Statistics Pre-course
 Part 2
 Fundamentals of Probability

 Alfonso Russo

 Alfonso Russo
 Department of Economics and Finance
 Tor Vergata University of Rome

September 2023

Part II Syllabus

1 Basic definitions and recap of Set Theory
2 Random Variables
3 Discrete Probability Distributions
4 Continuous Probability Distributions
5 Expected value and Variance of a Random Variable
6 Main Probability Distributions (Bernoulli, Binomial, Poisson, Uniform, Normal, Exponential, Student-t ...)

7 Basics of Asymptotics (Central Limit Theorem, Law of Large Numbers)

We call a phenomenon random if we are uncertain about its outcome

Probability allows us to deal with randomness, by quantifying uncertainty and measuring the chances of possible outcomes

Typically, the randomness we have to deal with comes from the sampling procedure: when we observe data, their values comes from the units that we randomly select

■ The moment when it will first start rain tomorrow

- The number of tweets Trump is going to post tomorrow
- The result of a football match

■ Tomorrow's price of a stock

The Basic ingredients

There follows some basic definitions we are going to use in dealing with randomness
\square Event space: the set of all possible outcomes. Its elements are exhaustive (no possible outcome is left out) and mutually exclusive (only one event can occur)

- Event: a subset of the Sample Space corresponding to one or more possible outcomes
- Probability: the measure of how likely each of the elements of the sample space is

An evergreen (albeit boring) Example

Random phenomenon: throw of a fair die

■ Event space: all of the possible outcomes
■ $\Omega=\{1,2,3,4,5,6\}$
\square Event: "the die returns an even number"
■ $E=\{2,4,6\}$

- Probability:
- $\mathbb{P}(E)=\frac{3}{6}=\frac{1}{2}$

Set Theory

■ Events are mathematically treated as Sets.

- Sets can be finite (contain a finite number of objects) or infinite (consist of infinite elements).
\square The cardinality of a given set is the measurement of objects that the set contains.
E.g. if $E=\{1,2,3\}$ then the cardinality of E, denoted as $\# E=3$.

RECAP OF SET THEORY

BASIC OPERATIONS ON SETS

Consider a generic set A included in an event space Ω

RECAP OF SET THEORY

BASIC OPERATIONS ON SETS
Complement: (A^{c} or \bar{A}) everything that is not in A

Example: $A=$ "the die returns an even number"; $A^{c}=$ "the die returns an odd number"

RECAP OF SET THEORY

BASIC OPERATIONS ON SETS

Intersection: $(A \cap B)$ everything that is both in A and B

Example: $A=$ "the die returns an even number"; $B=$ "the die returns a number less

$$
\text { than } 5^{\prime \prime} \Longrightarrow A \cap B=\{2,4\}
$$

RECAP OF SET THEORY

BASIC OPERATIONS ON SETS

Intersection: $(A \cap B)$ everything that is both in A and B

Example: $A=$ "the die returns an even number"; $B=$ "the die returns a 5 "

$$
\Longrightarrow A \cap B=\emptyset
$$

A and B are disjoint

RECAP OF SET THEORY

BASIC OPERATIONS ON SETS

Union: $(A \cup B)$ everything that is either in A in B or both

Example: $A=$ "the die returns an even number"; $B=$ "the die returns a 5 "

$$
\Longrightarrow A \cup B=\{2,4,5,6\}
$$

Probability Axioms
AND SOME TRIVIAL CONSEQUENCES

Given a generic set A in an event space Ω
■ $0 \leq \mathbb{P}(A) \leq 1$

- $\mathbb{P}(\Omega)=1$

■ $\mathbb{P}(\emptyset)=0$

As a consequence
■ $\mathbb{P}\left(A^{c}\right)=1-\mathbb{P}(A)$
$\square \mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)$
\square If A and B are disjoint then $\mathbb{P}(A \cap B)=0$. Hence $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)$

Exercise

■ In a sample of 100 college students, 60 said that they own a car, 30 said that they own a stereo, and 10 said that they own both a car and a stereo.

- Compute the probability that a student owns a car but not a stereo.
- Compute the probability that a student owns either a car or a stereo.
\square Depict this information on a Venn diagram.

■ Let C representing the event "the student owns a car". Let D be the event "the student owns a stereo".

■ We know that $\mathbb{P}(C)=0.6, \mathbb{P}(D)=0.3$ and $\mathbb{P}(C \cap D)=0.1$.
■ $\mathbb{P}($ "car but NOT stereo" $)=\mathbb{P}(C)-\mathbb{P}(C \cap D)=0.6-0.1=0.5$.
$\square \mathbb{P}($ "car OR stereo" $)=\mathbb{P}(C \cup D)=\mathbb{P}(C)+\mathbb{P}(D)-\mathbb{P}(C \cap D)=0.6+0.3-0.1=0.8$

How do we define probability?

■ Classical approach: assigning probabilities based on the assumption of equally likely events

- Frequency approach: assigning probabilities as the limit of the relative frequency of the event assuming having observed infinite repetitions of the random experiment

■ Subjective approach: assigning probabilities based on assignor's judgment or external information

Regardless of the followed approach, probability is still a measure of uncertainty. In other words, it quantifies how much we do not know and it strongly depends on the information available about the random phenomenon.

Probability and Relative Frequencies

- The probabilistic relative frequency of an event's occurring is the proportion of times the event occurs over a given number of trials. If A is the event of interest, then the probabilistic relative frequency of A, denoted as $\mathbb{P}(A)$, is defined as

$$
\mathbb{P}(A)=\frac{\text { number of occurrences }}{\text { number of trials }}
$$

\square Among the first 43 Presidents of the United States, 26 were lawyers. What is the probability of the event $A=$ "selecting a President who is also a lawyer"?

$$
\mathbb{P}(A)=\frac{26}{43} \approx 0.605
$$

\square Is there an intruder? Why?

- Choosing at random an even number from 1 to 10.
- Getting a diamond card from a deck of 52 cards.

