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Topics (detail):

1. Introduction. Definition of microeconomics; axiomatic foundations of decision theory; understanding the utility

function.

2. Theory of consumption, I. The budget set, the indifference curves and the marginal rate of substitution.

3. Theory of consumption, II. Constrained optimization with example utility functions; hints to: substitute and
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5. Theory of consumption, extra I. Hints to choice under uncertainty, risk-aversion and insurance.

6. Theory of consumption, extra II. Hints to social welfare: Pareto-optimality and equity-efficiency tradeoffs.
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8. Theory of production, 2. Cost-minimization problem and the geometry of costs; the supply function; fixed

and variable costs.
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9. Market equilibrium, 1. Competitive equilibrium; efficiency of partial equilibrium; if there is time, the effect

of a price cap and the deadweight loss.

10. Market equilibrium, 2. Monopolistic equilibrium; surplus comparison with competition; if there is time, effect

of a price cap revisited.

11. Market equilibrium, extra. Examples of general equilibrium effects.

References: Varian, H.R. (2010), Intermediate Microeconomics: a modern approach, 8th edition, WW Norton &

Company.

The CORE team, The Economy. Available at: https://www.core-econ.org.

1 Introduction.

Economics and its methodology. An economic model is a stylized representation of human behavior in an

economic context. The science of economics makes use of economic models to capture the salient characteristics of

social phenomena and to address normative (should we have a minimum wage? ), interpretative (what is the driver of

inflation? ) and predictive questions (what will be the impact of Covid-19 on labor force participation? ) about them.

The original object of economics is the study of economic systems: the ways in which goods and services (things or

activities that are in some way scarce, and that serve to satisfy human needs) are produced, allocated and consumed.

Modern contributions tend to have a broader interpretation of the discipline, applying its methodology to any situation

in which rational people take choices (from law, institutions and politics to history, psychology and evolutionary theory).

Because of the difficulty of reducing a great portion (and maybe all) of human behavior to tractable terms, the

foundations of the economic discipline are still debated.

Mainstream (so-called Neoclassical) contributions, despite being very different in nature, have set up a more or

less consistent standard account of human nature, sometimes interpreted as a set of meta-axioms:

• Mathematical formalism: a rigorous abstract and mathematical language should be adopted to describe

human behavior.

• Methodological individualism: economic analysis should proceed from individual behavior to larger scale

phenomena.

• Instrumental rationality (optimization principle): decision-makers act as close as possible to their indi-

vidual objectives given the alternative at their disposal.

• Equilibrium principle: economic systems are assumed to have a state of equilibrium, at which they exhibit

some form of order and predictability despite the lack of explicit coordination. Describing what an equilibrium

would look like, is more interesting than understanding how implicit coordination happens.

It must be noted that those axioms are often criticized as being: simplistic; far-fetched in their epistemic optimism;

too similar to hard science for a qualitative subject; biased towards a neoliberal viewpoint. Nonetheless, even if you

are skeptical about its foundations, you should study Neoclassical economics to understand the driver of its success

and formulate the right set of objections.

Microeconomics. Microeconomics is a mathematical subject. It has the objective to provide rigorous foundations

on how rational people take decisions, and how their individual decisions interact and affect socioeconomic systems.
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Not surprisingly, microeconomics is the language of Neoclassical economic theory, as it provides a general, consistent

and tractable formalization of concepts such as rationality, individual choice, decentralized coordination and economic

efficiency.

Many familiar ideas that are central in the political and economic debate are the product of microeconomic theory.

Some notable commonplace (and polarizing) statements that are derived from microeconomics considerations are:

• When price goes up, demand goes down and supply goes up, and vice versa.

• The invisible hand of the free market leads to the common good despite people acting selfishly.

• Extra-profits and rents are levelled out in the long run when markets are truly competitive.

Statement as such are difficult to qualify as true or false, as they summon centuries of unsettled scholarly debate.

In this course, we will review the basic microeconomics that underlies this apparently mundane ideas, and provide

some tools to start exploring the complexity of this subject.

In this process, you will acquire the basic notions to approach economic theoretical subjects such as Game Theory

and Industrial Organization.

Objectives. In the first week of the course, we will cover the foundation of decision theory and the theory of

consumption, and learn how to construct the market demand curve from the aggregation of individual decision

problems.

In the second week of the course, we will explore the neoclassical theory of the firm as a black box technology

that transforms inputs into outputs under a profit-maximization objective. We will construct the market short-run

and long-run supply curve and learn to describe market outcomes in the partial equilibrium framework.

We will introduce some basic notions of welfare analysis and compare competitive markets to monopolistic

markets.

Some additional topics that we will try to cover, time permitting, are the basic notions of decision theory under

uncertainty, the basic ideas of the equity-efficiency trade-off, and possibly some hints to the general equilibrium

framework.

1.1 Foundations of decision theory

The elementary ingredients of a microeconomic model are the individual decision problems facing the decision-

makers that populate the economy. The essential objects of a decision problem, defined and studied in the field of

decision theory, are:

• A decision-maker, which is called an agent and denoted with the index i.

• A feasible set X of alternative choices x ∈ X.

• A preference relation Pi, namely an ordering among the alternatives according to the agent’s objectives or

tastes.

• A subset B ⊂ X of alternatives that are effectively available to the agent, given some economic constraints in

addition to physical feasibility.

• A very simple behavorial rule, used to make predictions: the agent always selects her preferred alternatives among

those available. We call x∗ the choice function or correspondence i.e. the mapping that associates to each

subset B ⊆ X the preferred choices of the agent within B, according to the ranking Pi.
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This is a very general framework, that can be applied beyond markets. We now introduce some examples that do

not involve a market economy: this should help you to familiarize with abstract economic thinking, a basic requirement

for your future game theoretical studies. The next lectures instead will be devoted to the analysis of markets, providing

the basic ingredients for applied subjects like Industrial Organization.

Feasible sets. Any set X can be the decision space of a microeconomic model. The existence of X relies on

the assumption that the agent knows about X, is able to tell apart the elements x ∈ X standing for any feasible

alternative, and can select any x ∈ X to take place, if no external social/institutional constraints are imposed on her

behavior.

• E1. Suppose you are having breakfast and you can choose between juice (J), coffee (C) or tea (T). In this case,

the feasible set is X = {0; J ;C;T}, where 0 stands for no breakfast.

• E2. Suppose you can drink more than one beverage for breakfast. In this case, the feasible set is

X = {0; J ;C;T ; (J,C); (J, T ); (C, T ); (C, J, T )}.

• E3. Suppose you are a student-worker and you need to allocate your time awake, say H = 15 hours, between

studying (s), working (w) and playing (p). The feasible set is then

X = {(s, w, p) : s ≥ 0;w ≥ 0; p ≥ 0; s+ w + p = 15}.

Additional constraints. Some of the alternatives in X may not be available to the agent due to social and

institutional factors out of her control. The set of effectively available alternatives is B ⊂ X: the agent is able to

recognize the existence of such constraints and to tell apart which alternatives belong to B and which don’t.

• E1. Assume that no additional constraint exists. In this case, B = X and then B = {J ;C;T}.

• E2. Suppose now that drinking three different things is forbidden, as a rule between you and your roommate.

In this case

B = {0; J ;C;T ; (J,C); (J, T ); (C, T )},

namely B ⊂ X; in particular (J,C, T ) ∈ X but (J,C, T ) /∈ B, as it physically feasible but subject to a social

constraint.

• E3. Suppose you are required to attend 3 hours of lectures per day: in this case, an additional constraint is

s ≥ 3. Then:

B = {(s, w, p) ∈ X : s ≥ 3}.

Preference relationship. A preference relationship Pi is a complete ordering over the set of feasible alternatives

X. Saying that the agent i is endowed with a preference relationship Pi means that, for any pair of alternatives

(x, y) ∈ X, the agent is able to say whether she prefers x, y or is indifferent.

Let us introduce some notation in this respect.

We write x ≻i y to say that i strictly prefers x to y: this means that, in ranking her available alternatives, the

agent unambiguously attributes a higher position to x. We write that x ∼i y to say that i is indifferent between x

and y: that is, in a ranking among the elements in X, they occupy the same position. We write x ≽i y to say that i

weakly prefers x to y: such a statement excludes the case that y ≻i x, but not that x ∼i y.

