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1. Preliminary notions

1.1. Set theory

Definition. One of the most elementary notion in mathematics is that of a set. A set is defined

as a collection of distinct elements. These elements are typically mathematical objects such as

numbers, symbols, functions, or even other sets.

A set is defined by the elements that compose it either by listing them or by describing their

properties.

Example 1.1 If the set A contains three elements, a, b, and c, we write: A “ ta,b,cu.

By convention, the curly brackets indicate that we are defining a set and each element is

separated by a comma. We also usually prefer to use capital letters to denote a set.

Example 1.2 If the set A contains all the natural numbers greater or equal than 8 we write

A “ tx P N | x ě 8u. This notation reads: "among all x belonging to N take only those satisfying

the property x ě 8".

We use the symbol P to say "belongs to". For instance, in the first example we can say that

a P A. We sometimes also the symbol R to say that an element does not belong to a set.

A set can also contain other sets.

Example 1.3 Define two sets A “ ta,b,cu and B “ td,eu. We can define C “ tA,Bu “ tta,b,cu,td,euu.

Be careful, while A contains 3 elements and B 2 elements, the set C contains only two elements,

namely ta,b,cu and td,eu. The elements of C are sets themselves and cannot be further "broken

down".

The elements of a set do not have to be "homogeneous", that is, elements of the same nature.

Example 1.4 For instance C “ tta,b,cu,d,eu. In that case C contains the set A “ ta,b,cu and

the elements d and e.

Importantly, the order of the elements in the list describing a set is irrelevant. The set A “

ta,b,cu and the set B “ tb,c,au are the same.
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Subsets. A subset is a set of which all the elements are contained in another set B.

Definition 1.1 Let A and B be two distinct sets. If every element in A is also in B we can state that

A is a subset of B, denoted by A Ď B. Formally,

@a P A : a P A ñ a P B ô A Ď B,

where Ď reads as "is included in".

Example 1.5 Let A “ ta,b,cu and B “ ta,b,c,d,eu. Each element of A is also an element of B so

that A is a subset of B.

Example 1.6 Let A “ ta,b,c,yu and B “ ta,b,c,zu. Even if a, b, and c are both in A and B, it is

clear that y R B and so that A cannot be a subset of B. The same applies for B and z R A.

A
B

A

Figure 1: Euler diagram illustrating A Ď B.

Definition 1.2 Two sets A and B are equal, if and only if A is a subset of B and B is a subset of A.

Formally, A “ B ô A Ď B and B Ď A.

Definition 1.3 We call the empty set ∅, the unique set which contains no element at all. By

convention ∅ P A for any set S.

Example 1.7 Define A “ tx P R | x2 ` 1 “ 0u. As it is clear that the equation x2 ` 1 “ 0 has no

solution in R, then A “ ∅.

Complement. The complement of a set is a set that contains all the elements that are not in this

set.

Definition 1.4 Let X be a set and A Ď X. We define Ac the complement of set A as follows:

Ac :“ tx P X | x R Au.

Cardinality. Informally, the cardinality of a set is the number of elements contained in the set.

The cardinality of a set A is usually denoted by |A|. In the case of a set A that contains a finite

number of elements, we say that A is a finite set and |A| is simply equal to the number of elements

in A.

Example 1.8 Let A “ ta,b,c,d,eu, then |A| “ 5.

It is however possible that a set A contains an infinite number of elements like for instance if A

is the set of all even numbers. In that case we say that A is an infinite set. The cardinality of an

infinite set is a well-defined object but its investigation is beyond the level of this course.
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1.2. Sets of numbers

Some famous sets are sets of numbers. Each of the following set describes a family of numbers

that are regularly used.

• Set of natural numbers: N “ t0,1,2,4, ...u.

• Set of integers: Z “ t0,˘1,˘2,˘4, ...u.

• Set of rational numbers: Q “ ta{b | a,b P Z,b ‰ 0u.

• Set of real numbers R. This set includes all rational numbers, together with all irrational

numbers.

1.3. Set operations.

We now turn to defining basic operations on sets. Throughout this section, let X be a set, and A and

B subsets of X .

Definition 1.5 The union of a collection of sets is the set of all elements in the collection. The

union between A and B is denoted by A Y B and satisfies

A Y B “ tx | x P A or x P Bu.

A B

Figure 2: The orange region is the union of A and B.

Example 1.9 Let A “ ta,b,gu and B “ ta,c,gu. Then A Y B “ ta,b,c,gu.

Definition 1.6 The intersection of a collection of sets is the set of all elements that are common to

all sets of the collection. The intersection between A and B is by A X B and satisfies

A Y B “ tx | x P A and x P Bu.

Example 1.10 Let A “ ta,b,gu and B “ ta,c,gu. Then A X B “ ta,gu.

Definition 1.7 Two sets are said to be disjoint if

A X B “ ∅.

3



EEBL pre-course: Mathematics

A BA B

Figure 3: The orange region is the intersection between A and B.

A B

Figure 4: Example of two disjoint sets.

The operations of union and intersection have some basic properties. They are both associative

as A Y pB Y Cq “ pA Y Bq Y C and A X pB X Cq “ pA X Bq X C. They are both commutative as

A Y B “ B Y A and A X B “ B X A. Taking the union between a set and the empty set gives the

set itself, A Y∅ “ A while taking the intersection gives the empty set, A X∅ “ ∅. Intersection

distributes over union,

A X pB YCq “ pA X Bq Y pA XCq,

and union distributes over intersection,

A Y pB XCq “ pA Y Bq X pA YCq.

Definition 1.8 The difference between set A and set B is the set containing all the elements present

in A but not in B. It is denoted by AzB and satisfies

AzB “ tx P A | x R Bu.

A BA

Figure 5: The orange region is the difference between A and B.

Example 1.11 Let A “ ta,b,gu and B “ ta,c,gu ñ AzB “ tbu.

1.4. Some other useful definitions

Convexity. We define convexity for subsets of R. Roughly speaking, a set A Ď R is convex if any

weighted average of any two elements in A is also an element in A.
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Definition 1.9 A set A Ď R is convex if for all x, y P A and α P r0,1s we have that z “ αx ` p1 ´

αqy P A.

Cartesian product. In many cases, we need to pick several elements for various sets. If for

instance A “ tmilk, tea, coffeeu is the set of available drinks and B “ tcereals, fruit, eggsu is the

set of available items, we may want to define a breakfast as the pair composed by choosing one

element in A and one element in B.

Definition 1.10 The Cartesian product of two sets A and B, denoted A ˆ B, is the set of all the

ordered pairs pa,bq where a P A and b P B.

Example 1.12 Let A “ ta1,a2u and B “ tb1,b2u, we have that

A ˆ B “ tpa1,b1q,pa1,b2q,pa2,b1q,pa2,b2qu.