■ Drawing a red ball from a jar of 500 blue balls.
■ Pick exactly our Sun at random from a jar with the names of all the Stars in the observable universe.

■ In a room there are 6 volleyball players, 4 basketball players and 10 football players.
If one of them is selected at random:

- what is the probability that the selected one is an athlete?
- what is the probability that the selected one is either a volleyball or a football player?
\square what is the probability that the selected one is not a basketball player?
What is the probability that an Italian newborn is a girl?

Conditional Probability

Probability is a measure of uncertainty on the result of a random experiment. Therefore, any additional information on its outcome affects it.
\square Let A and B be two events. If we knew that B happened, we could update the probability of A as follows

$$
\begin{equation*}
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \tag{1}
\end{equation*}
$$

Exercise: Back to the students, find the probability that a Student own a stereo given possession of a car.

If knowing about an event B does not affect our probability evaluation of another event A we say that A and B are independent.

$$
\begin{equation*}
\mathbb{P}(A \mid B)=\mathbb{P}(A) \tag{2}
\end{equation*}
$$

Combining this notion with the definition of conditional probability, we can derive the factorisation criterion to assess if two events are independent

$$
\begin{equation*}
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}=\mathbb{P}(A) \Longrightarrow \mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B) \tag{3}
\end{equation*}
$$

\square Problem I: two coins are tossed. Each coin has two possible outcomes, head (H) and tail (T).

- Determine the event space and its size
- Find the probability of the event $A=$ "the faces appearing on the two coins are different"

■ Find the probability of the event $B=$ "the faces appearing on the two coins are two heads"
\square Problem II: which of the following numbers cannot be a probability?
10.5

2-0.001
31
40
51.01
\square Problem III: two fair dice are rolled. Find the probabilities of the following events

- the sum is equal to 1
- the sum is equal to 4
\square the sum is less than 13
- Problem IV: a card is drawn at random from a deck of 52 cards. Find the probabilities of the following events
- the card is a 3 of diamond
- the card is a queen

Combinatorics

- To compute probabilities we might often need a method to assess in how many different ways a certain phenomenon can happen. E.g. "how many times will I obtain two Heads in two tosses of a coin?".
\square The table of all the 4 possible outcomes.

1	H	H
2	H	T
3	T	H
4	H	H

\square Combinatorics is a branch of mathematics that is about counting.

FUNDAMENTAL PRINCIPLE OF COMBINATORICS

If you have an experiment with n possible outcome and add a second experiment with m possible outcomes, then the combination of the two experiments has $n \times m$ possible outcomes.

■ In the previous example: each coin toss has two possible outcomes; then two tosses of a coin have 2×2 possible outcomes.
\square Imagine there are 9 students attending the Statistics course. Suppose further that there are 9 chairs available positioned on a straight line where the students can sit. How many different lines can be formed by changing the position of the students?

- The first student can choose his sit in 9 different ways, the second has 8 possible choices, the third can sit in only 7 alternative ways and so on. Therefore, there are

$$
9 \times 8 \times 7 \times 6 \times \ldots \times 1=9!
$$

possible ways to place 9 students on a line.

Permutations

```
Permutation OF SET ELEMENTS
Given a set of }n\mathrm{ elements, a given ordering of its components is a permutation.
There are n! possible permutations of }n\mathrm{ elements.
```

■ Suppose we want to place 23 Students on 23 chairs in a Maths class. If you have 4 classes a week and there are 52 weeks in one year, how long would it take to get through all the possible sit permutation?

Permutation of set elements

Given a set of n elements, a given ordering of its components is a permutation.
There are n ! possible permutations of n elements.

- Suppose we want to place 23 Students on 23 chairs in a Maths class. If you have 4 classes a week and there are 52 weeks in one year, how long would it take to get through all the possible sit permutation?

Answer: 10 million times the current age of the Universe!

- Suppose again we have $n=9$ Students but this time we have to place them on $k=6$ chairs only. How many ways are there to dispose these students on the available chairs regardless of the ordering?

Combinations

Given a set of n elements, a combination is a subset of k elements chosen without repetition and regardless of their ordering. The number of possible combinations of k elements out of a total of n is given by

$$
\frac{n!}{(n-k)!k!}=\binom{n}{k}
$$

Typically, we are not interested in a single outcome or events themselves but in a function of them

A random variable is any function from the event space to the real numbers

■ Examples:

- Toss a coin three times and count the tails
\square Roll two dice and sum the values on the faces

A random variable is any function from the event space to the real numbers.

- X the random variable: the random function before it is observed
$\square x$ a realization of the random variable: the number we observe
$\square \mathcal{X}$ the support of the random variable: the set of the possible values that X can assume
- Example: toss a coin three times and count the number of heads

■ $\mathcal{X}=\{0,1,2,3\}$

Distribution of a Random Variable

Toss a coin three times. X is the random variable representing the number of tails

The distribution of the random variable p_{x} is a just a convenient way to summarize outcomes probabilities.

Exercise

M\&M sweets are of varying colours that occur in different proportions. The proportions are as follows:
blue $=0.3$, red $=0.2$, yellow $=0.2$, green $=0.1$, orange $=0.1, \tan =$?
You draw an M\&M at random from the package:
\square Determine the value of the missing proportion
\square Find the probability of getting either a blue or a red one
\square Find the probability of getting one which is not yellow
\square Find the probability of getting one which neither orange nor tan

- Find the probability of getting one which is either blue or red or yellow or orange or green or tan

Distribution of a Discrete Random Variable

DISCRETE $=$ HOW MANY

When \mathcal{X} is countable, X is said to be a discrete random variable and it is characterised by:
\square Probability mass function

$$
\begin{equation*}
p_{x}=\mathbb{P}(X=x) \quad \forall x \in \mathcal{X} \tag{4}
\end{equation*}
$$

\square Cumulative distribution function

$$
\begin{equation*}
F_{X}(x)=\mathbb{P}(X \leq x)=\sum_{y \leq x} \mathbb{P}(X=y)=\sum_{y \leq x} p_{y} \tag{5}
\end{equation*}
$$

Note: statements like $X=1$ or $X \leq 2$ are events and we can use unions, intersections, complements are all the operations we have seen before!