• E1. Say that juice is better than coffee, and coffee is as good as latte. Namely, J ≻i C, C ∼i L. Also, J ≽i C

is a true statement.
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• E2. Say that you strictly prefer coffee with juice than coffee or juice alone, but that coffee and latte together are

worse than coffee or latte alone. Then, (J,C) ≻i C and (J,C) ≻i C are true. Also, C ≻i (C,L) and L ≻i (C,L).

• E3. Say that you prefer to allocate equal hours to each of the three activity, rather than doing the same activity

all day long. Then, for example, we can say that (s = 5, w = 5, p = 5) ≻i (s = 15, p = 0, w = 0).

Axiomatic definition of rationality. Not any preference ordering is considered rational. Say for example that,

in the example E1, the agent strictly prefers latte over juice. That would be puzzling, since preferences would be

circular: J ≻i C and C ∼i L, but L ≻i J .

With circular preferences, the agent’s optimal choice from a feasible set {C; J ;L} is ambiguous.

A basic notion of individual rationality, ruling out unpredictable behavior, is captured by the following three

axioms:

• Completeness: the agent is able to compare any couple of alternatives. In symbols, if x ∈ X and y ∈ X, either

x ≽i y or y ≽i x.

• Reflexivity: for any x ∈ X, x ≽i x, namely, any alternative is at least as good as itself.

• Transitivity: Say that x ∈ X, y ∈ X and z ∈ X. If x ≽i y and y ≽i z, then x ≽i z: cycles of preferences are

ruled out.

Optimal choice. Given a set of alternatives B ⊂ X at her effective disposal, it is rational for the agent to select

any alternative that is optimal, namely any alternative x ∈ B such that there is no other y ∈ B strictly preferred to

x:

x∗(B) = {x ∈ B : x ≽i y ∀ y ∈ B}.

In other words the expression x∗(B) denotes the subset of elements in B that are not strictly worse than anything

else available in B itself.

Exercise.

• E1. What is x∗(B), according to the information at your disposal?

• E2. What is your guess for x∗(B)?

1.2 The utility function

Given an agent i and a feasible set X, a utility function is a function Ui : X → R that attaches a utility score, which

can be any real number, to any feasible item in X.

We say that the function Ui represents the preference ordering Pi if the following relationships holds for any (x, y)

in X:

• Ui(x) > Ui(y) if and only if x ≻i y.

• Ui(x) = Ui(y) if and only if x ∼i y

Then, if we rank the alternatives x ∈ X according to the value assumed by Ui(x), we obtain the same ordering as

the one implied by Pi.

Each Ui is totally identified by the associated ordering among choices; different utility functions Ui and Vi keeping

the same ordering over X are equivalent: they induce an identical choice x∗(B) for any possible set B of available

alternatives.
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Utility functions are thus invariant over monotonic transformation: any algebraic manipulation Ui → Vi that

leaves the ordering of Vi(x) over X identical to those of Ui implies an identical description of the agent’s behavior.

This is true in particular when, for some α ∈ R, β > 0:

Vi(x) = α+ βUi(x) ∀x ∈ X.

For this reason, a utility function is said to be ordinal rather than cardinal : the specific numbers attached to

each decision have no meaning, what matters is the order relation that they describe among feasible options.

Note that, having defined Ui from Pi, the following definition of x∗(B) can be put forward for each B ⊂ X:

x∗(B) = argmaxx∈B Ui(x)

Exercise.

• Propose a utility function to represent Pi in the examples E1 and E2.

• What is x∗(B) if U(s, w, p) = pw s? What is x∗(B) if U(s, w, p) = 3 pw s+ 2?

2 Theory of consumption, I.

Today we introduce a much more structured class of decisions problem, which posits the existence of commodities

and markets: the Neoclassical theory of consumption.

The theory of consumption studies how a rational agent optimally allocates her income to purchase various com-

modities in a market system. The framework is obtained by adding specific assumptions to the basic model of decision

theory studied yesterday.

2.1 Feasible set.

In the baseline model of the theory of consumption, it is assumed that a finite number M of different goods are

available. Goods are indexed with m = 1, . . . ,M .

So, for example, if there only two goods, say apples and oranges, M = 2, where m = 1 is the index of apples, and

m = 2 of oranges.

The consumer’s choice consists in combining quantities of different goods under a set of economic constraints. A

feasible level of consumption of each good is represented by a positive real number. Goods are assumed to be perfectly

separable, meaning for example that you can consume a grand total 1.5, π or
√
2 apples.

Denote by xm ∈ R+ a feasible level of consumption of the good m. A vector x = (x1, . . . , xM ) is called a bundle

of goods: it specifies a level of consumption for each existing good on the market. A bundle x ∈ X is a possible basket

of commodities that the agent can buy from the market; any x ∈ X fully describes a possible consumption plan of the

agent.

The set of all feasible consumption bundles is X = RM
+ , the set of all real vectors with M non-negative components.

In case M = 2, a consumption bundle is (x1, x2) ∈ X: if you consume 1 apple and 3 oranges, your consumption is

described by the vector (1, 3) ∈ R2
+, where x1 = 1 is your consumption of apples and x2 = 3 is your consumption of

oranges.

The case with M = 2 is easy to visualize: in this case, any feasible consumption bundle can be represented as a

point of the positive orthant of the Cartesian plane (x1, x2).
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2.2 The budget set

In the theory of consumption, B is called the budget set of the agent. It contains all the consumption bundles that

the agent can afford, given the purchasing power of her income.

In the standard problem, the budget set has a simple (indeed, linear) mathematical structure.

Each good m is assumed to have a unique and constant unit price, represented by a positive real number pm ∈ R+.

Call p = (p1, . . . , pM ) ∈ RM
+ the price vector faced by the consumer, and denote the consumer’s income with the

letter Y .

Given Y and given p = (p1, . . . , pM ), a bundle x = (x1, . . . , xM ) ∈ X is affordable if and only if:

p1x1 + p2x2 + · · ·+ pMxM ≤ Y

Or, shortly,
∑

m∈M pmxm ≤ Y . This inequality is called the budget constraint of the agent. Its fulfillment means

that x costs less than the total income Y at the agent’s disposal, given the market prices p.

Using the notation of the previous lecture, we say that x ∈ B if x ∈ RM
+ and

∑
m∈M pmxm ≤ Y , and call B the

budget set. More formally,

B =

{
x : xm ≥ 0 ∀m ∈ M ;

∑
m∈M

pmxm ≤ Y

}
.

Consumption bundles outside of the budget set are physically possible, but the agent is prevented from choosing them

because of an important institutional constraint : the existence of private property, which is characteristic of a

market economy.

Consider now the case in which M = 2 and focus on the Cartesian plane (x1, x2).

There, a bundle is affordable if p1x1 + p2x2 ≤ Y . This can be rewritten as x2 ≤ Y−p1x1

p2
, corresponding to the

portion of the positive orthant located south-west of the the budget line x2 = Y−p1x1

p2
.

The shape of the budget line is economically insightful. It has intercept Y
pm

on each xm-axis, and negative slope

−p1

p2
. The negativity of the slope has a simple interpretation: if I start from a bundle that lies on the budget line,

exhausting all of my income, and I want to consume more of one good, I need to consume less of the other. The

quantity of good m = 2 that I need to give up in order to purchase one more unit of m = 1 is found by solving:

p1(x1 + 1) + p2(x2 +∆x2) = Y

meaning that

−∆x2 =
p1(x1 + 1) + p2x2 − Y

p2
.

Substituting out p1x1 + p2x2 = Y , you obtain ∆x2 = −p1

p2
. The relative price p1

p2
expresses the amount of good m = 2

that I need to sacrifice in order to purchase another unit of good m = 1.

Regarding the intercepts, they can be seen as expressions of the agent’s real income, expressed in terms of each

commodity: in fact, they correspond to the agent’s level of consumption when she allocates all of her income to a

single good.

Say now that the consumer receives extra income from Y to Y ′ > Y . In this case, the budget lines moves to a

higher parallel line: the consumer can afford a larger region of bundles, but the cost of one good in terms of another

is unchanged. Both intercepts are higher.