2. One Variable Calculus

2.1. Functions: definitions and properties

One of the main goals of Economics is to understand mechanisms, interactions and relationships

between different variables. In many cases these relations can be described by functions.

Definition 2.1 Let X and Y be two (nonempty) sets. A function f from a set X to a set Y is a

correspondence associating to each element x P X at most one element y P Y .

X

Y

x

yf

Figure 6: Representation of a function mapping and element of X into an element of Y .

By convention, we define a function with the notation f : X Ñ Y . The set of elements x P X to

which f assigns an element in Y is called the domain, while the elements y P Y associated to x are

called images. The set of all the images is called range. We sometimes denote the domain of f by

dom f and the image img f .

Example 2.1 Define f : R Ñ R such that f pxq “ x2 ` 3. We can evaluate the image of x “ 5 under

the function f as f p5q “ 52 ` 3 “ 28.

Example 2.2 Let f : R Ñ R where f pxq “ 1
x´2 . Notice that the function is not well-defined at

x “ 2. the domain of f is therefore given by all the elements in Rzt2u.
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The graph of f : X Ñ Y is the set of ordered pairs px,yq where y “ f pxq. It can written as

Gp f q :“ tpx, f pxqq : x P dom f u.

Some functions can be classified as even or odd.

Definition 2.2 The function f is even if

f p´xq “ f pxq, @x P X .

Example 2.3 f pxq “ x2 ´ 3, since p´xq2 “ x2, then f pxq “ f p´xq.

Definition 2.3 The function f is odd if

f p´xq “ ´ f pxq, @x P X .

Example 2.4 f pxq “ 3x3, since p´xq3 “ ´px3q then f p´xq “ ´ f pxq.

Some of the basic geometric properties of a function are whether it is increasing, decreasing, or

constant. This notion can be true locally or globally (that is, for the entire domain).

Definition 2.4 Let X, Y Ď R. The function f : X Ñ Y is increasing over the interval S Ď X if for

all x1,x2 P S such that x1 ă x2 we have f px1q ď f px2q.

Similarly, we say that f is decreasing over the interval S if for all x1,x2 P S such that x1 ă x2

we have f px1q ě f px2q. Notice also that if f is increasing over S then ´ f is decreasing over S.

We say f is an increasing (resp. decreasing) function if it is increasing (resp. decreasing) over

its entire domain.

x

Figure 7: Example of an increasing function (black) and a decreasing function (red).

We can compose a function with another to produce a new function.

Definition 2.5 Let f : X Ñ Y and g : Z Ñ X. We can define a new function h :“ f ˝ g defined as

hpzq “ f pgpzqq, where z P Z. The new function h is a function h : Z Ñ Y .

Example 2.5 Let f : R Ñ R defined as f pxq “ x ` 1 and g : R Ñ R defined as gpxq “ x2. Define

hpxq “ f pgpxqq “ gpxq ` 1 “ x2 ` 1. We can also define kpxq “ gp f pxqq “ f pxq2 “ px ` 1q2.
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The way a function maps elements from X into Y can be described more precisely by the

notions of bijection, injection and surjection.

Definition 2.6 A function f : X Ñ Y is injective, also called a one-to-one function, if it maps

distinct elements of its domain to distinct elements of its image. Formally, f is injective if for any

x1, x2 P dom f such that x1 ‰ x2 then f px1q ‰ f px2q.

Example 2.6 Let f : N Ñ N defined as f pxq “ x ` 1. Clearly f is injective as for any every x1,

x2 P N where x1 ‰ x2 we obviously have x1 ` 1 ‰ x2 ` 1.

Definition 2.7 A function f : X Ñ Y is surjective, also called an onto function, if for every element

of its codomain there exists at least one element in the function’s domain such that f pxq “ y.

Formally, f is surjective if for any y P img f , there exists at least one x P dom f such that f pxq “ y.

Example 2.7 Let f : R Ñ R defined as f pxq “ |x| where | ¨ | is the absolute value operator. We can

say that f is surjective as for any y PR we have that both x1 “ y and x2 “ ´y give f px1q “ f px2q “ y.

A function can be injective but not surjective and vice versa. For instance in the case of

f pxq “ x ` 1 where X “ Y “ N, there is no x P X that yields f pxq “ 1 y “ 1

Notice however, that when f is either injective or surjective, there can be elements in the domain

or in the image that are not associated to anything. In the case of f pxq “ x ` 1 where X “ Y “ N it

is clear that y “ 0 is in N but it cannot be obtained from any x P N under function f . Hence this f

is injective but not surjective. Instead, f pxq “ |x| is surjective but not injective as every element of

its image can be obtained from two distinct elements of its domain.

When a function is both injective and surjective, we say that it is bijective.

Definition 2.8 A function f : X Ñ Y is bijective, also called a one-to-one correspondence, if and

only if it is both injective and surjective.

A bijective function is a function that maps every element of its domain to exactly one element

of its image, and vice versa.

Example 2.8 Let f :R` ÑR defined as f pxq “ x2. Given that we are only considering nonnegative

values of x, it is easy to see that each x is uniquely associated with an x2 and reciprocally. Therefore

this function is bijective. However, if we were to consider the same function f pxq “ x2 but defined

over X “ Y “ R it would not be bijective anymore as it would fail to be injective.

A useful construct is that of an inverse function.

Definition 2.9 Let f : X Ñ Y and assume that f is bijective. The inverse of the function f is

denoted by f ´1. The inverse is a function f ´1 : Y Ñ X whose image f ´1pyq returns the unique

x P X such that f pxq “ y.
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Intuitively, f ´1 undoes what f does, that is applying the inverse function to the function yields

the identity. Indeed, p f ´1 ˝ f qpyq “ f ´1p f pxqq “ x.

Example 2.9 Let f pxq “ 2x. Its inverse function is f ´1pyq “ y{2. Indeed, starting from x “ 4,

we get f pxq “ 8. In order to find which x produced 8 under the function we use the inverse

f ´1p8q “ 8{2 “ 4.

2.2. Common types of functions

Polynomial function. A polynomial is a map of the form Ppxq “ anxn ` ...` a1x ` a0 where n is

the degree of polynomial and a0, . . . , an are the polynomial coefficients.

Linear function. Polynomials of degree 1 are interesting functions, they are also called linear
functions. All linear functions can be written as

f pxq “ ax ` b,

where a, b P R.

x

Figure 8: Examples of linear functions.

One of the main features which distinguishes two different lines is the slope (steepness) that

is given by a. This function is increasing as a ą 0 and decreasing if a ă 0; if a “ 0 the function

degenerates to the constant function f pxq “ b. The slope is given by the ratio of the growth in y

(y2 ´ y1) and the growth of x (x2 ´ x1), that is a “
y2´y1
x2´x1

.