Example

Consider the example of tossing a coin three times

- What is the probability of getting exactly 1 head? $p_{1}=3 / 8$
\square What is the probability of getting at most 2 heads?
$\mathbb{P}(X \leq 2)=F_{X}(2)=p_{0}+p_{1}+p_{2}=7 / 8$
- What is the probability of not getting 1 head?
$\mathbb{P}(X \neq 1)=\mathbb{P}\left[(X=1)^{c}\right]=1-\mathbb{P}(X=1)=1-p_{1}=5 / 8$
What is the probability of at least 2 heads?

$$
\mathbb{P}(X \geq 2)=1-\mathbb{P}(X \leq 1)=1-F_{X}(1)=1-\left(p_{0}+p_{1}\right)=4 / 8
$$

\square What is the probability of getting either 0 or 2 heads?

$$
\mathbb{P}(X=2 \cap X=0)=\mathbb{P}(X=2)+\mathbb{P}(X=0)=p_{2}+p_{0}=4 / 8
$$

\square Probability mass function

- $p_{x} \geq 0$
- $p_{x} \leq 1$
- $\sum p_{x}=1$
- Cumulative distribution function

■ $0 \leq F(X) \leq 1$

- $F(X)$ is non-decreasing
- $F(X)$ is right-continuous

ExERCISE

- A lottery is organised each year in Manchester. A thoudand tickets are sold at the price of $1 £$ each. Each ticket has the same probability of winning the lottery. First price is set at $300 £$, second price at $200 £$ and third price is $100 £$.
\square Let \mathcal{X} denote the gain from purchasing one ticket. Construct the distribution of \mathcal{X}.
Find the probability of winning any money from the lottery.

Example

Suppose a random variable X has the following probability distribution

x	1	3	4	7	9	10	14	18
$\mathbb{P}(X=x)$	0.11	0.07	0.13	0.28	0.18	0.05	0.12	$?$

- Fill in the missing value
\square Write down the distribution function
- Evaluate the following probabilities:

■ X is at least 10

- X is more than 10
- X is less than 4

Distribution of a Continuous Random Variable
CONTINUOUS $=$ HOW MUCH

When \mathcal{X} is not countable, the random variable X is said to be continuous.
If \mathcal{X} is not countable, is not possible to put mass on any values of \mathcal{X}, meaning that

$$
\begin{equation*}
\mathbb{P}(X=x)=0 \quad \forall x \in \mathcal{X} \tag{6}
\end{equation*}
$$

Cumulative distribution function:

$$
\begin{equation*}
F_{X}(x)=\mathbb{P}(x \leq x)=\int_{-\infty}^{x} f_{X}(x) d x \quad \forall x \in \mathcal{X} \tag{7}
\end{equation*}
$$

Probability density function:

$$
\begin{equation*}
f_{X}(x)=\frac{\partial F_{X}(x)}{\partial x} \quad \forall x \in \mathcal{X} \tag{8}
\end{equation*}
$$

Properties

\square Probability density function

- $f_{X}(x) \geq 0$
$\square \int_{-\infty}^{+\infty} f_{X}(x)=1$

Cumulative distribution function

- $0 \leq F(X) \leq 1$
- $F(X)$ is non-decreasing
- $F(X)$ is right-continuous

ExERCISE

Let X be a continuous random variable with the following probability density function

$$
f_{X}(x)=\left\{\begin{array}{l}
c x(1-x) \quad \text { if } 0 \leq x \leq 1 \tag{9}\\
0 \quad \text { otherwise }
\end{array}\right.
$$

\square determine c such that this is a proper probability density function
■ evaluate $\mathbb{P}(X=0.5)$
\square evaluate $\mathbb{P}\left(X \leq \frac{1}{2}\right)$

ExERCISE

Let Y be a continuous random variable with the following cumulative distribution function

$$
F_{Y}(y)= \begin{cases}1 & \text { if } y \geq 1 \tag{10}\\ 3 y^{2}-2 y^{3} & \text { if } 0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

■ evaluate $\mathbb{P}\left(Y \leq \frac{1}{2}\right)$ using $F_{Y}(y)$

■ X discrete rv with pmf p_{x}
■ $\mathbb{P}(X \in A)=\sum_{x \in A} p_{x}$

$$
\begin{aligned}
& \text { If } A=\left\{x_{1}, \ldots, x_{k}\right\} \text { then } \\
& \mathbb{P}(X \in A)=\sum_{i=1}^{k} p_{x_{i}}
\end{aligned}
$$

- X continuous rv with pdf $f_{X}(x)$

■ $\mathbb{P}(X \in A)=\int_{A} f_{X}(x) d x$

$$
\begin{gathered}
\text { If } A=[a, b] \text { then } \\
\mathbb{P}(X \in A)=\int_{a}^{b} f_{X}(x) d x=F_{X}(b)-F_{X}(a)
\end{gathered}
$$

Comparison

DISCRETE VS CONTINUOUS

$$
\begin{gathered}
A=\left\{x_{1}, \ldots, x_{k}\right\} \\
\mathbb{P}(X \in A)=\sum_{i=1}^{k} p_{x_{i}}
\end{gathered}
$$

$$
\begin{aligned}
A & =[a, b] \\
\mathbb{P}(X \in A) & =\int_{a}^{b} f_{X}(x) d x
\end{aligned}
$$

Summaries

The distribution of a random variable fully characterize it but it may not be immediate to gain insight from it.

There is a bunch of alternatives to summarize the information contained in the distribution:

Mode: the value that is the "most likely" (maximises the density)
■ Median: the value that "splits in half" the distribution, denoted by m

$$
\begin{equation*}
\mathbb{P}(X \leq m)=\mathbb{P}(X>m)=0.5 \tag{11}
\end{equation*}
$$

The Mean or Expected Value is the "average" of the elements in the support of X, weighted by the probabilities of each outcome.