Say instead that p1 moves to p′1 > p1. In this case, the intercept on the x1-axis decreases, while that on the x2-axis

is unchanged: this implies that the agent is effectively poorer, and can afford a strictly smaller regions of bundles

after the price change. Also, the slope of the line changes: it becomes steeper because m = 1 becomes relatively more

expensive in terms of good m = 2.

Say now that p′ = kp, namely that all prices are multiplied by a constant k > 1. The new budget constraint is

kp1x1 + kp2x2 = Y
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which is equal to

p1x1 + p2x2 =
Y

k
.

This is as if the consumer’s income shrinks from Y to Y ′ = Y
k , and prices are unchanged. This has the interpretation

that only relative prices are relevant: just like cardinal utility scores, nominal prices have no economic meaning.

To elaborate on the last point, start from an arbitrary budget line p1x1 + p2x2 = Y and divide everything by p1.

You obtain:

x1 +
p2
p1

x2 =
Y

p1

which means that, by redefining p′1 = 1, p′2 = p2

p1
and Y ′ = Y

p1
, you get a new budget line

x1 + p′2x2 = Y ′

identical to the original one. One way to put this, is to say that one nominal price is a redundant parameter: a

simpler budget expression can always be obtained by re-parametrizing p1 = 1 and expressing all nominal variables as

real variables measured in terms of m = 1. The good chosen as a unit of measure is called the numeraire.

Exercises.

• Say that M = 4, Y = 10, x = (3, 3, 3, 2). If p = (1, 1, 1, 1), does x ∈ B? What if p = (0.5, 0.5, 1, 1)?

• Consider the examples with M = 2 and say that oranges are twice are expensive as apples. What is the slope of

the budget line? What are the intercepts if p1 = 1 and Y = 6?

• In the latter example, say p1 = p2 = 1.5. Write the old and the new budget lines and comment the changes.

Further discussion. The budget set is a simple mathematical object that hides a lot of assumptions.

First, it postulates that M markets exist, one for each good, and that the consumer takes all purchasing decision

at the same time across different markets.

Second, it assumes that each good m has some uniquely defined unit price pm. This means that:

• Unit prices do not depend on quantities (linear pricing: no quantity discounts exist).

• The consumer can demand any quantity of the good that she can afford.

• The consumer can buy any infinitesimal quantity of any good at a uniform price (there are producers willing to

supply an atom of an apple).

• Law of one price: you cannot purchase the same good with different prices from different providers.

Finally, it is assumed that the consumer has no power to affect prices: she is a price-taker; prices are

parametric in her optimization problem. There is no bargaining going on between consumers and producers.

2.3 Utility and marginal utility

As we have seen in the first lecture, any preference relation Pi can be represented by means of a utility function Ui

which respects the basic axioms of rationality. Additional assumptions can be introduced in a market setup, in order

to provide Pi and Ui with a set of desirable characteristics.
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Well-behaved utility functions. A utility function Ui is said to be well-behaved when, in addition to rationality,

it respects:

• Monotonicity. If for each m ∈ M , xm ≥ x′
m, then Ui(x) ≥ Ui(x

′). Moreover, if xm > x′
m for each m ∈ M ,

then U(x) > U(x′).

• Convexity. Take two bundles x and y such that Ui(x) = Ui(y). Suppose a third bundle z is such that, for some

λ ∈ (0, 1) and all m ∈ M , λxm + (1− λ)ym = zm: then, U(z) ≥ U(x) and U(z) ≥ U(y).

The first requirement states that the agent is never worse off when adding more of one good, and she is

always made strictly better off when adding more of all goods. When the first property holds with strict inequality,

preferences are said to be strictly monotonic.

The second requirement states that, if you mix in constant proportion two different bundles that have the same

value, you obtain a third bundle that is weakly better than both of them. If the property holds with strict

inequality, you say that preferences are strictly convex. To understand why this is reasonable, think of example E3

in the first lecture: it is better to dedicate the same time to three activities than to do the same thing all day long.

In general, convexity assumes that variety in consumption is pleasant or, equivalently, that the more you consume

something, the less you value additional consumption of it with respect to other things.

Preferences need not to satisfy monotonicity and convexity to be rational. These are properties that are seen as

realistic and that also make the consumption problem tractable even without adding much more structure.

Indifference curves. An indifference curve is a level curve of the utility function: namely, a set that contains

all the elements of X that have the same utility for the consumer.

For a fixed level of utility U0, an indifference curve is identified with the expression Ui(x) = U0.

Take the case with M = 2. Indifference curves of well-behaved functions have the following properties:

• Indifference curves do not cross. If indifference curves U0 and U1 cross at x = x′, the bundle x′ is strictly

preferred to itself which violates reflexivity.

• Higher indifference curves than U0 are wholly located north-east of U0 and all points north-east of U0 are better

than U0 (exercise: prove it using monotonicity).

• Indifference curves are weakly decreasing. Indeed, moving from bundle x = (x1, x2) to x′ = (x′
1, x

′
2), with

x′
1 > x1, because of monotonicity you need to diminish x′

2 < x2 in order to stay indifferent.

• Indifference curves are weakly convex: any linear combination of indifferent bundles is weakly preferred to

both.

Exercise.

• Draw the indifference curves of Cobb-Douglas, perfect substitutes and perfect complements, and comment their

shape.

Relaxing convexity and monotonicity. If Ui is not monotonic, it may show satiation: namely, there can be a

critical amount x̄m of a good such that, over this threshold, there is no additional value in consuming a higher xm.

If there is a specific bundle x̄ = (x̄1, x̄2) that maximizes utility in the whole set X, including all the bundles that are

more expensive, we say that x̄ is a bliss point. This is for example the case when indifferent curves form concentric

circles, whose center is x̄.
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If one good is actually a bad (has negative marginal utility: you dislike to consume more of it), indifference curves

are increasing. You can show this as an exercise. Similarly, if one good is a neutral, indifference curves are parallel

lines to one axis.

If indifference curves are (strictly) concave, mixtures of indifferent bundles are (strictly) less preferred than the

original ones. This is the case when you don’t want to mix different goods, for example ice cream and anchovies, or

when the more you consume something, the more you value additional consumption.

Marginal utility. A central concept in microeconomics is the marginal utility of a good, namely the additional

value that the agent attributes to an increase in consumption of a good m ∈ M , starting from the bundle x =

(x1, . . . , xM ).

Think again to our example with apples and oranges. The theory of value of Neoclassical economics only allows

to define the value of an apple for the agent with reference to how many apples and oranges are already in her basket ;

that is to say, the value of one more apple given that I already have one apple and three oranges.

To see how this applies in more general terms, consider a utility function Ui : RM → R that describes the preference

of agent i over M goods.

Since goods are perfectly separable, starting from any x ∈ X, it is possible to compute the increment of the agent’s

utility for any variation ∆xm of consumption of a single good m ∈ M . This is

∆Ui(x,∆xm) = Ui(x1, . . . , xm +∆xm, . . . , xM )− Ui(x).

The marginal utility of m evaluated at x coincides with the limit of ∆Ui(x,∆xm) for an arbitrarily small variation

∆xm.

Under the due assumption about the differentiability of Ui, the marginal MUm(x) utility of good m at x can be

defined as follows:

MUm(x) =
∂Ui

∂xm
(x1, . . . , xM )

In the example with apples and oranges, this is expressed as MU1(1, 3) =
∂Ui

∂xm
(1, 3).

If preferences are monotonic, the following holds:

MUm(x) ≥ 0 ∀m ∈ M

restating the fact that it never hurts to consume more of a good.

Convexity of preferences is implied by the following property, the law of diminishing marginal utility:

∂MUm(x)

∂xm
≤ 0 ∀m ∈ M

which is a popular assumption in utility theory stating that, if you consume more of good m, the marginal utility

of it does not increase. In other words (with strict diminishing marginal utility), the more apples you consume, the

less you want to consume additional apples (or, in the weak case, your appetite for apples does not increase along

with your apple consumption).

Example of utility functions.

• Quadratic utility. With a single good, a quadratic utility function is:

Ui(x) = x− x2

2
.