Quadratic function. A quadratic function is a polynomial of degree 2. We write quadratic

functions as

f pxq “ ax2
` bx ` c,

where a, b, c PR. The graph of a univariate quadratic function is a parabola whose axis of symmetry

is parallel to the y-axis.
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x

Figure 9: Examples of quadratic functions.

Exponential function. An exponential function is a function of the form

f pxq “ ax,

where a ą 0.

Logarithmic function. The logarithm is the inverse of the exponential function.

f pxq “ loga x.

The logarithm of a given number x is the exponent to which another fixed number, the base a, must

be raised, to produce that number x. A particular case of the logarithm is the natural logarithm
which has the number e (that is e « 2.718) as the base.

3. Limit and continuity

3.1. Limit

Roughly speaking, a function is said to have a limit l at point c if f pxq gets closer and closer to l as

x gets close to c. Before introducing the formal definition, we establish some notation.

Let X ,Y Ď R and f : X Ñ Y . If f has a limit l at point c we write it as

lim
xÑc

f pxq “ l.

In the most simplest cases, we can find the limit of a function at a point simply by evaluating the

function at this point.

Example 3.1 For instance, limxÑ2p3x ´ x2q “ 3 ¨ 2 ´ 22 “ 2.

Example 3.2 Another example is: limxÑ2 lnpx ´ 1q “ lnp2 ´ 1q “ lnp1q “ 0.

A function does not always have a limit, that is, converges to a finite number. In that cases, we

use the notation `8 or ´8 to denote infinity.

9



EEBL pre-course: Mathematics

Example 3.3 Evaluating limxÑ0
1
x “ `8 shows that a function does not always have a limit.

Sometimes we are interested in the limit of a function when x goes to `8 or ´8.

Example 3.4 For instance, limxÑ`8 ex “ `8.

We now introduce a formal definition of the limit of a function. This is not the unique definition,

there exists other more general definitions but we the one we introduce will be enough for the

purpose of this course.

Definition 3.1 A function f has limit l as x approaches c if for all ε ą 0, there exists a real δ ą 0

such that for all x, |x ´ c| ă δ implies that | f pxq ´ l| ă ε .

In words, saying that f pxq converges to l at c means that if we take x close enough to c we can

always make f pxq arbitrarily close to l.

So far, when we said that we were taking x closer and closer to c we did not specify from which

side. Indeed, x could approach c by the left or by the right.

Definition 3.2 The right limit of a function at point c is writes as

lim
xÑc`

f pxq “ l,

and the left limit writes as

lim
xÑc´

f pxq “ l.

The limxÑc f pxq “ l exists only if the right limit and the left limit exist and they are equal.

Example 3.5 Consider the function f pxq “ 1
x´1 and we are interested in the behavior of f when x

is close to 1. If we approach 1 from the right, that is x Ñ 1` then x ´ 1 Ñ 0`, where 0` means

"arbitrarily close to 0 and positive". If we instead approach 1 from the left, that x Ñ 1´ then

x ´ 1 Ñ 0´, where 0` means "arbitrarily close to 0 and negative".

It immediately follows that

lim
xÑ1`

f pxq “ `8 and lim
xÑ1´

f pxq “ ´8.

As the right and left limit differ, we can conclude that f does not have a limit at 1.

Properties of limits. The limit of the sum of functions is equivalent to taking the sum of the

limits.

lim
xÑc

r f pxq ˘ gpxqs “ lim
xÑc

f pxq ˘ lim
xÑc

gpxq

The limit of the product of function is the product of the limits.
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lim
xÑc

f pxqgpxq “ lim
xÑc

f pxq lim
xÑc

gpxq

The limit of the ratio of function is the ratio of the limits.

lim
xÑc

f pxq

gpxq
“

limxÑc f pxq

limxÑc gpxq

Indeterminate forms. We may end up in a indeterminate form, that is, when we evaluate the

limit of a function we encounter one of this four cases:

0
0
,

8

8
, 0 ˆ 8, 8 ´ 8.

In these cases, we have to work on the expression of the limit to try and remove the indeterminacy.

Example 3.6 Consider evaluating f pxq “ 2x2´3x5

x`2x2 when x goes to 0. It is clear that both the

numerator and the denominator are equal to 0 when evaluated at x “ 0. We therefore face the case

0{0. Notice that we can rewrite the limit as follows:

lim
xÑ0

2x2 ´ 3x5

x ` 2x2 “ lim
xÑ0

x2p2 ´ 3x3q

xp1 ` 2xq
“ lim

xÑ0

xp2 ´ 3x3q

1 ` 2x
.

The numerator is still going to 0 but now the denominator converges to 1. Hence, this removes the

indeterminacy and we can conclude that limxÑ0 f pxq “ 0.

Example 3.7 Consider now f pxq “ 2x3`5x2´x`7
4x3´x2`x´3 . We want to evaluate the limit at x Ñ `8. As

before we can factorize the function such that:

lim
xÑ`8

2x3 ` 5x2 ´ x ` 7
4x3 ´ x2 ` x ´ 3

“
2x3p1 ` 5

2x ´ 1
2x2 ` 7

2x3 q

4x3p1 ´ 1
4x ` 1

4x2 ´ 3
4x3 q

“
1
2
.

Example 3.8 Finally consider evaluating f pxq “ ex ´
?

x at x Ñ `8. This yields the indeterminate

case 8 ´ 8. To provide an answer here, we need to compare whether ex grows faster than x or not.

We do not provide a proof but here this limit is:

lim
xÑ`8

ex
´

?
x “ `8.

3.2. Continuity

Intuitively, a function is said to be continuous when slightly changing the input x induces only small

variation of the output f pxq. In other words there are no jumps. Once again, several definitions

exists but we will rely on the simplest one in terms of limits.
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Definition 3.3 A function f : X Ñ Y is continuous at point c P X if

lim
xÑc

f pxq “ f pcq.

3.3. Differentiation

Under some conditions, a function can be differentiated to obtain its derivative. The derivative of a

function at a given point describes at which rate the function changes around this point.

Consider a function f : X Ñ Y , where X , Y Ď R. We denote the absolute change of the function

at x when it increases by an amount ∆x as follows

∆ f pxq “ f px0 ` ∆xq ´ f px0q.

To compute the rate of change at x we are interested in the ratio:

∆ f pxq

∆x
“

f px ` ∆xq ´ f pxq

∆x
.

∆ f px0q

∆x

x0 x0 ` ∆x

f px0q

f px0 ` ∆xq

x

Figure 10: Graphical representation of the rate of change.

The derivative of f at point x is defined as the rate of change at x when ∆x is arbitrarily close

to zero. That is, we want to compute how the function changes when we increase the input by an

infinitesimal amount.

Definition 3.4 The derivative of f : X Ñ Y , X “ Y “ R at point x is denoted by f 1pxq, or equiva-

lently by, B
Bx f pxq, and is defined by

f 1
pxq “ lim

∆xÑ0

f px ` ∆xq ´ f pxq

∆x
.