The Expected Value gives a rough idea of what to expect as the average of the observed outcomes in a large repetition of the random experiment (not what we are going to get after a single trial!!)

- X discrete rv with $\mathrm{pmf} p_{x}$

$$
\begin{equation*}
\mathbb{E}(X)=\sum_{x \in \mathcal{X}} x p_{x} \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\mathbb{E}(X)=\int_{x \in \mathcal{X}} x f_{X}(x) d x \tag{13}
\end{equation*}
$$

Properties of Expected Value

$\square \mathbb{E}(c)=c$ for any constant c
■ $\mathbb{E}[\mathbb{E}(X)]=\mathbb{E}(X)$
■ $\mathbb{E}(a X+b)=a \mathbb{E}(X)+b$
■ $\mathbb{E}[X-\mathbb{E}(X)]=0$
$\square \mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)$

Given a continuous random variable X (respectively discrete) whose expectation exists and is finite, and any function g we have that

$$
\begin{equation*}
\mathbb{E}[g(X)]=\int_{\mathcal{X}} g(x) f_{X}(x) d x \quad\left(\mathbb{E}[g(X)]=\sum_{x \in \mathcal{X}} g(x) p_{x}\right) \tag{14}
\end{equation*}
$$

Measuring Variability

The Expected Value gives a rough idea about the centre of the distribution but it does not provide any information about the dispersion of the possible observable values

Example: two investment plans that gives exactly the same expected payout; we would like to chose the one with lower variability

We need some further definitions and concepts since:
\square average deviation from the mean $\mathbb{E}[X-\mathbb{E}(X)]$ (not informative!)
\square absolute average deviation from the mean $|\mathbb{E}[X-\mathbb{E}(X)]|$ (computationally challenging)

The Variance

QUEEN OF ALL SUMMARIES

The variance of a random variable X

$$
\begin{equation*}
\mathbb{V}(X)=\mathbb{E}\left[(X-\mathbb{E}(X))^{2}\right] \tag{15}
\end{equation*}
$$

tells us how much the rv oscillates around its mean.

■ X discrete rv with pmf p_{x}

- X continuous rv with pdf $f_{X}(x)$

$$
\begin{equation*}
\mathbb{V}[X]=\sum_{x \in \mathcal{X}}[x-\mathbb{E}(X)]^{2} p_{x} \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
\mathbb{V}[X]=\int_{x \in \mathcal{X}}[x-\mathbb{E}(X)]^{2} f_{X}(x) d x \tag{17}
\end{equation*}
$$

Properties of the variance

\square always non-negative $\mathbb{V}(X) \geq 0$ and is 0 only when X is constant
■ the square root of the variance $s d(X)=\sqrt{\mathbb{V}(X)}$ is called standard deviation. It roughly describes how far the values of the random variable fall, on average, from the expected value of the distribution

- the variance is insensitive to the location of the distribution but depends only on its scale

$$
\begin{equation*}
\mathbb{V}(a X+b)=a^{2} \mathbb{V}(X) \tag{18}
\end{equation*}
$$

\square a computationally-friendlier formula for the variance

$$
\begin{equation*}
\mathbb{V}(X)=\mathbb{E}\left(X^{2}\right)-[\mathbb{E}(X)]^{2} \tag{19}
\end{equation*}
$$

(i) Show that $\mathbb{V}(X)$ can be calculated by equation (19).
(ii) Let X be the number showing if we roll a die. Calculate expected value and variance.

If we have two random variables X and Y the covariance gives us a measure of the association between them

$$
\begin{equation*}
\operatorname{Cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}(X))(Y-\mathbb{E}(Y))]=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y) \tag{20}
\end{equation*}
$$

The sign of $\mathbb{C o v}(X, Y)$ informs on the nature of the association
■ The higher $|\operatorname{Cov}(X, Y)|$ the stronger the association

Independence of Random Variables

Two random variables X and Y are independent if

$$
\begin{align*}
F_{X, Y}(x, y) & =\mathbb{P}(X \leq x \cap Y \leq y) \\
& =\mathbb{P}(X \leq x) \mathbb{P}(Y \leq y) \tag{21}\\
& =F_{X}(x) F_{Y}(y) \quad \forall x, y \in \mathbb{R}
\end{align*}
$$

Intuitively, if X and Y are independent, the value of one does not affect the other Ramark: If X_{1}, \ldots, X_{n} are independent then
$\square p_{x_{1}, x_{2}, \ldots, x_{n}}=p_{x_{1}} \cdot p_{x_{2}} \cdots p_{x_{n}}$
$\square f_{X_{1}, X_{2}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f_{X_{1}}\left(x_{1}\right) \cdot f_{X_{2}}\left(x_{2}\right) \cdots f_{X_{n}}\left(x_{n}\right)$

Factorisation Criterion

$$
\begin{equation*}
F_{X, Y}(x . y)=F_{X}(x) F_{Y}(y) \quad \forall x, y \in \mathbb{R} \tag{22}
\end{equation*}
$$

If X and Y are independent then $\mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(Y)$
As a consequence

$$
\begin{equation*}
\operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)=0 \tag{23}
\end{equation*}
$$

Watch Out: the converse is not necessarily true. If $\mathbb{C o v}(X, Y)=0$ the two random variables may still be associated.

ExErcise

(i) Prove formula (23) (iii) Let X and Y be two random variables with marginal distribution functions

$$
\begin{align*}
& F_{X}(x)= \begin{cases}0 & \text { if } x<0 \\
1-e^{-x} & \text { if } x \geq 0\end{cases} \tag{24}\\
& F_{Y}(y)= \begin{cases}0 & \text { if } y<0 \\
1-e^{-y} & \text { if } y \geq 0\end{cases} \tag{25}
\end{align*}
$$

Determine if the two random variable are independent given that

$$
F_{X, Y}(x, y)= \begin{cases}0 & \text { if } x, y<0 \tag{26}\\ 1-e^{-x}-e^{-y}+e^{-x-y} & \text { if } x, y \geq 0\end{cases}
$$

Main Probability Distributions

Often you do not have to derive the distribution of a random variable on your own.

