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Objectives

I understand the probability basics

I quantify random phenomena through probability

I classify different types of variables

I understand what phenomena can be modeled by binomial
distribution and how to calculate binomial probabilities

I understand what phenomena can be modeled by normal
distribution and how to calculate normal probabilities
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Finding Probabilities

I Sample Space: the set of all possible outcomes

I Event: a subset of the sample space; it corresponds to a
particular outcome or a group of possible outcomes

I The probability that event E occurs is denoted by P(E )

Experiment: Three questions. Students can answer Correctly or
Incorrectly

I Event A: student
answers all 3 questions
correctly = (CCC)

I Event B: student passes
(at least 2 correct) =
(CCI, CIC, ICC, CCC)
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What is probability?
I Classical Rule. When all outcomes are equally likely, then

P(E) =
number of outcomes in E

number of possible outcomes

Example: What is the chance of getting a head (H)? P(H) = 1/2
I Relative Frequency (Empirical Approach). Flip the coin a

very large number of times and count the number of H out of
the total number of flips,

P(E) ≈ number of outcomes in E

number of possible outcomes

Example: if we flip the given coin 10,000 times and observe 4555
heads and 5445 tails, then for that coin, P(H) 0.4555.

I Subjective Probability. It reflects personal belief which
involves personal judgment, information, intuition, etc.
Example: what is P(you will get an A in the Statistics course)?

Each student may have a different answer to the question.
Side note: Bayesian statistics is a branch of statistics that uses subjective
probability as its foundation
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Examples for Using the Classical Rule to Find the
Probability

I Find the probability that exactly one head appears in two flips of a
fair coin.
Sample Space: {(H,H), (H,T ), (T ,H), (T ,T )}
P(getting exactly one H in two flips of a fair coin) =
P({(H,T ), (T ,H)}) = 2/4 = 1/2

I Find the probability that the sum of two faces is greater than or
equal to 10 when one rolls a pair of fair dice.
Sample Space:
{(1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2),
(1, 3), (2, 3), (3, 3), (4, 3), (5, 3), (6, 3), (1, 4), (2, 4), (3, 4), (4, 4), (5, 4), (6, 4),

(1, 5), (2, 5), (3, 5), (4, 5), (5, 5), (6, 5), (1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (6, 6)}

Let S be the sum of the points in the two faces:
P(S greater than or equal to 10) =

P(S = 10) + P(S = 11) + P(S = 12) = P({(4, 6), (5, 5), (6, 4)}) +

P({(5, 6), (6, 5)}) + P({(6, 6)}) = 3/36 + 2/36 + 1/36 = 1/6
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Set Operations

I Union. A or B also written
as A ∪ B = outcomes in A
or B
P(A∪B) =

number of outcomes in A or B

total number of individual outcomes

I Intersection. A and B also
written as A ∩ B =
outcomes in A and B
P(A∩B) =

number of outcomes in A and B

total number of individual outcomes

I Complement. Ac also
written as Ā = outcomes
not in A

A and B are called mutually exclusive (disjoint) if the occurrence of outcomes
in A excludes the occurrence of outcomes in B ⇒ there are no elements in
A ∩ B and thus P(A ∩ B) = 0: A and Ā are mutually exclusive.
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Probability Properties

1. 0 ≤ P(A) ≤ 1

2. P(Ā) = 1− P(A)

3. P(A ∪ B) = P(A) + P(B)− P(A ∩ B)
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Example
Experiment: draw at random a person from the following
population

Smoker
Yes No

Gender M 100 60 160
F 10 30 40

110 90 200

I P(M) = 160/200 = 0.80 = P(F c) = 1− 0.20 = 0.80
I

P(M ∪ Yes) = 170/200 = 0.85

= P((F ∩ NO)c) = 1− 0.15 = 0.85

= P(M) + P(YES)− P(M ∩ YES) = 0.80 + 0.55− 0.50

= 0.85

I P(M ∩ YES) = 100/200 = 0.50
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Conditional Probability

I P(A | B) is interpreted as the “Probability event A happens
given that event B has happened”

I Remark: P(A | B) =
P(A ∩ B)

P(B)
and P(B | A) =

P(A ∩ B)