Naturally, the existence of the derivative relies on the existence of the limit of the function. If the

limit of the function does not exist at a point x0, we say that f is not differentiable at x0. As we

also defined continuity at x as the existence of the limit at x it means that continuity is a necessary

condition for a function to be differentiable.
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x0 x

Figure 11: Continuous function not differentiable at x0.

However, continuity is only a necessary condition and is not sufficient for differentiability. For

instance, the function in Figure 11 is continuous at x0 but is not differentiable. This happens when

the right and left derivatives (defined similarly as the right and left limits) do not coincide.

In short "differentiable at x" implies "continuous at x" but not the converse.

Example 3.9 Consider f pxq “ 2x. We can compute its derivative f 1 by computing

lim
∆xÑ0

f px ` ∆xq ´ f pxq

∆x
“ lim

∆xÑ0

2px ` ∆xq ´ 2x
∆x

“ lim
∆xÑ0

2∆x
∆x

“ 2.

Hence the derivative is constant, as for any x we have f 1pxq “ 2.

Example 3.10 Consider f pxq “ 3x2 ` 1. We can compute its derivative f 1 by computing

lim
∆xÑ0

r3px ` ∆xq2 ` 1s ´ r3x2 ` 1s

∆x
“ lim

∆xÑ0

3x2 ` 6x∆x ` 2p∆xq2 ` 1 ´ 3x2 ´ 1
∆x

“ lim
∆xÑ0

2∆xp∆x ` 3xq

∆x
“ lim

∆xÑ0
2p∆x ` 3xq “ 6x.

In that case, the derivative has different values according to where it is evaluated.

Table of derivatives. It is useful to differentiate a function using a table of derivatives that lists

the most common functions and their derivatives. Figure 12 lists some of the most usual ones.

Higher order derivatives In many cases, we are interested in differentiating a function more

than one time. That is, we may want to differentiate its derivative or differentiate the derivative

of the derivative. Starting with a function f , the first-order derivative f 1 is what we called the

derivative so far. The second order derivative is simply f 2 :“ B
Bx f 1, the third order derivative is

f 3 :“ B
Bx f 2, and so on. Generally, we denote the nth order derivative by f pnqpxq.

We can also define the nth order derivative of f with the notation Bn

Bxn f . Hence we have that

f 1 “ B1

Bx1 f , f 2 “ B2

Bx2 f , and so on. We usually omit the 1 for the first order derivative for convenience.
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Function f Derivative f 1 Function f Derivative f 1

a 0 uv u1v ` uv1

ax a u
v

u1v´uv1

v2

xa axa´1 ua au1a´1

ax ax lnpaq upvpxqq v1u1pvq

ekx kex eu u1eu

lnpaxq a
x lnu u1

u

Figure 12: Table of common derivatives. We assume a is a constant, u and v are functions.

Example 3.11 Differentiate once f pxq “ 4x´x2

x´5 on Rzt5u. We can use the formula to differen-

tiate u{v where upxq “ 4x ´ x2 and vpxq “ x ´ 5. The first order derivative is therefore f 1pxq “
p4´2xqpx´5q´p4x´x2q

px´5q2 “ ´x2`10x´20
px´5q2 .

Example 3.12 Find all nth order derivatives of f pxq “ e3x`1. Let us first compute the first, second

and third derivative: f 1pxq “ 3e3x`1, f 2pxq “ 9e3x`1, and f 3pxq “ 27e3x`1. Hence notice that

f 1pxq “ 3 f pxq and therefore f 2pxq “ 3 f 1pxq “ 3 ˚ 3 f pxq and f 3pxq “ 3 ˚ 3 f 1pxq “ 3 ˚ 3 ˚ 3 f pxq. We

can easily generalize Bn

Bxn f pxq “ 3n f pxq.

Example 3.13 Let f pxq “ ex and gpxq “ 1´x
x2 . Find the first order derivative of the function

h :“ f ˝ g. We compute hpxq “ e
1´x
x2 and now we have that

h1
pxq “

´x2 ´ 2xp1 ´ xq

x4 e
1´x
x2 “

x2 ´ 2x
x4 e

1´x
x2 “

x ´ 2
x3 e

1´x
x2 .

’Graphical’ representation of derivatives. To better understand what the derivative of a function

means, we can try to visualize it. Formally, it can be proved that the derivative of a function f at

point x is precisely the slope of the tangent line to the curve passing through x.

x x

Figure 13: The straight red line is the tangent line to the black curve at point x.

The tangent line in Figure 13 that passes through x has slope f 1pxq.
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3.4. Usefulness of derivatives

Derivatives of a function provide information about the function behavior such as how it varies,

how fast it varies, and how its variations vary.

First order derivative. The first order derivative directly informs us whether the function is

increasing, decreasing, constant. A differentiable function f : X Ñ Y is strictly increasing (resp.

decreasing) on an interval S Ď R if it’s first order derivative is strictly positive (resp. negative) on

that interval. Similarly, f is constant on S if its derivative is null on S. Intuitively, a positive first

derivative means that the rate of change of the function is positive, that is, when slightly increasing

the input the function is also increasing.

Example 3.14 Let f pxq “ 3x ` 1. It is straightforward to see by inspection that f is an increasing

function over all R. Computing the derivative confirms this as f 1pxq “ 3 ą 0.

Example 3.15 Let f pxq “ x2. Notice here that f is decreasing on R´ and increasing on R`.

Indeed, the derivative is f 1pxq “ 2x and is such that f 1pxq ă 0 for x P R´ and f 1pxq ą 0 for x P R`.

In the two previous examples, we do not really need to compute the derivative to understand

how the function varies. In some more complicated cases it can instead helps a lot.

Example 3.16 Let f pxq “ 3x2 ´4x. Here, it is a bit less obvious how f behaves. Take its derivative

f 1pxq “ 6x´4. Then, we can simply notice that f 1pxq ă 0 whenever 6x ă 4 ð x ă 2{3 and f 1pxq ě 0

whenever 6x ě 4 ð x ě 2{3. We can therefore conclude that f is decreasing on p´8,2{3s and

increasing on r2{3,`8q.

The value of the derivative at a point also informs us about how fast the function varies. Take

two points x and z, a function f whose derivative is f 1pxq “ 2 at x and f 1pzq “ 1 at z, is increasing

both at both point but is increasing at a faster rate at x than at z.

Second order derivative. By definition the second order derivative of a function f is the deriva-

tive of the derivative of f . Formally, if we let g be g :“ f 1 then g1 :“ f 2, that is, we can say that the

second order derivative of f is the first order derivative of f 1.

We can therefore make use of the second order derivative to deduce whether the first order

derivative is increasing, decreasing or constant using the same rules that we saw previously.