• Cobb-Douglas utility. Cobb-Douglas utility functions are standard in consumption theory. With m = 2 they

look like:

Ui(x1, x2) = xα
1 xβ

2 .
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• Quasi-linear utility. A quasi-linear utility function is linear in one good only:

Ui(x1, x2) = u(x1) + x2

where u′(x1) > 0 and u′′(x1) < 0. Typically:

Ui(x1, x2) =
√
x1 + x2

or

Ui(x1, x2) = log(x1) + x2

• Perfect substitutes. This is the case of a linear utility function:

Ui(x1, x2) = αx1 + βx2.

• Léontief utility function (perfect complements). In this case,

U1(x1, x2) = min{αx1;βx2}.

Then:

Exercise. Show that:

• Quadratic preferences are not monotonic.

• Cobb-Douglas preferences are strictly convex.

• Perfect substitutes are not stricly convex.

• Perfect complements are not strictly monotonic.

3 Theory of consumption, II.

3.1 Constrained optimization: graphical

In the case with M = 2, graphical analysis provides insights into the individual optimization problem when Ui is

well-behaved.

Given a budget set B and a well-behaved utility function Ui:

• If there is a bundle such that the indifference curve is tangent to the budget line, that bundle is an

optimal choice.

• If there is no such bundle, the optimal choice coincides with a corner of the budget line.

Moreover, if Ui is strictly convex, the optimal choice x∗(B) is unique.

We visualize the argument in two steps.

Walras’ Law. The Walras’ Law states that, given a well-behaved utility function Ui and a budget set B, any

optimal bundle x ∈ x∗(B) must belong to the budget line: namely, the total expenditure
∑

m pmxm of x ∈ x∗(B)

must be equal to the level of income Y .

Indeed, if the agent’s income is not exhausted by x, namely
∑

m pmxm < Y , there exists another affordable

bundle x′ that contains strictly more of all goods, i.e. x′
m > xm for all m ∈ M , and then Ui(x

′) > Ui(x) because of

monotonicity.
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Tangency condition. Suppose now by contradiction that there is an optimal x ∈ x∗(B) that is not an extreme of

B, and is not such that the indifference curve passing through x is tangent to the budget line.

Graphically, this has the implication that a region of the space (x1, x2) lies north-east of the indifference curve

and south-west of the budget line. Any bundle y on the south-west boundary of the region (the part coinciding

with the indifference curve Ui(x)) is indeed not optimal, because it does not exhaust the agent’s income. But, since

Ui(y) = Ui(x), also x cannot be optimal.

This proves that interior bundles not verifying tangency are never optimal. To prove the other way round, suppose

that an interior bundle x verifies the tangency condition and is not optimal. You can see graphically that, because

of the convexity of the indifference curve Ui(x), this cannot apply: any point lying north-east of Ui(x) would be

unaffordable.

However, it may be that no point on the budget line verifies the tangency condition. In this case, the optimum

needs to be an extreme point of the budget line: as an exercise, show that with a geometric argument.

Exercise.

• Represent graphically the optimal choice for each utility function that we have studied.

3.2 The Marginal Rate of Substitution

As we have reviewed yesterday, Neoclassical economists think of the value of a good as a marginal quantity, a local

measure, a limit expression that only makes sense when evaluated at a certain point.

The marginal utility MUm(x) of a good is not a univocal measure of its additional value at x. The value of

MUm(x) depends in fact on the specific functional form of Ui, but many equivalent functional forms exist given the

same underlying preference ordering Pi.

A much more objective (and, as we shall see, observable) definition for the marginal value of a good is the ratio of

its marginal utility to that of a different commodity. Evaluated at a given point x, this ratio is called the Marginal

Rate of Substitution (MRShj) of good h ∈ M with respect to j ∈ M . This corresponds to:

MRShj(x) =
MUh(x)

MUj(x)
.

In this formulation, the marginal value of h at x is expressed in terms of that of j. The good j becomes a unit of

measure to express how worth h is (locally).

Alternatively, this means that the MRShj can be interpreted as the maximum real price in terms of h at

which the consumer wants to buy an additional marginal quantity of j.

Consider for example a bundle of one apple and three oranges. If MRS12(1, 3) = 2, an additional atom of an apple

is twice as worth as an additional atom of an orange. Therefore, it the agent’s income is exhausted at x = (1, 3),

the consumer is willing to exchange a positive variation of apples with a negative variation of oranges whenever their

relative price p1

p2
is less than two.

MRS and Indifference Curves. Consider the case of M = 2 and take an arbitrary indifference curve with equation

Ui(x1, x2) = U0.

The MRS12(x) has an important interpretation when M = 2: it corresponds to the slope of the indifference curve

passing through x = (x1, x2). To see why, note that adding a small quantity dx1 of one good provides an additional

utility of MU1(x)dx1, meaning that, in order to keep the agent indifferent with respect to (x1, x2),

MU1(x)dx1 +MU2(x)dx2 = 0
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must hold. This can be rearranged into:
dx2

dx1
= −MU1(x)

MU2(x)
.

You can think of the dxj = MRShj(x)dxh as the maximum quantity of good j that the agent is willing to give

away in order to obtain dxh more units of good h, when dxh is very small.

This has an interesting implication.

Note in fact that all the utility functions Ui mapping the same system of preferences Pi generate the same

indifference curves. Therefore, under a monotonic transformation of Ui we obtain a map of indifference curves with

the same slope for each x ∈ X, meaning that, under Ui and its monotonic transformation, the Marginal Rate of

Substitution MRShj(x) is the same at every x ∈ X, for any h, j ∈ M . As a consequence, the MRS is invariant

under monotonic transformations and constitutes a measure of the marginal value of a good which is independent

from the cardinal metrics adopted to represent Ui.

Exercises.

• Compute the MRS12(x) of a generic bundle x with Cobb-Douglas utility, quasilinear utility, perfect complements

and perfect substitutes.

3.3 Constrained optimization: analytical

When M = 2, the consumer’s decision can be formulated as an unconstrained optimization problem by substituting

away x2 in the objective function:

max
x1∈R+

Ui

(
x1,

Y − p1x1

p2

)
(1)

This can be done because the Walras’ Law guarantees that the budget constraint is always optimally binding.

By equating to zero the first derivative of the objective function, it can be found that a sufficient condition for

(x1, x2) to be optimal is to solve the following system:MU1(x1, x2) = p1

p2
MU2(x1, x2)

p1x1 + p2x2 = Y

In order to give an economic interpretation of the first condition, start by noting that any bundle on the budget

line such that x′
1 > x1 would in fact verify MRS12(x

′) ≤ MRS12(x) (due to MRS12(x) =
p1

p2
and to MRS12(x) being

decreasing in x1). Then, two cases can be distinguished:

• MRS12(x
′) = MRS12(x) =

p1

p2
. Then, x′ verifies the sufficient condition and is also optimal.

• MRS12(x
′) <= p1

p2
= MRS12(x). Thus the MRS12(x

′) is lower than the relative price, and the agent prefers to

curb consumption of m = 1 with respect to x′
1: x

′ cannot be optimal.

A similar reasoning applies to bundles such that x′ < x1: the agent wants to consume more of good m = 1 than

x′
1 when the inequality is strict, otherwise x′ is also optimal.

If there exists no feasible x that verifies the system of sufficient conditions characterized above, the optimal bundle

has either x1 = 0 or x2 = 0: this is called a a corner solution, namely a solution such that the feasibility constraint

xm ≥ 0 binds for some m ∈ M . To interpret this, note that, it the sufficient conditions doesn’t hold for any feasible

bundle, all interior points of the budget line cannot be optimal: indeed, for any such x′ the MRS would be either

higher or lower than relative prices, and the agent would a tension to consume more or less of m = 1 than x′
1. Once

the feasibility constraint is hit, the agent cannot push x1 lower (or higher), and an optimum bundle can be identified.
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The constrained optimization problem with M > 2 goods is as follows:

max
x∈X

Ui(x)

s.t.:
∑
m

pmxm ≤ Y

xm ≥ 0 ∀m ∈ M

If a corner solution is excluded (which can be ensured by introducing additional assumptions on Ui, not covered here)

the program has the following FOCs with Lagrange multiplier λ:

MUm(x) = λpm ∀m ∈ M∑
m

pmxm = Y

Which, by substituting away λ, can be restated as

MRShj(x) =
ph
pj

∀(h, j) ∈ M

Therefore, the equivalence requirement between MRSs and relative prices extends to any pair of goods in the

general framework with M > 2.

