T#

2.1th\

¥ a;1b1; + ainbo) + ... 4 Aimbm;

1

Example 43

Aﬂ‘z- L;q(’\ :[l)‘L\
'2 3

~1 0 [zL:; 11]

0 1 o, -1 2 1

11

922430 2A43-4 24430 LAy,
-2 -3 L
Q ~ 2 \
13-4 WAl Ll
\y
S
P A~ g
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6.5 Laws 0@ Matrix Algebra ?( beh%z
__—7

e Associative: (A+B)4+C=A+(B+C) (AB)C=A(BC)

~—

e Commutative for addition: A+B=B-+ A not for multipication AB#BA
\/

e Distributive Laws: A(B4+C)=AB+AC (A+B)C=AC-+BC

e Transpose (writing rows as columns and columns as rows). If A is k x n its transpose AT (or A’) isn

x k 2)4/5 1%1

~ - T 1] ao1
a1 12 Q13
— — ails Ao
o1 @22 G923
—_— 13 a3
AT
@11 — a a
o 11 21
2xA ( » W

(A+B)T =AT+ BT (A-B)T =AT-BT (AT)  =A  (A)T =rAT
(AB)T = BT AT -




A cols

6.6 Special Kinds of Matrices 4 rowrS

. . G 6 \5
A k x n matrix is a v o“’5
e Square matrix if k=n that is equal number of rows and columns [ 1 3 s O

e Column matrix if n=1 —) [‘J
e Row matrix if k=1 L° b c C'J

e Diagonal matrix it k=n and a;; = 0 for 7 # j, a square matrix with nondiagonal elements are 0. If 0' J(i S
the diagonal elements are all 1 then it 1s called an identity matrix. o 3

e Upper-Triangular Matrix if a;; = 0 for 2 > 7 the entries below the dioganal is zero




e Symmetric Matrix if AT = A that is Qi = Qjg

12 15 w
32

NOTE: Any symmetric posdive definite matrix ® M can be written as M=LL? which is called

Cholesky decompasition.

{9 12 15] gin O 0}{911 g1 931] [300}[345]

[LJ_E;JZ_J [931 932 933H0 0 933J .l561H001J

Found by equating both sides g-fl =9 —g11=3 911921 = 12 — g21 =4 g11931 = I5 — g31 = 5 etc...
e Idempotent Matrix if B.B=B

L7 |10 5 —51[5 —5] [5 —5
eg- =1, 1| i 4 w4 l= e

e Nonsingular_matrix if it is a square matrix whose—wxank equals the number of rows(or columns). v 1
When such a matrix INa coefficient matrix in system of linear equations, the system has one and only 5
X (g’ S

6 A symmetric matrix M is positive definite if the scalar z'M z is strictly positive for every nonzero column vector z

one solution. v an\C =



6.8 Determinant of Matrices

e Determinant 1s defined for square matrices. Determinant of an n x n matrix 1s the n-dimensional

volume scaling factor o ; =1 cranstormation produced by the matrix. 1 ;
L) 4030 e-2
e For a 2 x 2 matrix A its determinant is found by Leibniz rule: - B
ail  as L 1
det A = — ay1a99 — a1oas1 which 1s a scalar. - L ‘ -L < O
a1 Q2 ’
SE——

e For the determinant of 3 x 3, 4x 4 or higher size matrix, again Leibniz rule is used (multiplying the
elements of a selected row or column a;; with (—1)**7 times the ijth cofactor C;; (determinant of the

submatrix obtained by deleting row 1 and column j from A) and adding them up). (_‘) ‘v C 1 )3 - 4
- -
a1 a3 a4 a1 a2 Q24 @21 @22 Q23
@31 @33 Q34 |TQ13| A31 @32 (34 |—Q1a| Q31 A32 33
-
41 Q43 Q44 a4l Q42 Qa4 41 Q42 Q43
| p—

Note: signs come from the (—1)*"7 where 7j is the position of the first multiplicative terms (11,12, 13, 14)
for the above

22 G23 Q24

4] a3: a3 L 3> A3 e ass  a:
(_l)l—i-l 33 34 +a-2;3(_l)1+2 3 34 +a-2_1(—l)1+3 3 33

a3z2 33 a34 | = a2
43 Q44 Qg2 Q44 Q42 Q43

@42 Q43 C44
= (122033044 — (22434043 — 23032044 + 23042034 + A32A24A43 — A24A33042

Doing for all 3 x 3 matrices and substituting the results the 4 x 4 expansion we find the determinant.