However, we have to be careful as a proper interpretation of the second order derivative depends on

whether the function is increasing or decreasing.

We have essentially four possible combinations for the sign of p f 1, f 2q. Let us denote the

four possible cases p`,`q, p`,´q, p´,`q and p´,´q, where for instance p´,`q means that f 1 is

negative and f 2 is positive. In the case p`,`q, the function is increasing and it is increasing at an

increasing rate, that is, it is increasing and increasing faster and faster. Instead, in the case p`,´q

the function is also increasing but at a decreasing rate, that is, increasing but less and less fast. Be

15
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x

(a) f 1 ą 0, f 2 ą 0.

x

(b) f 1 ă 0, f 2 ą 0.

x

(c) f 1 ą 0, f 2 ă 0.

x

(d) f 1 ă 0, f 2 ă 0.

Figure 14: Examples of increasing and decreasing convex and concave functions.

careful, for decreasing functions we have to interpret the sign of the second order derivative in the

opposite way. Indeed, p´,`q corresponds to a decreasing function that decreases less and less fast

while p´,´q corresponds to a decreasing function decreasing faster and faster.

Figure 14 illustrates all four cases.

Convexity and concavity. We have already seen the notion of convexity in the case of sets. In the

case of function, convexity (and concavity) is a notion of curvature of the function. The definition

of a convex function is as follows.

Definition 3.5 A function f : R Ñ R is convex on an interval S Ď R if for all x, y P S and all

α P r0,1s we have that

f pαx ` p1 ´ αqyq ď α f pxq ` p1 ´ αq f pyq.

Intuitively, a function is convex when the image of the weighted average αx ` p1 ´ αqy is lower

than the weighted average of the images of x and y.

Definition 3.6 A function f : R Ñ R is concave on an interval S Ď R if for all x, y P S and all

α P r0,1s we have that

f pαx ` p1 ´ αqyq ě α f pxq ` p1 ´ αq f pyq.
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Concavity can be understood as the opposite of convexity. Notice that a function that is both

convex and concave is linear.

Sometimes, the above definition may prove difficult (or long) to apply. When a function f is

differentiable, the second order derivative fully characterizes convexity and concavity.

If a twice-differentiable function f has a positive second order derivative then is it convex. If it

has a negative second order derivative it is concave. And if the second order derivative is null, the

function is linear.

Example 3.17 Consider f pxq “ x2 for x P R. It is easy to compute f 1pxq “ 2x and f 2pxq “ 2 ą 0.

Hence the function is convex on R.

Example 3.18 Consider f pxq “ x3 ´2x2 on S “ R`. We have f 1pxq “ 3x2 ´4x and f 2pxq “ 6x´4.

We can immediately conclude that f is concave on r0,2{3s and convex on r2{3,`8q.

Example 3.19 Consider f pxq “ 5x ` 20 on R. We have f 1pxq “ 5 and f 2pxq “ 0. Hence the

function is linear.

3.5. Maximum and minimum of a function

The maximum and the minimum of a function are called the extrema of the function. Throughout

this section we consider functions of the type f : X Ñ R, where X can be any finite or infinite set.

The maximum and minimum of a function, if they exist, can be either local or global. A

function has a global maximum at a point x˚ when the value of the function at this point is greater

than the value of the function at any other point of its domain. Instead, a function has a local

maximum at a point x̃ when the value of the function at this point is greater than the value of the

function at any other point in a neighborhood of point x̃.

Global maximum and minimum are formally defined as follows.

Definition 3.7 Let f : X Ñ R. The function f has a global maximum at x˚ P X if

f px˚
q ě f pxq, for all x P X .

Definition 3.8 Let f : X Ñ R. The function f has a global minimum at x˚ P X if

f px˚
q ď f pxq, for all x P X .

Local maximum and minimum are defined as follows.

Definition 3.9 Let f : X Ñ R. The function f has a local maximum at x̃ P X if there exists an

ε ą 0 such that f px̃q ě f pxq whenever |x ´ x̃| ă ε .

Definition 3.10 Let f : X Ñ R. The function f has a local minimum at x̃ P X if there exists an

ε ą 0 such that f px̃q ď f pxq whenever |x ´ x̃| ă ε .

17
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x˚ x

(a) Global maximum

x˚ x

(b) Global minimum

x̃min x̃max x

(c) Local maximum and local minimum.

Figure 15: Examples of global and local extrema.

Notice that a global maximum (resp minimum) is also a local maximum (resp. minimum). The

converse is not true however.

First-order conditions. When a function is differentiable there is a very simple way to find its

extrema. Assume f : X Ñ R is differentiable, then at any local or global maximum or minimum

x˚ we must have that f 1px˚q “ 0. This condition is often called the first-order condition for an

extreme point. Be careful, we only state that if a point x˚ is an extreme then f 1px˚q “ 0. Therefore

the first-order condition is a necessary condition for an extreme point but not a sufficient one.

Figure 16 illustrates the case of a global maximum at point x˚. As we have seen earlier, the

derivative of a function in an point corresponds to the slope of the tangent line at this point. Hence,

the first-order condition f 1px˚q “ 0 corresponds to the case in which the tangent line is "flat", that

is, has slope zero.

18
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x˚ x

Figure 16: Graphical representation of the first-order condition.

(Advanced) Intuitive proof. It is easy to provide an intuitive proof of the statement that for any

differentiable function, its derivative must be null at any type of extreme point. We show that it is

the case of a local maximum – hence we implicitly show that it is also true for a global maximum.

The case of a local minima can be easily found by symmetry.

Assume that x˚ is a local maximum of f . By definition, this implies that there exists an ε ą 0

such that f px˚q ě f pxq for all x P X such that |x ´ x˚| ă ε . Now assume that f 1px˚q ą 0. This

means that moving from x˚ to x˚ ` ∆x, where ∆x Ñ 0` is making the function greater, that is

f px˚ ` ∆xq ą f px˚q. As we can make ∆x arbitrarily small, we can always find one such that

|x˚ ` ∆x ´ x˚| ă ε , therefore contradicting the assumption that x˚ is a local maximum. Assume

instead that f 1px˚q ă 0. Now if we were to take x˚ ´ ∆x with ∆x Ñ 0` we would also be able to

find a greater value at f px˚ ´ ∆xq than at f px˚q, contradicting once again the assumption that x˚ is

a local maximum. Therefore, we must have that f 1px˚q “ 0.

Second-order conditions. As pointed before, first-order conditions are only necessary conditions

to identify an extremum. Figure 17 illustrates the case in which the first-order condition is satisfied

although the point is not an extrema of the function. Indeed at x̃ notice that we have that f 1px̃q “ 0

(slope of the tangent line is null) so that the first-order condition is satisfied at x̃. However we can

clearly see that this point is neither a maximum nor a minimum, we say that it is a saddle point.

x̃ x

Figure 17: Graphical representation of the first-order condition.
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When the function is twice differentiable, we can make use of the so-called second-order

conditions. They are sufficient conditions that can help identify whether a point satisfying the

first-order condition is indeed a maximum or a minimum, or if it is a saddle point.