Exercises.

• Suppose U(x1, x2) = 2
√
x1x2, p1 = 1, p2 = 1. Which kind of utility function is this? Solve the maximization

problem analytically. What happens as p1 = k varies? What if Y changes?

• Suppose U(x1, x2) = log(x1) + x2, p1 = k and p2 = 1. Find the optimal choice as a function of k and Y .

3.4 Comparative statics.

An important domain of microeconomic analysis is comparative statics: the study of how optimal choices respond

to the variation of exogenous parameters.

An interesting problem of comparative statics in the theory of consumption is how changes in prices and income

affect consumption decisions.

Change of income. Start from the case in which p is taken as fixed and Y is changed to Y ′ > Y . If, when income

increases, the optimal consumption of all m ∈ M increases, all goods are said to be normal goods; otherwise, if the

optimal consumption of xm decreases for some m ∈ M , then m is said to be an inferior good. An inferior good is thus

a good that is consumed less when people get richer.

The effect of a change of income on optimal consumption is called the income effect: if the income effect is

negative, then the good is inferior. You can think of inferior goods as goods that you want to substitute out with

better alternatives once that you have provided for subsistence: for example, low-quality food and clothing.

Note that the income effect is local : a good can be inferior or not, according to the level of income or the price

vector.

Change of own price. Say now that p changes and in particular, everything else being equal, p′m < pm for some

m ∈ M (all the definitions are valid in the opposite directions if p′m > pm, with no substantial difference).

If the optimal xm increases when p′m < pm, m is said to be an ordinary good; otherwise, it is said to be a Giffen

good (an equivalent definition is that xm increases when pm increases).
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The existence of Giffen goods may seem puzzling, as it defies the common interpretation of demand being decreasing

in prices. This intuitive logic translates in the fact that for any good, there exists a substitution effect going on the

opposite direction of the price change: in simple terms, as a price of a good goes up, the consumer is always pushed

to diminish consumption of the more expensive good, with the intent of buying more of the alternatives that have

become relatively cheaper. However, it must be noted that, when a price changes, the agent becomes also richer or

poorer in real terms. Then, the income effect kicks in, which can have the opposite sign if the good is inferior. A

Giffen good is a good so inferior that the income effect overcomes the substitution effect.

Income and substitution effect: graphical For the case of M = 2, it is possible to disentangle the income and

substitution effects graphically.

For an arbitrary income Y and price vector p such that x is the optimal choice of the agent, consider a new price

vector p′ such that p′1 > p1 and p′ = p2 and trace the new budget line. Since the consumer is poorer in real terms,

her affordable consumption possibilities are reduced after the price variation, and the new budget line is entirely

south-west of the old one.

The new optimal choice, say x′, lies at the point of tangency between the new budget line and a new indifference

curve. The shift from x to x′ compounds income and substitution effects: it combines the effect of m = 1 being

relatively more expensive and of the agent being poorer after the price variation.

Call now x̃ the point of the original indifference curve that is tangent to a line parallel to the new

budget line . The difference between xm and x̃m following a price change from p to p′ is the substitution effect.

The substitution effect has always the opposite sign of the variation of the own price, namely:

(p′m − pm)(x̃m − xm) < 0.

It can be noted that x̃ is obtained by providing the agent, after the price change, with additional income up to

the point in which the budget line is tangent with the original indifference curve: namely, with as much income as it

is needed for her to be as well off as before the price change. This serves to compensate the loss of welfare due

to the variation of the agent’s real income, and to isolate the impact of substitution between the two goods as their

relative affordability varies.

The income effect is defined instead as x̃m − x′
m, which is the part of variation in consumption of m that is not

explained by the change of relative prices.

Change of other prices. Consider again a price change of m ∈ M such that p′m < pm but focus on the effect on

optimal consumption of another good k ∈ M . If xk increases, the two goods are said to be complementary goods,

otherwise they are substitute goods.

Complementary goods are goods that are consumed better together: for example, coffee and sugar. If coffee

is more affordable after a price variation, and the agent consumes more of it, consumption of sugar rises even if the

price of sugar is the same, because the availability of more coffee makes sugar more valuable.

Substitute goods satisfy to some extent the same needs: think for example of coffee and tea. When the price of

coffee increases, you can be reasonably expected to adjust your consumption habit by substituting away some coffee

with tea.

When goods are only valuable when consumed together, they are said to be perfect complements: for example,

left shoes and right shoes. This is the case when the utility function has the form

Ui(x1, x2) = min{x1;x2}

in which the agent only cares about the minimum of the two quantities. If for example x2 > x1, the excess consumption

(x2 − x1) of good m = 2 has therefore no value for the agent (the third right shoe is useless if you only have two left

shoes).
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When two goods satisfy exactly the same needs, they are said to be perfect substitutes. This is the case of the

utility function

Ui(x) =
∑
m

xm

in which, since the goods are perfectly fungible, you only care about the sum of quantities you consume, no matter

the composition of your basket.

4 Theory of consumption, III.

In this lecture, we describe the individual and aggregate demand functions for a good, define their elasticities

with respect to various parameters, derive them from the individual consumer’s maximization problem and, finally,

define the consumer’s surplus.

4.1 The demand function

Consider a market in which a good m ∈ M is traded. If, for example, the individual i has a linear demand function

of the form

Di
m(pm) =

5− 3pm if 5− 3pm ≥ 0

0 if 5− 3pm < 0

it means that, if the price of good m is pm = 1, the agent demands

xm = Di
m(1) = 5− 3 · 1 = 2

units of the good m.

More in general, the individual demand function Di
m(pm) expresses the amount of a good that an agent i is

willing to consume if its unit price is pm.

If there are N > 1 agents populating a market, the aggregate demand function D(pm) =
∑

i D
i
m(pm) expresses

the cumulative amount of good m that all the agents in the economy are going to consume at the unit price pm. For

example, if there are N = 4 agents with the linear demand expressed before,

D(pm) = 20− 12pm

and, if pm = 1, D(1) = 8 is the aggregate market demand for the good m.

Sometimes, during your economic studies, you will find a demand function Di
m(pm) represented in terms of its

inverse demand function P i
m(xm) = Di−1

m (xm): for each quantity xm, P i
m(xm) expresses the maximum price at

which the agent is willing to purchase at least xm units of the good m.

In our linear example,

P i
m(xm) =


5−xm

3 if 5−xm

3 ≥ 0

0 if 5−xm

3 < 0

Keep in mind the following: when you aggregate demand functions graphically, you sum quantities vertically

in the most natural way. However, most of the times, demand is represented graphically in its inverse form Pm(xm):

when this happens, remember to aggregate quantities horizontally, in order to obtain a symmetric graph to the

one of D(pm) with respect to the (x1, p)-bisector.
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Slope and elasticity. The slope of the demand curve,
∂Di

m(pm)
∂pm

is the local measure of the absolute variation

of demand for good m with respect to its own price. Common sense suggests that the slope of the demand function

should be negative: as we reviewed yesterday, this is not the case when the good exhibits Giffen behavior.

When the demand function is linear, its slope is constant: in our example,
∂Di

m(pm)
∂pm

= −3 for each value of pm

such that the demand is positive.

Since the most natural reason to compute or estimate a demand curve is to understand what would be the reaction

of the consumer to a price change, looking at the slope of Di
m(pm) seems to provide a valid answer. Perhaps not

intuitively, this is rarely the case.

One reason is that the slope of a demand function is totally dependent on the unit of measure that you adopt to

express prices and quantities. A much more interesting object is the (own price-)elasticity of the demand function:

the local measure of the relative (percentage) change of quantities demanded with respect to a relative change in

prices.

In other words, the slope of a demand function says for example: if price goes up by 1, demand goes do-

wn by −3, which is an empty statement if you do not specify 1 euro/dollar/pound/million of euros, and −3 gal-

lons/kilograms/shoes/hundreds of cars, or what else. Moreover, the variation captured by the local slope of a demand

function is absolute and is not informative per se on the proportional size of the effect.