Example 44 Find the the following determinant of matriz using diffferent row or columns for the first
multiplicative terms?

fept
6 -2 2
—2 5 0
2 0 7
or

6 -2 2
2 5 0
2 0 7
or

6 -2 2
2 5 0
2 0 7

5 0 | -2 0] .|-2 5

0 7 —|—2‘ 9 - —|-2' 9 0 —6%35 —2%14 —2%10 =162
2 9 6 2 L

Bl ‘+7' ° '2*10+7¥26162

-2 5 6 —2

a{[ )= R -2 =6

o det(@:detA , det(_@):@(detB) but det(A+B)# _cletA)+(clet-B) in general

e A square matrix is nonsingular if and only if its determinant is nonzero.

T_I»LQ(
14

- 9-2:6
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6.7 Inverse of Matrices y NN

|

‘\)
e

(l

0

e For a linear system of equations Az = b we want to find the vector of unknown variables as z = A~ 'b,
hence we need to find the inverse of the coeeffient matrix (A™!) to solve the linear system easily with
matrix method.

e The inverse of a matrix, A~! exists only if the matrix is a square matrix, Not every square matrix has
an inverse. If 1t has an_inverse the matrix is called nonsingular, othexwise it 1s called singular.

e For a nonsingular matrix nxn matrix A, AA~! = I identity matrix

e For any nan matrix A, let C;; denote the 7jth cofactor of A that is, (—1)**7 times the determinant of
the submatrix obtained by deleting row 1 and column j from A. The transpose of the cofactor matrix
1s called the adjoint of A. Then the inverse 1s found as:

C.T

|
det A
Y

adj A



-\

Example 45 Find the inverse of the following matriz A.

qll qll
) —1 2 . 2 2 2
%(/111:‘ 9 3‘:—{ (/13:—‘1 3‘:——1 613—‘1
det A=—-7T%1—-4%x—-1+5%x1=2
_—_— -1 1] . _— 1 1| v 1
C”__‘ 2 3)_) (22_+)1 :3‘_2 Cas = )1
11 11 Y 1 —1
Ca1 ’—1 p |~ ng__‘? 2‘_0 Cas ‘2 1
\\)[7 —4 5} [—7 5 —1}
ThenC =] 5 2 3| sadjA=CT=| -4 2 0 — A7l = 1etAadJ—l—
0 I
\//

e 2x2 case 1s the most known case which 1s also derived from the Leibniz rule
1 . 1
adjA =
det A ad — be

A:{i 2]%(7:[_(2) :f]—:-Al

|

Z_LLL [\Q_’
& o WOL,}: ~—2

d

—C

!

[

—b]
L -L
3
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6.8 Eigen Values and Eigen Vectors of a Matrix

An eigenvector or characteristic vector of a linear transformation is a non-zero vector that changes by only
a scalar factor when that linear transformation is applied to it.Eigen values and vectors are very usetul in
many applications such as solving difference equations and studying stationary points higher dimensional

functions. |
A 1s an eigen value for an nxn matrix A if and only if there is a vector v # 0 and \,

Av = v A U' 'A v

Then the vector v 1s called the eigen vector of the matrix A. ( A — ) T ) l)' = 0

Eigen values of a matrix is found by Av — Av = (A—AI)v = 0 where [ is the identity matrix.
So we want want for v # 0 (A—AI)v = 0 that means also |[A—AI| = 0, from this determinafit we find the

characteristic polynomial of the matrix P()\) whose roots gives the eigen values of the matrif. Substituting
each elgen value to Av = Av we find the eigen vectors of the matrix for each eigen value.

o 3 2 0
Example 46 Find the eigen values of { -‘ A& = O

A= -1 0 0
I

. R I P
oo | (N> N ) ) (22 =

(o]
(- AL e . A=\ a=1 )
.S—- E— @ &,\_.’L) (.)\-lj Ay -2 a I N
3,3 \ L i it- ‘ < O
‘ T %312



AT - -3 +z =0 r"- -
\\ T R NS =

\ =

W Ar=D




Az l 7;%2 AT = Ll
2.
det A= [2—=1O0 ="
e)
N \fm> \

L
attd

y~»2

yz= &)



7 Functions of Several Variables

7.1 Geometric representations of functions X % b

When there are more than one variable in our tunctions, they can be understood by taking the resulting
output or one of the variables constant and combining the graphs ot them by changing constant term.