Type First-order condition Second-order condition

Local maximum f 1px˚q “ 0 f 2px˚q ą 0

Local minimum f 1px˚q “ 0 f 2px˚q ă 0

Saddle point f 1px˚q “ 0 f 2px˚q “ 0

Global maximum f 1px˚q “ 0 f 2pxq ă 0, for all x

Global minimum f 1px˚q “ 0 f 2px˚q ą 0, for all x

Recall that the sign of the second-order derivative indicates whether the function is (locally/-

globally) convex or concave and that these properties help to identify the nature of our candidate

extremal points.

Example 3.20 Let f pxq “ 3 ´ px ´ 2q2. It is easy to compute that f 1pxq “ ´2px ´ 2q so that the

only solution to the first-order condition is x˚ “ 2. We also have that f 2pxq “ ´2 ă 0 meaning that

our function is globally concave. We can conclude that x˚ “ 2 is a global maximum of f .

Example 3.21 Let f pxq “ px ´ 1q3 ` 1. The first and second order derivative respectively write

as f 1pxq “ 3px ´ 1q2 and f 2pxq “ 6px ´ 1q. The only point satisfying the first-order condition

f 1px˚q “ 0 is x˚ “ 1. Notice also that f 2px˚q “ 0. Hence, x˚ is a saddle point.

4. Integral

We have seen how to capture the rate of change of a function thanks to its derivative. We now

proceed to the "inverse" operation, the antiderivative.

Definition 4.1 A function F is an antiderivative of the function f if for all x in the domain of f we

have that

F 1
pxq “ f pxq.

In other words, differentiating F gives f . Notice that the antiderivative F is not unique as any other

function Gpxq :“ Fpxq ` c, where c P R is also an antiderivative of f pxq, given that differentiating a

constant term always yields zero.

Example 4.1 The function Fpxq “ x2 is an antiderivative of the function f pxq “ 2x as we obviously

have that F 1pxq “ f pxq. The function Gpxq “ x2 ` 3 and Hpxq “ x2 ` 12 also are antiderivatives of

f .
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Definition 4.2 Let f be a function with domain pa,bq. The class of functions whose derivative is f

is denoted by

ż

f pxqdx.

We call
ş

f pxqdx the indefinite integral of f , where
ş

is the integral sign and f is said to be the

integrand. The symbol dx indicates with respect to which variable integration is performed. When

there is no ambiguity about the variable of integration we sometimes simply write the integral
ş

f .

Linearity. The integral is a linear operator. Take two functions f and g whose antiderivatives

are denoted by F and G, respectively, we have that:

ż

pα f pxq ` βgpxqqdx “ α

ż

f pxqdx ` β

ż

gpxqdx

“ αpFpxq ` c1q ` β pGpxq ` c2q

“ αFpxq ` βGpxq ` c, c P R.

In words, the integral of the weighted sum of f and g is equal to the weighted sum of their respective

antiderivatives modulo a constant term c P R.

Common antiderivatives. As for derivatives, it is useful to know the most common antideriva-

tives summarized in Figure 18.

Indefinite integral Antiderivative
ş

xαdx xα`1

α`1 , α ‰ ´1
ş 1

x dx ln |x| ` c
ş

r f pxqsα f 1pxqdx r f pxqsα`1

α`1 ` c, α ‰ ´1
ş f 1pxq

f pxq
dx ln | f pxq| ` c

ş

e f pxq f 1pxqdx e f pxq ` c
ş

exdx ex ` c

Figure 18: Table of common antiderivatives. We assume that c and α are constants in R.

Example 4.2 Let f pxq “ 2xex2
. It is easy to see that Fpxq “ ex2

is an antiderivative of f .

Example 4.3 Let f pxq “ 4x3

x4 . We have that Fpxq “ lnx4.
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Definite integral. In many cases, we are interested in evaluating an integral over an interval

pa,bq.

Definition 4.3 The definite integral of f over interval pa,bq is noted by

ż b

a
f pxqdx.

We call a and b the lower and upper limits of integration, respectively. Roughly speaking,
şb

a f pxqdx

can be seen as the ’sum’ of all the values f over the interval pa,bq.

The following properties are important to remember.

1.
şb

a f pxqdx “ ´
şa

b f pxqdx.

2.
şa

a f pxqdx “ 0.

3.
şb

a f pxqdx “ Fpbq ´ Fpaq.

The last property shows that if one knows the antiderivative F of function f then evaluating the

integral of f over pa,bq is equivalent to evaluate the difference between Fpbq and Fpaq.

Example 4.4 Assume f pxq “ 3x. Let us evaluate
ş2

1 f pxqdx. First, we find that an antiderivative is

Fpxq “ 3
2x2. Hence we can simply compute that

ş2
1 f pxqdx “ 3

222 ´ 3
212 “ 4.5.

Integration by parts. In some cases, it is not possible to find an antiderivative using the common

rules for antiderivatives. Integration by parts is a method can sometimes help to solve the problem.

Definition 4.4 Take two differentiable functions f and g. The following holds:

ż b

a
f pxqg1

pxqdx “ f pbqgpbq ´ f paqgpaq ´

ż b

a
f 1

pxqgpxqdx.

Example 4.5 Consider the function hpxq “ xe2x. At first sight, there is no obvious way to apply

one of the common rule to find an antiderivative. However, notice that we can define f pxq “ x and

g1pxq “ e2x so that evaluating
şb

a hpxqdx is equivalent to evaluating
şb

a f pxqg1pxqdx.

It straightforward to compute that f 1pxq “ 1 and that gpxq “ 1
2e2x. Hence we can easily

compute that
şb

a f 1pxqgpxqdx “
şb

a 1 ˚ 1
2e2xdx. The antiderivative G of g is Gpxq “ 1

4e2x so that
şb

a f 1pxqgpxqdx “ Gpbq ´ Gpaq “ 1
4e2b ´ 1

4e2a.

Let us evaluate h on p0,1q for instance:

ż 1

0
hpxqdx “

ż 1

0
f pxqg1

pxqdx “ f p1qgp1q ´ f p0qgp0q ´

ż 1

0
f 1

pxqgpxqdx

“ e2
´ 0 ´

1
4

e2
´

1
4

“
3
4

e2
´

1
4
.
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5. Vectors and matrices

5.1. Vectors

In many cases, we need to represent objects that cannot be characterized by a single scalar. For

instance, we need three scalars to represent a point in a three-dimensional space or we may need n

scalars to represent a system of prices in an economy.