P(A)
⇒ P(A ∩ B) = P(B)P(A | B) = P(A)P(B | A).
Usually P(A | B) 6= P(B | A)
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Example

Experiment: draw at random a person from the following
population

Smoker
Yes No

Gender M 100 60 160
F 10 30 40

110 90 200

I P(YES | M) = P(YES ∩M)/P(M) =
(100/200)× (200/160) = 100/160

I P(NO | M) = P(NO ∩M)/P(M) = (60/200)× (200/160) =
60/160
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Example - Multiplication rule

Two cards are drawn at random from a deck (without
replacement). Compute the probabilities:
1) (1♥, 3♦); 2) I card 4♠; 3) II card 4♠; 4) P(II 4♠ | I 3♦).

Solutions

1. P(1♥, 3♦) = P(II3♦ | I1♥)P(I1♥) =
1

51

1

52

2. P(I4♠) =
1

52

3. P(II4♠) =
51

51× 52
=

1

52

4. P(II4♠ | I3♦) =
1

51

Ranalli M. Theoretical Foundations - Probabilities 11 / 27



Independent Events

I Two events A and B are independent if the probability that
one occurs is not affected by whether or not the other event
occurs

⇓

For any given probabilities for events A and B, the events are
independent if any ONE of the following are true

1. P(A ∩ B) = P(A)× P(B)

2. P(A | B) = P(A)

3. P(B | A) = P(B)

I Remark: Independent is very different from mutually exclusive. In

fact, mutually exclusive events are dependent. If A and B are

mutually exclusive events, there is nothing in A ∩ B, and

thus:P(A ∩ B) = 0 6= P(A)× P(B)
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Example
Knowing that probability of guessing correctly is 0.2 and assuming
that each answer is independent of the other...

1. What is the probability of getting 3 questions correct by
guessing? 0.008

2. What is the probability of getting 2 questions correct by
guessing? 0.032 + 0.032 + 0.032 = 0.096

3. What is the probability of getting at least 2 questions correct
by guessing? 0.032 + 0.032 + 0.032 + 0.008 = 0.104
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Example
Experiment: draw at random a person from the following
population

Smoker
Yes No

Gender M 100 60 160
F 10 30 40

110 90 200

Are the events M and YES independent?

I P(YES ∩M) = 100/200 = 0.5 6= 0.44 =
110/200× 160/200 = P(YES)× P(M)

I P(YES | M) = 100/160 6= 110/200 = P(YES)

They are not independent
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Types of Random Variables
I Random Variable: a numerical measurement of the outcome

of a random experiment (phenomenon).
I Discrete Random Variable: When the random variable can

assume only a countable (such as 0, 1, 2, . . .), sometimes
infinite, number of values (such as the number of tosses to get
the first Head when flipping a fair coin).

I Continuous Random Variable: When the random variable can
take any value in a real interval (such as height or weight of a
newborn baby).

I The probability distribution of a random variable specifies
its possible values and their probabilities
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Example

Experiment: Toss 2 coins. X = # heads.
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Discrete Random Variables
I A discrete random variable X assigns a probability P(x) to

each possible value x :
I For each x , the probability P(x) falls between 0 and 1
I The sum of the probabilities for all the possible x values equals

1
I The mean of a probability distribution, also called expected

value, for a discrete random variable is

µ =
∑

xp(x).

The expected value reflects not what we will observe in a single
observation, but rather what we expect for the average in a long run of
observations. It is not unusual for the expected value of a random
variable to equal a number that is NOT necessarily a possible outcome.

I The variance and standard deviation of a probability
distribution, denoted by the parameter σ2 and σ, respectively,
measures its variability

σ2 =
∑

x(x − E (x))2p(x), σ =
√∑

x(x − E (x))2p(x).
Larger values of σ correspond to greater spread. Roughly, σ describes
how far the random variable falls, on the average, from the mean of its
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Example

Experiment: Toss 2 coins. X = # heads.