Instead, the elasticity of a demand function may say: if price goes 10% up, demand goes 5% down. That is a

much more robust statement, because it is independent of the unit of measure, and because it provides an idea of the

magnitude of the effect irrespective of its scale.

For a sizeable price variation ∆p, the elasticity of demand is:

ϵ̄im(pm,∆p) =
Di

m(pm +∆p)−Di
m(pm)

∆p
· pm
Di

m(pm)

As ∆p → 0, the limit of the expression above is the local measure of elasticity evaluated at pm:

ϵim(pm) =
∂Di

m(pm)

∂pm
· pm
Di

m(pm)
=

∂ log(Di
m(pm))

∂ log(pm)

The expression above can be used for example to compute the elasticity of the linear demand function Di
m(pm) =

5− 3pm:

ϵmi (pm) = −3× 5− 3pm
pm

=
−15 + 9pm

pm

Interestingly, a linear demand function has a constant slope, but it doesn’t have a constant elasticity. The magnitude

|ϵmi (pm)| of the own price-elasticity is decreasing in pm, meaning that the more expensive the good, the higher the

reactivity of the consumer to price changes.

When ϵim(pm) = 0 and ϵim(pm) = −∞, two extreme cases are identified:

• Infinitely elastic demand. When ϵim(p′m) = −∞, demand is infinitely elastic: this is for example the case

when consumption drops from a positive quantity to zero for any price pm > p′m, no matter how small the

increase. This is the case when there is a perfect substitute good available on the market whose unit price is

exactly p′m (you can prove it as an exercise).

• Inelastic demand. When ϵim(pm) = 0, demand does not change at all when price varies: the consumer wants

to consume a fixed amount of the good, in a way that is unresponsive to the price. This is the case for things

that you really need to consume in a specific quantity: you can imagine an (at least locally) inelastic demand

for addictive goods (cigarettes), for subsistence goods, housing or accommodation, or for life-saving drugs.
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Exercises.

• Draw a linear demand function and try to explain what is the meaning of the two intercepts.

• What is the elasticity of a linear demand curve Di
m(pm) = α− βp at the intercepts? When is is it equal to one?

• Consider the demand function Di
m(pm) = 1

p and prove that it has constant elasticity equal to −1. What does it

mean?

Income and cross-price elasticity. We have drawn and characterized the demand function Di
m(pm) of the agent

i for good m. Implicit behind the expression Di
m(pm) lies the assumption that, as price pm changes, all the other

relevant factors in the decision problem of the consumer stand still. This is the so-called ceteris paribus assumption:

namely, Di
m(pm) expresses the response of the individual demand for good m to own-price changes at parity of other

conditions.

Two important other conditions that may affect the demand for a good are cross-price variations (variation of the

price of other goods) and income variations.

First, in fact, we can define the elasticity of demand for m with respect to the price of other goods, rather than

the own price pm. Denote the (local) cross-price-elasticity by

ϵimh(ph) =
∂Di

m(ph)

∂ph

ph
Di

m(ph)

where pm is an exogenous parameter of Di
m(ph), in the sense that it is kept fixed before and after the variation of

ph.

If h is a substitute of m, ϵimh(ph) > 0, and the opposite holds if the goods are complements.

Second, the elasticity of demand can be computed with respect to the income of the consumer. We can denote the

local income-elasticity of m by

ϵimY (Y ) =
∂Di

m(Y )

∂ph

ph
Di

m(Y )

whose sign depends on the income effect. A good m ∈ M whose income elasticity is greater than 1 is said to be

a luxury good: this is a good whose relative consumption increases in a higher proportion with respect to income

variations, meaning that, as your income goes up, you devote a larger share of your earnings to the consumption of m

(and vice versa). If ϵimY < 1, the good is said to be a subsistence good.

4.2 Derivation of the demand function

The demand curve, expressed in the form Di(pm), is the simplest and most popular model of consumption behavior

on a market. Its computation or estimation provides a simple and intuitive guidance for policy-making of investors,

managers, entrepreneurs, politicians, et cetera.

Yet, the demand curve is a very complex object. First, it is an elusive entity as you can never observe the whole

of it in the real world: you can only observe equilibrium prices and quantities, and their variations over time. Second,

as we see in this section, each point of the demand function is the result of a complicated optimization program that

happens in the back of the mind of the consumer, taking into account the relative price of all the goods available on

the market and real income in terms of every good, for every price vector that may show up in hypothetical terms.

Despite this complexity, microeconomics provides some instruments to construct a fairly tractable model of market

demand. Starting from the infinite hypothetical maximization problems of each individual, we can provide a useful

representation of the demand curve that can account for different observed phenomena (income effects, subsistence

versus luxury, complementarity versus substitution...) in a mathematically tractable way, also providing a framework

for normative considerations that we will see at the end of the lecture (the theory of the consumer surplus).
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There are many caveats and many simplifications in this process, and many objections that can be made; never-

theless, the power and the elegance of this framework partly explains why the Neoclassical paradigm has been so

successful despite its obvious shortcomings.

We will address for simplicity the case in which M = 2 and preferences are strictly convex, meaning that, for each

budget set B, the optimal bundle x∗(B) of the consumer is uniquely identified.

Assume that good m = 2 is the numeraire, meaning that we keep p2 = 1 with no loss of generality (because only

relative prices matter). Denote as Y the real income of the agent expressed in terms of m = 2, and as p = p1

p2
= p1

the relative price which, in our unit of measure, coincides with the price of m = 1.

In the optimization problem of the consumer, (p, Y ) are exogenous parameters, namely quantities that are relevant

for the consumer’s decision-making, but the consumer cannot change. Since each (p, Y ) identifies a budget constraint

B, it is the same to say x∗(p, Y ) and x∗(B).

Remember that x∗(p, Y ) is a vector, that has components x∗(p, Y ) = (x∗
1(p, Y ), x∗

2(p, Y )). At this point, analy-

tically, we easily obtain our demand curve Di
m(pm) for m: it coincides with the m = 1 component x∗

1(p, Y ) of the

optimal bundle, computed for each value of p keeping Y fixed:

Di
1(p) = x∗

1(p, Y ) for a given Y .

Geometrically, for p = p′, we can identify x∗(p′, Y ) as the point of tangency between the budget line and the

highest affordable indifference curve. The x1-coordinate of x∗(p′, Y ) identifies Di
1(p

′). In this formulation of the

demand function, Y remains implicit and hidden in the shape of Di
1. As p′ varies to p′′, the budget line pivots

around its intercept on the x2 axis (which remains constant to x2 = Y ) and a new point of tangency x∗(p′′, Y ) can be

identified.

It can be noted that, by letting p take all admissible values, it is possible to trace out a locus on the positive

(x1, x2) orthant by connecting all the optimizal bundles x∗(p, Y ): this is called the price-offer curve.

Then, for any p (any slope of the budget constraint), a point x∗(p, Y ) of the price-offer curve is identified: the

demand curve Di
1(p) of m = 1 translates all the points of the price-offer curve on the (p, x1)-plane, meaning that, for

each x∗(p, Y ) on the price offer curve, it returns the point
(
p,Di

1(p) = x∗
1(p, Y )

)
of the demand function.

Changes on and of the demand function. Say now that the price of a good changes from p′ to p′′. The

individual demand of the good changes from Di
1(p

′) to Di
1(p

′′). A variation has occurred on the demand function,

moving the description of the consumer’s behavior from one point of it to another.

Say instead that income changes from Y to Y ′ but p = p′ stands still. This means that the shape of Di
1 changes

totally, as it reproduces a new price-offer curve that is obtained by shifting the original budget line to a parallel line,

and traced out by pivoting the new budget line around its new x2-intercept.

In this case, the demand for a good does not change because price is changed (a shift on the demand curve),

but it changes because income has changed even if price is unaltered (shift of the demand curve). This difference is

extremely important: for example, practitioners trying to estimate a demand function need to disentagle one effect

from the other, as they observe demand shifts taking place over time.