A vector, sometimes called a tuple, is an ordered sequence of scalars px1,x2, . . . ,xnq whose size

is defined by the number of elements it contains (Note: in reality, a vector is not necessarily a

sequence of scalars, it can also be a sequence of functions for instance). For instance, p3,2q and

p0,1,7q are vectors of size 2 and 3, respectively.

Definition 5.1 A vector x of size n is defined as x :“ px1, . . . ,xnq where each xi corresponds to the

i-th element (or coordinate) of the vector.

We will work with real vectors, that is, vectors whose elements are real numbers. Hence, we

define a real vector as x P Rn, that is, x “ px1, . . . ,xnq where xi P R for all i “ 1, . . . ,n.

Vector operations. Vectors can be manipulated with operations such as equality, addition,

multiplication.

Definition 5.2 Two vectors x P Rn and y P Rn are said to be equal, x “ y, if and only if xi “ yi for

all i “ 1, . . . ,n.

That is, two vectors are equal if and only if all their elements are equal.

Definition 5.3 The sum of two vectors x P Rn and y P Rn, x ` y, produces a vector z P Rn defined

as

z “ x ` y “ px1 ` y1, . . . ,xn ` ynq.

Summing two initial vectors of size n therefore means creating a new vector of size n for which

each i-th element is the sum of the i-th elements of each initial vector.

Example 5.1 The sum of x “ p1,2q and y “ p3,4q is defined as z “ p1 ` 3,2 ` 4q “ p4,6q. We can

also sum three, four of k vectors at the same time, for instance, p1,1q ` p2,2q ` p3,3q “ p6,6q.

Notice that both for equation or adding vectors we need to take vectors of the same size. We

cannot add p2,3q and p1,1,2q nor we can say anything about whether they are equal or not.

Definition 5.4 Let x P Rn be a vector and a P R a scalar. Scalar multiplication is defined as ax

and produces a vector z P Rn such that

z “ ax ` y “ pax1, . . . ,axnq.
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Hence, multiplying a vector of size n by a scalar amounts to multiply each element of the vector

by the scalar.

Example 5.2 Consider x “ p1,2,3q and a “ 5. Then we have that ax “ p5 ˚ 1,5 ˚ 2,5 ˚ 3q “

p5,10,15q.

We can also define the linear combination as the operation that consists in summing several

vectors each of them weighted by a (potentially) different scalar.

Definition 5.5 Let xp1q, . . . , xpkq a sequence of vectors in Rn and a1, . . . , ak scalars in R. The

linear combination is defined as a vector z P Rn such that

z “

k
ÿ

i“1

akxpkq.

Example 5.3 Consider x “ p1,2q, y “ p3,4q and coefficients a1 “ 5, a2 “ 6. The linear combination

of these gives a1x ` a2y “ p5,10q ` p18,24q “ p23,34q.

Definition 5.6 A sequence of vectors pxp1q,xp2q, . . . ,xpkqq is said to be linearly dependent, if there

exist scalars a1,a2, . . . ,ak, not all zero, such that

a1x1
` a2x2

` ¨¨ ¨ ` akxk
“ 0.

On the other hand, two vectors are said to be linearly independent if there is no linear combination

which gives as a result the null vector (except for the trivial case a1 “ a2 “ ¨¨ ¨ “ ak “ 0).

5.2. Matrices

A matrix is a rectangular array of numbers. The size of a matrix is indicated by the number of its

rows and number of its columns. A matrix with k rows and n columns is called a k ˆ n matrix. The

element in row i and column j is called the pi, jqth entry, and it is often written as ai j. A matrix

with the number of columns equal to the number of rows is called square matrix.

Ak,n “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a1,1 a1,2 ¨ ¨ ¨ a1,n

a2,1 a2,2 ¨ ¨ ¨ a2,n

...
... . . . ...

ak,1 ak,2 ¨ ¨ ¨ ak,n

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

24



EEBL pre-course: Mathematics

Matrices operations. We can also define addition, multiplication, and multiplication by a scalar

for matrices.

Definition 5.7 Let A and B two k ˆ n matrices. Their sum is the matrix C whose elements are

ci j “ ai j ` bi j @i, j

¨

˚

˚

˚

˚

˚

˝

a11 ¨ ¨ ¨ a1n

... ai j
...

ak1 ¨ ¨ ¨ akn

˛

‹

‹

‹

‹

‹

‚

`

¨

˚

˚

˚

˚

˚

˝

b11 ¨ ¨ ¨ b1n

... bi j
...

bk1 ¨ ¨ ¨ bkn

˛

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˝

a11 ` b11 ¨ ¨ ¨ a1n ` b1n

... ai j ` bi j
...

ak1 ` bk1 ¨ ¨ ¨ akn ` bkn

˛

‹

‹

‹

‹

‹

‚

.

Matrices may be multiplied by scalars. This operation is called scalar multiplication. More

generally:

Definition 5.8 The product of the matrix A and the number α , denoted αA, is the matrix whose

elements are αai j @i, j

α

¨

˚

˚

˚

˚

˚

˝

a11 ¨ ¨ ¨ a1n

... ai j
...

ak1 ¨ ¨ ¨ akn

˛

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˝

αa11 ¨ ¨ ¨ αa1n

... αai j
...

αak1 ¨ ¨ ¨ αakn

˛

‹

‹

‹

‹

‹

‚

.

We can define the matrix product AB if and only if

number of columns of A = number of rows of B.

To obtain the pi, j ´ thq entry of AB, multiply the i-th row of A and the j-th column of B as

follows
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ˆ

ai1 ai2 ¨ ¨ ¨ aim

˙

¨

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

b1 j

b2 j

...

bni

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ ai1b1 j ` ai2b2 j ` ¨¨ ¨ ` aimbm j.

In other words, the pi, jq-th entry of the product AB is defined to be

m
ÿ

n´1

ainbh j.

If A is a k ˆ m and B is m ˆ n, then the product C “ AB will be k ˆ n.

Usually, AB ‰ BA.

The n ˆ n matrix

I “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 ¨ ¨ ¨ 0

0 1 ¨ ¨ ¨ 0

...
... . . . ...

0 0 ¨ ¨ ¨ 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

with aii “ 1, @i and ai j “ 0, @i ‰ j, has the following property

AI “ A.

for any m ˆ n matrix A. I is called identity matrix.

Definition 5.9 The transpose of a k ˆ n matrix A is the n ˆ k matrix obtained by interchanging the

rows and the columns.

¨

˚

˝

a11 a12 a13

a21 a22 a23

˛

‹

‚

T

“

¨

˚

˚

˚

˚

˚

˝

a11 a21

a12 a22

a13 a23

˛

‹

‹

‹

‹

‹

‚

.

Definition 5.10 A Triangular matrix is a square matrix containing element different from zero

only above/below the main diagonal.
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Example 5.4 Upper Triangular

A “

¨

˚

˚

˚

˚

˚

˝

1 ´3 ´1

0 1 1

0 0 ´2

˛

‹

‹

‹

‹

‹

‚

.