X = x P(x)

0 0.25
1 0.50
2 0.25

I E (X ) = (0× 0.25) + (1× 0.50) + (2× 0.25) = 1

I σ =
√

(0− 1)2 × 0.25 + (1− 1)2 × 0.50 + (2− 1)2 × 0.25 =√
0.50 = 0.707
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Binomial Distribution
Conditions

I The experiment consists of n identical trials

I Each trial results to have two distinct complimentary
outcomes, a success (π) and a failure (1− π)

I The probability of success, denoted π, remains the same
from trial to trial

I The n trials are independent ⇒ the outcome of any trial
does not affect the outcome of the others

⇓

I The probability of x successes equals:

P(x) =
n!

x!(n − x)!
πx(1− π)n−x

I The mean is µ = E (X ) = nπ

I The variance is σ2 = nπ(1− π)
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Example

Knowing that 80% of voters said they voted for the White party,
what is the probability that randomly drawing (with replacement)
6 voters

1. all claim to vote for whites

2. five claim to vote for whites

3. one claim to vote for whites

Solution

1. P(6) =
6!

6!(6− 6)!
(0.80)6(0.2)6−6 = 1× 0.262144× 1 =

0.262144

2. P(5) =
6!

5!(6− 5)!
(0.80)5(0.2)6−5 = 6× 0.32768× 0.2 =

0.393216

3. P(1) =
6!

1!(6− 1)!
(0.80)1(0.2)6−1 = 6× 0.8× 0.00032 =

0.001536
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Continuous Random Variables

I It assumes values in an interval ⇒ If X is continuous
P(X = x) = 0 for any given value x

I Its probability distribution is specified by a density curve.
The probability of an interval is given by the area under the
curve over the interval

I Each interval has probability between 0 and 1 but the density
can be greater than 1. The interval containing all possible
values has probability equal to 1.

I Normal distribution is a family of continuous distributions
commonly used to model many histograms of real-life data
which are mound-shape and symmetric (for example, height,
weight, etc.).

I A normal curve has two parameters: mean µ (center of the
curve), that is also the mode and the median, and standard
deviation σ(spread about the center)

I A normal distribution with µ = 0 and σ = 1 is called a
standard normal curve, usually denoted as Z
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How to compute the probability

I The random variable has an infinite theoretical range: −∞, +∞
I f (x) cannot be negative and the total area under the curve must be 1

I f (x) it is not a probability and it can be greater than 1
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How can we compute probabilities of intervals?

Use of the cumulative probabilities of the standard normal
distribution
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How to use the Standard Normal Cumulative Table

Examples
I P(Z < 1.43) = 0.9236
I P(0 < Z < 1.43) = P(Z < 1.43)− P(Z < 0) =

0.9236− 0.5000 = 0.4236
I P(1.30 < Z < 1.54) = P(Z < 1.54)− P(Z < 1.30) =

0.9382− 0.9032 = 0.0350
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Z-Scores and the Standard Normal Distribution

I The z-score for a value x of a random variable is the number
of standard deviations that x falls from the mean: (x − µ)/σ

I For NON standard normal distributions → transform the
normal distribution into a standard normal distribution by
applying the z-score transformation

I The z-scores have the standard normal distribution, i.e. a
normal distribution with µ = 0 and σ = 1
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Example
In a population the height distribution is well approximated by a normal with

µ = 170 cm and σ = 3. Compute the probability that the height (X ) of a

person drawn at random is within:

1.

P(167 < X < 173) = P(
167− 170

3
<

X − 170

3
<

173− 170

3
)

= P(−1 < Z < 1) = P(Z < 1)− P(Z < −1) = 0.8413− 0.1587 = 0.6826

2.

P(167 < X < 170) = P(
167− 170

3
<

X − 170

3
<

170− 170

3
)

= P(−1 < Z < 0) = P(Z < 0)− P(Z < −1) = 0.5− 0.1587 = 0.3413

3.

P(170 < X < 173) = P(
170− 170

3
<

X − 170

3
<

173− 170

3
)

= P(0 < Z < 1) = P(Z < 1)− P(Z < 0) = 0.8413− 0.5 = 0.3413

4.

P(166 < X < 174) = P(−1.33 < Z < 1.33) = 0.9082− 0.0918 = 0.8164
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Empirical Rule
For any data set having approximately a bell-shaped distribution: roughly
68% of the observations lie within one standard deviation to either side of
the mean; roughly 95% of the observations lie within two standard deviations
to either side of the mean; roughly 99.7% of the observations lie within three
standard deviations to either side of the mean.
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