You can choose form a catalogue of known random variables whose functions are known and deeply investigated. You then select the one that is the more adequate to the phenomenon under analysis.

Known Discrete Random Variables

- Bernoulli
- Binomial
- Poisson
\square Geometric
- Hypergeometric
- Degenerate

Bernoulli

Assume that a random experiment has two possible outcomes (typically adressed as success or failure)

The random variable X representing the result of the experiment can take either 0 or 1 as values.

We have that

- Probability of success $\mathbb{P}(X=1)=p$
- Probability of failure $\mathbb{P}(X=0)=1-p$

Example: result of an exam (pass or fail)

Bernoulli

$X \sim \operatorname{Bernoulli}(p)$

$$
X= \begin{cases}0 & \text { with probability } 1-p \\ 1 & \text { with probability } p\end{cases}
$$

Bernoulli

- $X \sim \operatorname{Bernoulli}(p)$
- Compute expected value and Variance

Bernoulli

Let X be the random variable representing the price behaviour of a Microsoft's stock.

■ $X=1$ if the price goes up

- $X=0$ if the price goes down
(assuming it cannot stay fixed)

The price can go up with probability $3 / 5$.
Then X follows a Bernoulli distribution with parameter $p=3 / 5$.

$$
X \sim \text { Bernoulli(3/5) } \quad X= \begin{cases}0 & \text { with probability } \frac{2}{5} \\ 1 & \text { with probability } \frac{3}{5}\end{cases}
$$

Binomial

Typically, we are interested in the outcome of a Bernoulli experiment on many random repetitions, rather than just one.

Example: flip a coin T times, ask N people about their political preferences

The random variable of interest then becomes $X=$ "number of successes":

$$
\begin{equation*}
X=\sum_{i=1}^{n} Y_{i} \tag{27}
\end{equation*}
$$

where Y_{1}, \ldots, Y_{n} are independent Bernoulli random variables with parameter p

- Each of the n trials has only two possible outcomes. The outcome we are interested in is called success and the other failure

■ Each trial has the same probability of success. The probability of a success is p then the probability of a failure is $1-p$.

- The n trials are independent. The result of one does not affect the results of other trials.

Then X follows a Binomial distribution with parameters n and p.

Binomial
$X \sim \operatorname{Binomial}(n, p)$

$$
p_{X}(x)=\binom{n}{x} p^{x}(1-p)^{n-x}
$$

$$
F_{X}(x)=\sum_{k \leq x} p_{X}(k)
$$

Binomial

Expected Value

$$
\begin{align*}
\mathbb{E}(X)=\sum_{x \in \mathcal{X}} x p_{x} & =\sum_{x=0}^{n} x\binom{n}{x} p^{x}(1-p)^{n-x} \\
& =\sum_{x=1}^{n} x\binom{n}{x} p^{x}(1-p)^{n-x} \\
& =\sum_{x=1}^{n} \frac{n!}{(x-1)!(n-x)!} p^{x}(1-p)^{n-x} \tag{28}\\
& =\sum_{x=1}^{n} \frac{n(n-1)!}{(x-1)!(n-x)!} p^{x}(1-p)^{n-x} \\
& =n p \sum_{z=0}^{s} \frac{s!}{z!(s-z)!} p^{z}(1-p)^{s-z}=n p
\end{align*}
$$

Binomial

Towards the variance

$$
\begin{align*}
\mathbb{E}[X(X-1)]=\sum_{x \in \mathcal{X}} x(x-1) p_{x} & =\sum_{x=0}^{n} x(x-1)\binom{n}{x} p^{x}(1-p)^{n-x} \\
& =\sum_{x=0}^{n} x(x-1) \frac{n!}{x!(n-x!)} p^{x}(1-p)^{n-x} \\
& =\sum_{x=2}^{n} \frac{n!}{(x-2)!(n-x)!} p^{x}(1-p)^{n-x} \\
& =n(n-1) p^{2} \sum_{x=2}^{n} \frac{(n-2)!}{(x-2)!(n-x)!} p^{x-2}(1-p)^{n-x} \\
& =n(n-1) p^{2} \sum_{x=2}^{n} \frac{(n-2)!}{(x-2)!((n-2)-(x-2))!} p^{x-2}(1-p)^{(n-2)-(x-2)} \\
& =n(n-1) p^{2} \sum_{z=0}^{s} \frac{s!}{z!(s-z)!} p^{z}(1-p)^{s-z}=n(n-1) p^{2} \tag{29}
\end{align*}
$$

Binomial

Towards the variance

$$
\begin{equation*}
\mathbb{E}[X(X-1)]=\mathbb{E}\left(X^{2}-X\right)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X) \tag{30}
\end{equation*}
$$

$$
\begin{align*}
& \mathbb{E}\left(X^{2}\right)=\mathbb{E}[X(X-1)]+\mathbb{E}(X)=n(n-1) p^{2}+n p \tag{31}\\
& \mathbb{V}(X)=\mathbb{E}\left(X^{2}\right)-[\mathbb{E}(X)]^{2}=n(n-1) p^{2}+n p-(n p)^{2} \\
&=n p[n p-p+1-n p]=n p(1-p) \tag{32}
\end{align*}
$$

Bernoulli

An easy way out
Consider $X \sim \operatorname{Binomial}(n, p)$ as the sum of n independent Bernoulli random variables Y_{i}.