7.1.1 Graphs of Functions of two variables

(]

-'j - . -
= 7~ where 1 1s a constant radius. If we want to graph
a constant radius say zero that means a point in r]

e The graph of a circle can be written as x2 +
flz,y) = 2 = 2% + 2, then we start to think from
the origin since x and y also becomes zero for f(x)=0. Increasing f(x) we get bigger radius circles and é-=
adding them up we obtain the following first graph. If we do not know the graph of the circle we may 2 = yl ¢ ‘
also simply think to assume y=0. then z = 22 is a parabola where y=0 that means if we slice the graph -
at y=0 we have a parabola z = 22 on xz plane, for y=-1 and y=1 we get the usual parabola pushed
up one unit and for y=-2 andy=2 1t is pushed up 4 units. Putting slices together we have the graph of
the tunction. If we do the same for x we also get a parabolas also zy plane and same graph.



(0,2, 4%

/D.(}.f}l Y

The graph aof f(x, }) — x° —+ },-—




@ /z\/Z\ z /z\/z

' 2 7 g4 NI AT 7 \ Y \b
_O sy = - . Iy =21 ty=_11 {y = 0) v =11 = 2}
\3 = L Xl Restrictions of z = y> — x2 to the planes {y = b}
-— l

The ovaph of 2 =y - o~ Restrictmo v=0 we set the concave parabola 2 = -1, for y=1 and y=-1
i . : ; : ] 9 )

we find one unit pushed version of the previous one z = 1- 27 and for y= 2a11d =) v obtain the

four unit pushed shee, Puttme the shces tosether we eraph the function,

Purting the slices together.

The graph of f(x, y) = y7 — x°.



(-

; 99 "
The oraph of 2 =y~ - 27 : Restrictmo y=0 we set the concave parabola : =

OT\

Z

TN A

S

| and y=-]

i | : ; : ] 9 s
we find one unit pushed version of the previous one z = 1- 27 and for y= 2a11d =) v obtain the

four unit pushed shee, Puttme the shces tosether we eraph the function,

fy=-1%

A4 AN

(y=0) vy =1}

Restrictions of z = y> — x2 to the planes {y = b}

Purting the slices together.

The graph of f(x, y) = y7 — x°.




7.1.2 Level Curves

Graphing the points that result the same tunction value is a more easier method to visualize 3D functions.
. . . 3 LR . . . . .
Again looking on f(z,y) = z = o~ + y~,if we graph the points where the function is constant we get a circle,
if we plot all the possible circles increasing the function value in a 2D space, we get the following graph.
Note if we pull from the increasing parts (outside) we get the same 3d graph.
- 2

b )
Level curves of z = x= + vy~



The level curves are usetul to show isotherms which show the places with the same temperature and also
hiking maps to see which part of the mountain is steep or flat. As seen in the following figure, at the point
F the curves are close to each other such that there is close rises in altitude. So the point F 1s a very steep
part of the mountain. On the other hand, point G seems rather flat and easy to climb.

A hiking map with its level curves.



7.1.3 Planar level sets in Economics

Economists use level sets to study the two fundemental functions of microeconomics-prod
and utility function. Lets graph a simple version of Cobb-Dougless production function ()

_k=a =038 =1 that 1s () = xy where x 1s capital and y 1s labor.—Takmig production constant, we obtain
the level sets which are called isoquants for the production function. For a constant @ (say 3) y = % for
Q=5—y= g and Q =10 — y = 1$_0 and Q@ =15 — y = ?5 As the 1soquants increase the production

increases. For different £, o and 5 similar level curves can be obtained.The same curves can also be used to
understand the level curves of the utility function which are called indifference curves and they increase &

the utility increases.

¥
20 T

10 +




7.1.4 3D level sets =

The same approach is used for 3D level sets by fixing the z value and graphing the tunction with fixed z

. . . . . —_ - . . ) 9 .
using the technique we described 1n section 7.1.1. For example the graph of z o x] 4 x5 1s the same as
the graph in section 7.1.1 if z=0 and increasing z the value decreases as seen in Yge/folowme graph.

2 2
Some level sets of z = x3 — x7 — x5.