Suppose for example m = 1 is a normal good for each value of Y and p. In this case, an increase in income will

shift the whole demand function north-east, meaning that the consumer is willing to purchase more of the good

at any price after the change.

If M > 2, another important factor that can trigger changes of the demand curve is the change of the prices

of other goods. For example, with M = 3, the optimal bundle is expressed by x∗(p1, p3, Y ), as it also responds to

variations of the relative price p3 of good m = 3 in terms of the numeraire m = 2. Again, the dependence of Di
1(p1)

on p3 is implicit in the shape of the function. The variation of p3 can trigger shifts of Di
1(p1) in ambiguous directions,

according to the goods m = 1 and m = 3 being substitutes or complements.
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Exercise

• Suppose that M = 3, and that m = 1 and m = 3 are complements. If p3 increases, how will Di
1(p1) shift?

• Compute the demand function for Cobb-Douglas, perfect complements and perfect substitutes, and represent

graphically the shift of the demand function for a positive change of income.

4.3 The surplus of the consumer

We have seen that, by inverting the demand function Di
m(pm) for a good, one obtains its inverse demand function

P i
m(xm) which expresses the maximum unit price that the consumer is available to pay in order to purchase xm units.

This seems to provide an intuitive (but wrong) solution to the problem of value of economics: namely, inverse

demand seems to give an objective definition of what is the value of a good for a consumer.

Supppse the inverse demand for m is P i
m(xm) = 5−xm

3 if xm ≤ 5, from our running example. We are tempted to

interpret the (maximum) expenditure function, or revenue function

Ri
m(xm) = P i

m(xm) · xm

as a measure of the total value of xm units of m ∈ M in terms of money, of whatever is the numeraire. This

seems the case, as Ri
m(xm) returns the largest amount of money (or of the numeraire) that the consumer is willing

to give up in order to purchase xm units of the good. The implication appears to be that, by taking the difference

between Ri
m(x′

m) − Ri
m(xm), I obtain a monetary comparison of the consumer’s utility in two different situations in

which either x′
m or xm units of the good are purchased.

In theory, this is wrong. In practice, this is a reasonable approximation that that can be used to provide

practitioners with policy advice (and caveats).

To see why the variation of the expenditure function Ri
m(xm) is not a monetary measure of variation in the agent’s

welfare when consuming different xm, you need to recall that, when prices change, there are income effects entering

the picture. This means that, as you take the difference between Ri
m(xm) and Ri

m(x′
m), you are also capturing the fact

that, following the price change that shifted her consumption from xm to x′
m, the agent has to recalibrate expenditure

according to her new real income: her increase/decrease in expenditure for a good m is not only due to the variation

x′ − xm of quantity that she consumes; it also reflects that the agent has got richer or poorer after the price change.

If you want to compute a monetary measure of welfare variations after a price variation, you need a way to

quantify what we called the substitution effect in the previous lecture. We do not go further in this direction in this

introductory course; if you are interested, Varian provides nice instructions in Chapter 14 on how to do that. For the

rest of our lectures, we content ourselves of using the Ri
m(xm) as an approximation of what is called the consumer

surplus.

Quasi-linear utility. To conclude on this topic, we need to consider one of the most beloved functional forms by

applied economists: quasilinear utility.

If M = 2, under the condition that u(x1) is an increasing and concave function of x1, and the normalization that

u(0) = 0, quasilinear preferences are represented by the utility function

Ui(x1, x2) = u(x1) + x2,

and, setting x2 to be the numeraire, calling p = p1 and substituting out the budget line rewritten as

x2(x1) = Y − px1
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within Ui(x1, x2), we obtain that the consumer maximizes

max
x1≤ Y

p1

= u(x1) + Y − px1.

Under the simplifying assumption that u′(0) = ∞ (that is, you really do not want to starve out of m = 1), the

problem is solved by taking the derivative of the objective function and checking whether it attains a zero for a value

of x1 respecting the budget constraint.

Consider then the (unconstrained) FOC

u′(x1)− p = 0

Define implicitly x1(p) as the value of x1 solving the equation above. If x1(p) ≤ Y
p , then the optimal bundle is

x∗(p, Y ) = (x1(p), Y − px1(p))

Otherwise, a corner solution is optimal and the entire income of the agent is optimally allocated to good m = 1

x∗(p, Y ) =

(
Y

p
, 0

)
The inverse demand function is thus very easy to pin down with quasilinear utility. It is simply:

P i
1(x1) = u′(x1)

Note that now, in computing the inverse demand function P i
1(x1), income is irrelevant except when a corner

solution is obtained. This is because a quasi-linear utility function has parallel indifference curves, meaning that

there is absolutely no income effect going on among interior solutions (you can verify it graphically as an exercise,

using the comparative statics techniques from last lecture).

This has a nice implication: if you interpret your numeraire as money (where money is intended as a composite

good, standing for cumulative expenditure on anything else), and if your consumer has quasi-linear preferences, you

can effectively measure the monetary variation of her welfare due to the shift of consumption of m = 1 from some x1

to another quantity x′
1. This is done by taking the integral of the inverse demand function over [x1, x

′
1]:

∆u(x1, x
′
1) =

∫ x′
1

x1

P i
m(x)dx

Which is an obvious equivalence since P i
1(x1) = u′(x1).

The expression ∆u(x1, x
′
1) is called the variation of the gross consumer surplus from x1 to x′

1. By noting

that ∆u(0, x′
1) = u(x′

1), one obtains a monetary measure of the total welfare that the consumer obtains from the

consumption of x′
1 units of m = 1.

Consider finally the following expression:

CS(x1) = u(x1)− px1

This is the (net) consumer surplus. It expresses the additional welfare that the consumer obtains from the

transaction when buying x1 units at the unit monetary price p. We obtain that by subtracting, from the monetary

value u(x1) of consumption, the amount of money px1 that the consumer needs to pay.

If you consider a graphical representation of inverse demand P i
m(x1) on the (x1, p)-plane, you can easily visualize

u(x1) to be the area underlying P i
m(x1) from P i

m(0) to P i
m(x1), and CS(x1) to be the difference between that area

and the underlying rectangle {(0, 0); (x1, 0); (0, p); (p, x1).
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Exercises.

• Consider the quasilinear quadratic function Ui(x1) = x1− x2
1

2 +x2 and show that it implies a linear inverse demand

function by fixing an arbitrary level of Y . Does Ui respect the monotonicity (non-satiation) assumption? How

is that related to the linearity of P i
1(x1)?

5 Theory of consumption, extra topics.

5.1 Interpersonal comparisons

We have presented a framework to understand and represent the preferences of a single agent over a choice set X. In

this context, we have introduced a subjective theory of value that allows to compare the welfare of a single agent in

different situations.

Many normative questions in economics require interpersonal welfare comparisons: as that there is no objective

metrics for utility, microeconomics alone can only provide a few answers on this topic.

Pareto-efficiency. For the rest of the lecture, we will refer to a choice x ∈ X in multiagent settings as an allocation.

An important criterion that normative economics adopts to rank different allocations x ∈ X is the Pareto criterion.

The Pareto criterion is an incomplete ordering that, starting from subjective utilities as we have defined in the

previous classes, allows to unambiguously rank some, but not all, of the allocations.

Suppose that the set of all feasible allocations in an economy is X and denote the N agents populating the economy

as i = 1, 2, . . . , N , each endowed with a utility function Ui : X → R. A choice x ∈ X is said to Pareto-dominate

x′ ∈ X if:

• For all the agents in the economy, Ui(x) ≥ Ui(x
′).

• For at least one agent i, Ui(x) > Ui(x
′).

Namely, x makes no one worse off with respect to x′, and makes at least one agent strictly better off. If

all the agent are strictly better off in x, then x strictly Pareto-dominates x′.

An allocation x ∈ X such that no other x′ ∈ X Pareto-dominates x is said to be Pareto-efficient.

A nice way to understand Pareto-dominance is the following: suppose that x′ is the status quo in the economy,

and that for some reason there is the possibility to change from x′ to x. Then, if x Pareto-dominates x′, no one would

object to the change, and at least some agent would strictly benefit from the change.