Remember that if $Y_{1}, \ldots, Y_{n} \sim \operatorname{Bernoulli}(p)$ then $\mathbb{E}\left[Y_{i}\right]=p$ and $\mathbb{V}\left[Y_{i}\right]=p(1-p) \quad \forall i$, which is enough to prove

$$
\begin{equation*}
\mathbb{E}(X)=\mathbb{E}\left[\sum_{i=1}^{n} Y_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left(Y_{i}\right)=n p \tag{33}
\end{equation*}
$$

Moreover, since Y_{1}, \ldots, Y_{n} are independent we have that

$$
\begin{equation*}
\mathbb{V}(X)=\mathbb{V}\left[\sum_{i=1}^{n} Y_{i}\right]=\sum_{i=1}^{n} \mathbb{V}\left(Y_{i}\right)=n p(1-p) \tag{34}
\end{equation*}
$$

Exercise

Garden records report that 65% of some rare plants grown there will not blossom. What is the probability that out of 10 randomly selected plants, 6 will have flowers?

Katniss Everdeen (The Hunger Games) is know to hit the target 4 times out of 5 . If she shots 6 arrows, what is the probability of:
© exactly 4 hits
© at least 1 hit

Geometric Distribution

The Geometric Distribution gives the distribution of the number X of Bernoulli trials needed to get one success

If the probability of success in each trial is p, then the probability of observing a success on the x th trial (after $x-1$ failures) is

$$
\begin{equation*}
\mathbb{P}(X=x)=(1-p)^{x-1} p \tag{35}
\end{equation*}
$$

The Geometric distribution is a suitable model for a random variable X if
$\square X$ is the result of an experiment which requires a sequence of independent trials

- There are only two possible outcomes for each trials (success or failure)
- Each trial has the same probability of success p

Geometric

$X \sim \operatorname{Geometric}(p)$

$$
p_{X}(x)=\mathbb{P}(X=x)=(1-p)^{x-1} p
$$

$$
F_{X}(x)=1-(1-p)^{x}
$$

$$
\begin{align*}
\mathbb{E}(X)=\sum_{x \in \mathcal{X}} x p_{X}(x) & =\sum_{x=0}^{\infty} x(1-p)^{x-1} p \\
& =\sum_{x=0}^{\infty} x(1-p)^{x-1} p=p \sum_{x=0}^{\infty} x(1-p)^{x-1} \tag{36}\\
& =p \sum_{x=0}^{\infty}-\frac{d}{d p}(1-p)^{x}=-p \frac{d}{d p} \sum_{x=0}^{\infty}(1-p)^{x}
\end{align*}
$$

Using the rule for geometric series we get

$$
\begin{equation*}
\mathbb{E}(X)=-p \frac{d}{d p} \frac{1}{p}=-p-\frac{1}{p^{2}}=\frac{1}{p} \tag{37}
\end{equation*}
$$

Variance

$$
\begin{align*}
\mathbb{E}\left(X^{2}\right)=\sum_{x=0}^{\infty} x^{2} p_{X}(x) & =\sum_{x=0}^{\infty} x^{2}(1-p)^{x-1} p \tag{38}\\
& =p \sum_{x=0}^{\infty} x^{2}(1-p)^{x-1}
\end{align*}
$$

Substitute $q=(1-p)$ and solve the infinite series

$$
\begin{align*}
\mathbb{E}\left(X^{2}\right) & =p \sum_{x=0}^{\infty} x^{2} q^{x-1}=p \frac{1+q}{(1-q)^{3}} \tag{39}\\
& =p \frac{2-p}{p^{3}}=\frac{2-p}{p^{2}}
\end{align*}
$$

Variance

$$
\begin{gather*}
\mathbb{V}(X)=\mathbb{E}\left(X^{2}\right)-[\mathbb{E}(X)]^{2} \tag{40}\\
\mathbb{V}(X)=\frac{2-p}{p^{2}}-\frac{1}{p^{2}}=\frac{1-p}{p^{2}} \tag{41}
\end{gather*}
$$

Exercises

The lifetime risk of developing psoriasis is about 1 out of $78(1.28 \%)$. Let X be the number of people you ask before one says she suffers of psoriasis.

What is the probability that you ask 9 people before one she has psoriasis?

- Find the mean and standard deviation

A baseball player has a batting average of 0.320 .
What is the probability that he gets the first hit on the third trip to bat?

- How many trips to the bat do you expect before the hitter gets her first hit?

Poisson

The Poisson distribution is known as the distribution of rare events

It is typically used to model counts, i.e. the number of events in a given interval of time (or space)

Examples:
\square number of clients calling a call centre
\square number of defects of a square meter of manufactured goods
\square number of patience arrived at the A\&E in the last hour
■ number of earthquakes in a year

Poisson

$X \sim \operatorname{Poisson}(\lambda)$

$$
p_{X}(x)=\mathbb{P}(X=x)=\frac{\lambda^{x} e^{-\lambda}}{x!}
$$

$$
F_{X}(x)=\sum_{k \leq x} p_{X}(k)
$$

Poisson

$$
\begin{align*}
\mathbb{E}[X] & =\sum_{x \in \mathcal{X}} x p_{x}=\sum_{x=0}^{\infty} x \frac{\lambda^{x} e^{-\lambda}}{x!} \\
& =\sum_{x=1}^{\infty} \frac{\lambda^{x} e^{-\lambda}}{(x-1)!}=e^{-\lambda} \lambda \sum_{x=1}^{\infty} \frac{\lambda^{x-1}}{(x-1)!} \tag{42}\\
& =e^{-\lambda} \lambda \sum_{z=0}^{\infty} \frac{\lambda^{z}}{z!}=\lambda
\end{align*}
$$

Recall:

$$
\begin{equation*}
e^{\alpha}=\sum_{s=0}^{\infty} \frac{\alpha^{s}}{s!} \tag{43}
\end{equation*}
$$