7.2 Stationary Points of Functions with Several Variables \f(x,\a)

\ \ Vol ) " ‘) fx=0 fu~0O
\ N N FEIKO Mo 9 ,J\/,SCJ,,,M:;

Stationary points are found by equating the first partial derivatives of a function to zero with respect to
each variables. Whether they are a local minimum, local maximum or a saddle point are checked similar to }’
checking the second derivative of a one variable function, by checking a matrix of second derivatives (called °
Hessian matrix). The method can be used for functions with more variables also, but for simplicity we
only cover two and three variables cases here. For a function f(z,y) or g(z,y,z) with stationary point P,

(found by Vf(Py ) =0 or Vg(FP, ) = 0) Hessian matrix is defined as

g Y = I N

€2 TH -y ) L Lo Q2% P P, (P,
- o _ . Gy = O 922(Po ) 9ay(Po)  Gaux(Fo)
Rty HE) = [ Hf‘ j&§ ] or g(a,y.2) H(Py)= {@EPO 140 (Po) gy (Po) }
) L 9z=(Fo ) 9zy(Fo ) 9-g(Fo)

it H(Fy) > 0 namely all Figen values()\;)>0 then Py is a local ﬁm}f)

it H(Py) < 0 namely all Eigen values( /\i_)iO then Py is a local *AM% \F Zj‘_xzc/ % ( %’\i 7
if some A\; > 0 and some A\; < 0 then P 1s a saddle point d
it HFPy) < 0or H(Fy) >0 at least one Eigen value=0 inconclusive " MR = S ( d £~
— TS A N oS )
S~—
In general Hessian matrices are symmetric namely @P{) ) = fay(Po )92y (Po ) = Gyz(FPo ) 9az(FPo ) =

gxz(PD)-g'uz(PD}:gz*u(PO ) —



Example 47 Study the stationary points of

V. e—ﬂ = 9 E&cd) g ) fUxD)
g(z.y) :’Ly—J > 13 "q;
gy(z.y) = ‘L—Qy—ﬁ—w—j \, 1
(gm(:&y) = el “Ly:OUSiHS;y:g_>$(?f?f+5):0—>;z::y:0—>Po (0,0)
- — : .- | —
Joz(T,y) = 2% + 2z (Q:nem-) = 2e” (1 + 22%) — 922(0,0) =2 ’
Gyylz.y) = =2 — Clx):
me(m~y) — gy;,?(:r y) =1_ | (2‘3)' 2
H(Py) = [f _12]—>‘ QIAI\J_Ql_A ‘:/\2—5:O—>)\:_i~\[5thenPoisa.saddlepoint -
1
EWE ~st fr= -Ua_o oz 2y - P‘°o°3 Y o
L et b e .|, x,"“
¢ -0 tyu=© © 2
"9 ? ("L-)) (2-)):0
) AT Nz -2
& (o §G )= .

e Cﬂ"r"“\ fdn\' LoblO\ XS X‘\AL QQ}HL ro“h‘}



Example 48 Study the stationary points of

9(z,y,2)
x(2,y,2)
gy(2.y, 2)
" ‘gz_(x:yﬁ)
297+ B
Jzz (. Y %)
Jyy(, Y, 2)
°)>4\9-° 7 9=-(2,y,2)
Yy r=9 Iuy(Z, Y. 2)
9\5%9 0 9z (T, Y, 2)
gy=(z,y, 2)

AN =~
H(Py )
ﬁ §®|°
(2= X)) (AN —2)— 1)
H(P; )
(2—=N) (AP —6A+4)

4y° + 2y = 2y(

-~

;132 + y“l + -yj 123 9

20 —2z2=0—-x=12

—

‘_l_:xefo

- 2
. Uy P,,(;i 0, 5
20 +1)=0—y =0

2>

P.(O,O,O—S &

322 — 22 = (32 — 2)=0—-z=00r —2z=2/3 t-hen‘m'O\S‘Eatimlal'}’ points
(0,0,0) P, =(2/3,0,2/3) —
2,
12y° + 2 — 4,(0,0,0) =2 ¢,,(2/3,0,2/3) =2 } Ce=6.2 _
6z —g..(0,0,0) =0g..(2/3,0,2/3) =4 —i —
Jyz(z,y) =0 -
gw(a:.y) :i
Guy(z,y) =0
{2 0—2-‘ 2—A 0 —2 19—\ 9
0 2 0 | —=| 0 2—X 0 [=(2-=X)(-1)>* 9 _)\‘—0
L —2 0 0 J —w —A
24+ /4416
0= A1 =2 X3 = 5 * = 1+ /5 hence Py 1s a saddle point
" 2 0 —2-‘ 2—A 0 —2 | ] 2oa o
0 2 0 — 0 2—A 0 =(2—-A)(—1) 9 4y =0
L -2 0 4 J —2 0 4— )\
6+ /36 — 16
0 =X =2 X 3= 5 — 34+ /5 hence P> is lggal minimum

)
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Any Questions?