It is reasonable to say that a benevolent planner with dictatorial power would impose a Pareto-efficient allocation:

we don’t know which one. In fact, since the Pareto criterion is an incomplete ranking, there may be multiple Pareto-

efficient allocations, as we will review in the next examples.

The Pareto criterion is thus fairly weak; in particular, it does not take any equity consideration into account.

Putting it informally, if we compare an allocation x′ ∈ X, in which all the agents are doing quite well, to another

x ∈ X in which an agent is doing just slightly better and everyone else is starving, the Pareto-criterion rankes x′ and

x equally.

The good things about the Pareto criterion are that it is objective (its definition is free from ethical/philosophical

speculations), and totally relies on subjective utility. The main alternative approach, that takes into account equity

concerns, is to define a social welfare function W : X → R that explicitly states the objectives of the planner: of

course, the choice of W reflects the philosophical and political view of the scholar. Note that, according to some of the

main social welfare functions, Pareto-inefficient allocations may dominate Pareto-efficient ones: this contrast

between the Pareto criterion and other criteria to rank social choices is sometimes denoted as the equity-efficiency

trade-off.
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Example. Suppose i = 1, 2 and {a; b; c} ∈ X.

Also,

U1(a) = 10; U1(b) = 21; U1(c) = 20

U1(a) = 10; U1(b) = −10; U1(c) = 20

You can see that, in this case, c strictly Pareto dominates a, while b is Pareto-equivalent with respect to both a

and c. Therefore, c and b are Pareto-efficient, a is Pareto-inefficient. This holds despite the fact that b makes i = 1

just a little better off than c and has a huge negative impact on i = 2.

Exercise. Suppose i = 1, 2 are dividing a cake of size S = 100 and call xi the slice of agent i. An allocation x ∈ X

is any (x1, x2) such that x1 + x2 ≤ 1. What is the set of Pareto-efficient allocations? Is (0, 100) a Pareto-efficient

allocation?

Edgeworth’s box (hints). Consider now the situation in which two agents exist, say i = 1, 2, and two goods

m = A,B. Denote by xim a level of consumption of good m by agent i.

Suppose that there exists one unit of each good. This means that for each m ∈ M the following feasibility

constraint exists:

x1m + x2m ≤ 1.

Suppose also that each consumer has (strictly) well-behaved preferences for any (xiA, xiB) ∈ Xi represented by

Ui : Xi → R.
Now, you are asked to play the part of a benevolent central planner that can decide to assign any feasible distribution

of each good m to the agents.

The Pareto criterion allows us to identify a restricted set of allocations to choose from: indeed, if we are free to

select any feasible allocation with no further constraint, there is no reasonable motivation (i.e. no monotonic social

welfare function) to select any Pareto-dominated allocation.

We are going to prove in class, graphically, that all the allocations such that the indifference curves of the two

agents have the same slope are Pareto-efficient. The set of all these allocations is called the contract curve of the

economy.

5.2 Uncertainty

Expected utility. Suppose that the agent, when taking a choice x ∈ X, is uncertain about her payoff outcome. In

particular, the value of each x depend from something that is stochastic and that she cannot control.

For example, X = {Y es;No} can be the choice whether to buy or not an umbrella, when the agent is uncertain

about tomorrow’s weather.

A choice x taken under conditions of uncertainty is called a lottery. We say that the realized utility of a lottery x

depends on the state of the world being ω ∈ Ω: any ω is a full description of all those random, relevant things that

the agent does not know when taking a choice, and that will be realized only later, when the choice is irreversible. In

the example, Ω = {Rainy;Sunny} is the set of possible states of the weather tomorrow.

For any choice x ∈ X, the agent’s ex-post utility is denoted as u(X,ω), which is the utility of x provided that

ω is the realization of the underlying uncertainty. If the umbrella costs 10 but getting wet from rain has utility −20,

the agent’s ex-post utility function is:

U(Y ;R) = −10; U(Y ;S) = −10; U(N ;R) = −20; U(N ;S) = 0
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The standard theory of choice under uncertainty assumes that the agent is endowed with an assessment of the

probability that each ω will happen: denote as pω ∈ (0, 1) the probability that the agent allocates to the state ω: this

is her prior probability for state ω. Clearly, it must hold that
∑

ω pω = 1.

For example, if it is equally likely that it rains or not, pS = pR = 0.5.

It is usually assumed then that the agent’s evaluation of a choice x can be expressed in a convenient way, as a Von

Neumann-Morgenstern (VNM) expected utility function. The (VNM) expected value U(x) of choice x ∈ X is

defined as the expected value of the agent’s ex-post utility when taking x ∈ X. Then

U(x) =
∑
ω

pωu(x, ω)

or, the weighted sum of ex-post payoffs in each ω according to their prior probability pω.

In the example,

U(Y ) = 0.5 · (−10) + 0.5 · (−10) = −10

U(N) = 0.5 · (−20) + 0.5 · 0 = −10

Then, the standard behavioral rule assumed in microeconomics is that, when proposed with various lotteries, the

agent selects the one maximizing her expected utility. In the example with pS = pR = 0.5 the agent is indifferent

between buying or not the umbrella.

Exercise.

• What is the optimal choice of the agent in our example, if pS = 0.3? What if pS = 0.7?

Example: a monetary lottery. Consider the following situation: an agent has an initial amount of money L and

must decide whether to take or not a bet, i.e. a lottery over monetary outcomes denoted by:

x =

L+ α w.p. p ∈ (0, 1)

L− β w.p. 1− p
.

The bet returns a positive payment α > 0 with probability p ∈ (0, 1) and a negative payment −β with probability

(1− p). The expected value of the lottery x is therefore L+ pα+ (1− p)β.

The lottery is said to be fair if

pα+ (1− p)β = 0

meaning that, in expectation, the final money holdings of the agent are as worth as her initial holdings.

Common sense suggests that the agent is not indifferent between an uncertain lottery and a certain payment having

the same expected value: apart from expected value, risk is an important dimension of the agent’s preferences.

It is reasonable to think that the agent, in front of an uncertain monetary outcome, is willing to give away some

money (in expectation) in order to reduce her risk: this is the motive for trade insurance markets. The aversion

of the agent against taking risks is unsurprisingly called risk-aversion: an agent is risk-averse when, provided two

lotteries with the same expectation and different distribution of payments, the agent prefers the one that is less

uncertain.

In the rest of the lecture, we show that the agent’s risk aversion arises if (and only if) money has decreasing

marginal utility for the agent.
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Bernouilli utility function and risk-aversion. The agent’s utility for money is represented by some continuous

and differentiable real function u : R → R, that is called a Bernouilli utility function and, for monetary lotteries,

coincides with the agent’s ex-post utility function.

The utility of not taking a bet is U0 = u(L), which is the certain value of L monetary units.

The utility of accepting a lottery x is represented by the following Von Neumann-Morgenstern (VNM) expected

utility function:

U(x) = p u(L+ α) + (1− p)u(L− β)

that represents the expected value of the lottery x.

For any lottery x, it is possible to define L∗(x) as follows:

u(L∗(x)) = U(x)

so that, for any lottery x, L∗(x) represents the certain amount of money that makes the agent indifferent between

taking the lottery x or the certain payment L∗(x). This called the certainty equivalent of x.

In general, it can be shown that, if x is non-degenerate (meaning that it does not put all the probability on a

certain payment), whenever u is strictly concave, the certainty equivalent L∗(x) is lower than the expected

value of x.

This means that the agent that faces a risk x with expected value L is willing to accept a certain payment L∗(x) < L

in exchange for the lottery, meaning that she is available to pay any monetary price up to L−L∗(x) in order to hedge

against the risk in x. The value L− L∗(x) is called the risk premium of the agent for lottery x.

If u is strictly concave the agent is therefore said to be risk-averse.

When u is linear the agent is risk-neutral: in this case, L∗(x) = L for any lottery and the agent’s insurance is

not a motive for trade. The agent would not give up any amount of her expected income to reduce risk. In this

case, the agent is indifferent among all lotteries having the same expectation.

In class, we will explore (analytically and graphically) the intuition behind the result.

Exercise.

• Consider the set of all lotteries having expected value L = 1 and assume u′′0. Show analytically that the agent’s

favorite lottery is degenerate on one payment.
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