Poisson

Towards the variance

$$
\begin{align*}
& \mathbb{E}[X(X-1)]=\sum_{x \in \mathcal{X}} x(x-1) p_{x}=\sum_{x=0}^{\infty} x(x-1) \frac{\lambda^{x} e^{-\lambda}}{x!} \\
&=\sum_{x=1}^{\infty} x(x-1) \frac{\lambda^{x} e^{-\lambda}}{x!}=e^{-\lambda} \lambda^{2} \sum_{x=2}^{\infty} \frac{\lambda^{x-2}}{(x-2)!} \tag{44}\\
&=e^{-\lambda} \lambda^{2} \sum_{z=0}^{\infty} \frac{\lambda^{z}}{z!}=\lambda^{2} \\
& \mathbb{E}[X(X-1)]=\mathbb{E}\left[X^{2}-X\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X] \tag{45}\\
& \mathbb{E}\left[X^{2}\right]=\mathbb{E}[X(X-1)]+\mathbb{E}[X]=\lambda^{2}+\lambda \tag{46}\\
& \mathbb{V}[X]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}=\lambda^{2}+\lambda-\lambda^{2}=\lambda \tag{47}
\end{align*}
$$

ExERcIse

Suppose it has been observed that, on average, 180 cars per hour pass a specified point on a particular road in the morning rush hour. Due to impending roadworks it is estimated that congestion will occur closer to the city centre if more than 3 cars pass the point in any one minute. What is the probability of congestion occurring?

Known Continuous Random Variables

■ Uniform

- Exponential

■ Normal
■ Student's t
■ Gamma
■ Beta

Continuous Uniform Distribution

- A random variable X is uniformly distributed between a and b, if X take value in any interval of a given size with equal probability

■ The probability of X being in an interval is proportional to the length of the interval

Example: the arrival of the bus between the moment you get to the stop and midnight

UNIFORM
$X \sim \operatorname{Unif}(a, b)$

$$
f_{X}(x)=\frac{1}{b-a}
$$

$$
F_{X}(x)=\frac{x-a}{b-a}
$$

$$
\begin{align*}
\mathbb{E}[X]=\int_{a}^{b} x f_{X}(x) d x & =\int_{a}^{b} x \frac{1}{b-a} d x \\
& =\frac{1}{b-a} \int_{a}^{b} x d x \tag{48}\\
& =\frac{1}{b-a}\left[\frac{x^{2}}{2}\right]_{a}^{b} \\
& =\frac{1}{b-a} \frac{b^{2}-a^{2}}{2}=\frac{a+b}{2}
\end{align*}
$$

Exercise: Prove that $\mathbb{V}[X]=\frac{(b-a)^{2}}{12}$
The current (in mA) measured in a piece of copper wire is known to follow a uniform distribution over the interval $[0,48]$. Write down the formula for the probability density function of the random variable X representing the current. Calculate the mean and variance of the distribution and find the cumulative distribution function.

Exercise

The amount of time, in minutes, that a person will wait at the post office is uniformly distributed between $[0,25]$.

- Find mean and standard deviation
- What is the probability of waiting less than 16.5 minutes?
- Find the $90 t h$ percentile

The battery duration x of an iPhone is known to be uniformly distributed between [20, 40] years.

- Write the probability density function
\square Find mean and variance
- Find the cumulative distribution function
\square What is the probability that the battery of an iPhone will last less than 35 years?

A random variable X follows an Exponential Distribution with parameter $\lambda>0$ if its probability density function can be written as

$$
\begin{equation*}
f_{X}(x)=\lambda e^{-\lambda x} \quad x \geq 0 \tag{49}
\end{equation*}
$$

The intuition behind an Exponential random variable is that the larger is a value, the less likely it is.

The Exponential distribution is typically used to model time until some specific event and the parameter λ affects the mean time between events.

Example: the amount of time until an earthquake strikes, the amount of money customers are going to spend in one trip to supermarket ...

Exponential

$$
X \sim \operatorname{Exp}(\lambda) \quad \lambda>0 \text { and } x \geq 0
$$

$$
f_{X}(x)=\lambda e^{-\lambda x}
$$

$$
F_{X}(x)=1-e^{-\lambda x}
$$

Expected Value

$$
\begin{align*}
\mathbb{E}[X] & =\int_{0}^{\infty} x f_{X}(x) d x=\int_{0}^{\infty} x \lambda e^{-\lambda x} d x \tag{50}\\
& =\lambda \int_{0}^{\infty} x e^{-\lambda x} d x
\end{align*}
$$

Integrating by parts $f(x)=x, g^{\prime}(x)=e^{-\lambda x} \Longrightarrow f^{\prime}(x)=1 \Longrightarrow d u=d x$ and $g(x)=-\frac{e^{-\lambda x}}{\lambda}$

$$
\begin{equation*}
\mathbb{E}[X]=\lambda \int_{0}^{\infty} x e^{-\lambda x} d x=\lambda\left[-\frac{x e^{-\lambda x}}{\lambda}-\frac{e^{-\lambda x}}{\lambda^{2}}\right]_{0}^{\infty}=\frac{1}{\lambda} \tag{51}
\end{equation*}
$$

Exercise

Find the variance

If jobs arrive every 15 seconds on average, $\lambda=4$ per minute, what is the probability of waiting less than or equal to 30 seconds, i.e 0.5 min ?

The amount of time Tor Vergata's researchers in Statistics spend studying Statistics can be modelled by an exponential distribution with the average time equal to 15 minutes (far way more per day!!). Write the distribution, state the probability density function. Find the probability that a randomly selected researcher spends one to two hours studying statistics.

Gamma Distribution

A random variable X follows a Gamma Distribution if its probability density function can be written as

$$
\begin{equation*}
f_{X}(x)=\frac{1}{\Gamma(\alpha)} \beta^{\alpha} x^{\alpha-1} e^{-\beta x} \quad x \geq 0 \tag{52}
\end{equation*}
$$

where $\Gamma(\alpha)=\int_{0}^{\infty} t^{\alpha-1} e^{-t} d t$ is the Gamma function

- Alternative parametrisations:
- $f_{X}(x \mid k, \theta) ; f_{X}(x \mid \theta, \mu)$

■ Widely used in Econometrics to model waiting times
\square Bayesian Statistics: conjugacy and relationship with the Inverse-Gamma distribution

Gamma

$$
X \sim \operatorname{Gamma}(\alpha, \beta) \quad \alpha, \beta>0 \text { and } x \geq 0
$$

$$
f_{X}(x)=\frac{1}{\Gamma(\alpha)} \beta^{\alpha} x^{\alpha-1} e^{-\beta x}
$$

$$
F_{X}(x)=\frac{1}{\Gamma(\alpha)} \gamma(\alpha, \beta x)
$$

where $\gamma(\alpha, \beta x)$ is the lower incomplete gamma function

Expected Value

$$
\begin{align*}
\mathbb{E}[X]=\int_{0}^{\infty} x f_{X}(x) d x & =\int_{0}^{\infty} x \frac{1}{\Gamma(\alpha)} \beta^{\alpha} x^{\alpha-1} e^{-\beta x} d x \\
& =\frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} x^{\alpha} e^{-\beta x} d x \tag{53}
\end{align*}
$$

Substitute $t=\beta x \Longrightarrow d x=d t / \beta$

$$
\begin{align*}
\mathbb{E}[X]=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty}\left(\frac{t}{\beta}\right)^{\alpha} e^{-t} \frac{d t}{\beta} & =\frac{\beta^{\alpha}}{\beta^{\alpha+1} \Gamma(\alpha)} \int_{0}^{\infty} t^{\alpha} e^{-t} d t \\
& =\frac{1}{\beta \Gamma(\alpha)} \Gamma(\alpha+1) \tag{54}\\
& =\frac{\alpha}{\beta}
\end{align*}
$$

Variance

$$
\begin{align*}
& \mathbb{E}\left[X^{2}\right]= \int_{0}^{\infty} x^{2} \frac{1}{\Gamma(\alpha)} \beta^{\alpha} x^{\alpha-1} e^{-\beta x} d x=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} x^{\alpha+1} e^{-\beta x} d x \\
&= \frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty}\left(\frac{t}{\beta}\right)^{\alpha+1} e^{-t} \frac{d t}{\beta} \tag{55}\\
&=\frac{1}{\beta^{2} \Gamma(\alpha)} \int_{0}^{\infty} t^{\alpha+1} e^{-t} d t \\
&= \frac{\alpha(\alpha+1)}{\beta^{2}} \\
& \mathbb{V}[X]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}=\frac{\alpha(\alpha+1)}{\beta^{2}}-\frac{\alpha^{2}}{\beta^{2}} \tag{56}\\
&=\frac{\alpha}{\beta^{2}}
\end{align*}
$$

Normal Distribution

The Normal or Gaussian is the queen of all random variables.

- It is helpful in representing many natural and economic phenomena
\square It can be used to approximate other distributions
- It is key to inference in sampling

A traditional parametrisation
$\mathbb{E}[X]=\mu \quad \mathbb{V}[X]=\sigma^{2}$

Normal

$X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \quad \sigma>0$ and $\mu \in \mathbb{R}$

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

$$
F_{X}(x)=\int_{-\infty}^{t} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(t-\mu)^{2}} d t
$$

Normal

Varying mu
$X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \quad \sigma>0$ and $\mu \in \mathbb{R}$

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

$$
F_{X}(x)=\int_{-\infty}^{t} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(t-\mu)^{2}} d t
$$

Normal

VARYING SIGMA
$X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \quad \sigma>0$ and $\mu \in \mathbb{R}$

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

$$
F_{X}(x)=\int_{-\infty}^{t} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(t-\mu)^{2}} d t
$$

Properties

A linear transformation of a Normal random variable is still a Normal random variable

If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ and $Y=a X+b$ then

$$
\begin{equation*}
Y \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right) \tag{57}
\end{equation*}
$$

A linear combination of Normal random variables is still a Normal random variable If X_{1}, \ldots, X_{n} are independent random variables such that $X_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)$ then

$$
\begin{equation*}
Y=\sum_{i=1}^{n} a_{i} X_{i} \sim \mathcal{N}\left(\sum_{i=1}^{n} a_{i} \mu_{i}, \sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}\right) \tag{58}
\end{equation*}
$$

Standard Normal

When $\mu=0$ and $\sigma^{2}=1$ the random variable $X \sim \mathcal{N}(0,1)$ is called a standard normal random variable and usually denoted by \mathbf{Z}

Every Normal random variable can be turned into a standard Normal via standardisation

If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ then

$$
\begin{equation*}
Z=\frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1) \tag{59}
\end{equation*}
$$

This is just a linear transformation of X, thus it is easy to show that

$$
\begin{gather*}
\mathbb{E}[Z]=\mathbb{E}\left[\frac{X-\mu}{\sigma}\right]=\frac{\mathbb{E}[X]-\mu}{\sigma}=0 \tag{60}\\
\mathbb{V}[Z]=\mathbb{V}\left[\frac{X-\mu}{\sigma}\right]=\frac{\mathbb{V}[X]}{\sigma^{2}}=1 \tag{61}
\end{gather*}
$$

Cumulative probability for z is the area under the standard normal curve to the left of z

Table A Standard Normal Cumulative Probabilities (continued)

\mathbf{z}	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549

- The time (in minutes), X, that is needed to solve this Statistics exercise is normally distributed with mean 5 and standard deviation 10 . When I solved it at home, it took me 6.2 minutes. What is the probability of a random PhD student faster than me?
$\square X$ is a normally distributed random variable with mean 30 and standard deviation 4.
- Find $\mathbb{P}(X<40)$
- Find $\mathbb{P}(X>21)$
- Find $\mathbb{P}(30<x<35)$
- Entry to a certain University is determined by a national test. The scores on this test are normally distributed with a mean of 500 and a standard deviation of 100. Tom wants to be admitted to this university and he knows that he must score better than at least 70% of the students who took the test. Tom takes the test and scores 585. Will he be admitted to this university?