Example 5.5 Lower Triangular

A “

¨

˚

˚

˚

˚

˚

˝

1 0 0

´2 1 0

3 5 ´2

˛

‹

‹

‹

‹

‹

‚

.

Definition 5.11 To any square matrix is associated a determinant, |A|. From a geometric point of

view, it represents the area (volume) of the parallelogram generated by the vectors of the matrix.

Let A be a 2 ˆ 2 matrix,

A “

¨

˚

˝

a11 a12

a21 a22

˛

‹

‚

.

the determinant is |A| “ a11a22 ´ a12a21.

In case of a n ˆ n matrix with n ą 3, in order to find the determinant, we can use the minor of

the matrix.

Definition 5.12 A minor of a matrix A is the determinant of some smaller square matrix, cut down

from A by removing one or more of its rows and columns. Minors obtained by removing just one row

and one column from square matrices (first minors) are required for calculating matrix cofactors,

which in turn are useful for computing both the determinant and inverse of square matrices.

The cofactor is:

Aik “ p´1q
i`kMik.

where Mik is a minor of the matrix.

Therefore, using the Laplace theorem we can obtain the determinant of a matrix n ˆ n as the

sum of the product, of any row or column, by their cofactor.

The rank of A is the largest order of any non-zero minor in A.

Definition 5.13 Let A be a n ˆ n matrix. The n ˆ n matrix A´1 is an inverse for A if AA´1 “
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A´1A “ In. A matrix can have at most one inverse and not every matrix is invertible. In order to be

invertible, we need |A| ‰ 0.

Definition 5.14 Any symmetric A is:

• Positive semidefinite if x1Ax ą 0, @x ‰ 0;

• Positive definite if x1Ax ě 0, @x ‰ 0;

• Negative definite if x1Ax ă 0, @x ‰ 0;

• Negative semidefinite if x1Ax ď 0, @x ‰ 0.

5.3. Linear system of equations

In several instances, one might have to study system of equations. We will focus on linear systems

of equations.

Definition 5.15 Generally, an equation is said to be linear if it has the form

a1x1 ` a2x2 ` ...` anxn “ b

where a1, ...,an are parameters and x1, ...,xn are variables.

A solution to the linear equation is a vector px1, ...,xnq such the above equality holds.

Example 5.6 Consider the linear equation 5x1 ` 10x2 “ 0. It is easy to see that p0,0q (trivially)

solves this equation. The vectors p1,´2q and p2,´4q are also solutions to this equation.

When there is more than one (linear) equation, we say we have to deal with a system of (linear)

equations. A solution to the system is a vector px1, ...,xnq such that all the equations in the system

hold simultaneously.

Example 5.7 Consider the system of two linear equations x1 ` x2 “ 5 and 2x1 ´ x2 “ 1. Clearly

p3,2q is a not a solution to this system as it solves only the first equation. Neither is p4,7q a solution

as it solves only the second equation. Instead p2,3q is a solution to the system as it simultaneously

solves the first and the second equations.

Matrix notation and operations can be conveniently used to solve linear systems of equations.
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Example 5.8
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

a11x1 ` a12x2 ` ...a1nxn “ b1

a21x1 ` a22x2 ` ...a2nxn “ b2

...

am1x1 ` am2x2 ` ...amnxn “ bm

The solution of the system is given by px1,x2, ...,xnq which solves all the equations contem-

poraneously. It can be expressed much more compactly using matrix notations. Let A denote the

coefficient matrix of the system:

A “

¨

˚

˚

˚

˚

˚

˝

a11 ¨ ¨ ¨ a1n

... ai j
...

am1 ¨ ¨ ¨ amn

˛

‹

‹

‹

‹

‹

‚

.

Also, let

x “

¨

˚

˚

˚

˚

˚

˝

x1

...

xn

˛

‹

‹

‹

‹

‹

‚

and b “

¨

˚

˚

˚

˚

˚

˝

b1

...

bm

˛

‹

‹

‹

‹

‹

‚

.

Then, the system of equations can be written as

¨

˚

˚

˚

˚

˚

˝

a11 ¨ ¨ ¨ a1n

... ai j
...

am1 ¨ ¨ ¨ amn

˛

‹

‹

‹

‹

‹

‚

¨

¨

˚

˚

˚

˚

˚

˝

x1

...

xn

˛

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˝

b1

...

bm

˛

‹

‹

‹

‹

‹

‚

.

or simply as

Ax “ b.

Then, if A is nonsingular (|A| ‰ 0), we can solve the system as x “ A´1b. To solve a linear system

of simultaneous equations we can use also the Cramer’s rule. If the matrix A is nonsingular, the

linear system of system of n linear equations and n unknowns. Then the theorem states that in this
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case the system has a unique solution, whose individual values for the unknowns are given by:

xi “
detpAiq

detpAq
i “ 1, ...,n.

where Ai is the matrix formed by replacing the ith column of A by the column vector b.

Example 5.9 Solve the following system

$

’

’

’

’

’

&

’

’

’

’

’

%

x ´ 2y ` z “ 1

3x ` y ´ 7z “ 0

x ´ z “ 1.

Since |A| ‰ 0, we can use Cramer’s rule

x “

det

¨

˚

˚

˚

˚

˚

˝

1 ´2 1

0 1 ´7

1 0 ´1

˛

‹

‹

‹

‹

‹

‚

6
“ 2

y “

det

¨

˚

˚

˚

˚

˚

˝

1 1 1

3 0 ´7

1 1 ´1

˛

‹

‹

‹

‹

‹

‚

6
“ 1

z “

det

¨

˚

˚

˚

˚

˚

˝

1 ´2 1

3 1 0

1 0 1

˛

‹

‹

‹

‹

‹

‚

6
“ 1.

In economics, we may be interested in system of the following form

Ax “ λx,

where A is a square matrix. It is equivalent to write that

pA ´ λ Iqx “ 0.

Definition 5.16 The values λ that solve detpA ´ λ Iq “ 0 are called eigenvalues.
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Definition 5.17 While the non-trivial vectors, x, obtained as the solution of pA´λ Iqx “ 0 is called

eigenvector.

From a geometric point of view, the eigenvector (x) is the vector which is only scaled by a value

λ when we apply to it a transformation A.

6. Multivariable calculus

We have previously investigated function of one variable and many of their properties and appli-

cations. In many cases, however, functions may depend on several variables. Formally, we are

investigating cases in which a function f is defined as f : Rn Ñ R. Such a function is called a

multivariate function, and takes as an input a vector x P Rn and outputs a scalar in R.

Example 6.1 Consider the two-dimensional function f : R2 Ñ R defined as f px,yq “ xy. Then we

simply have that f p1,2q “ 1 ˚ 2 “ 2, or f p4,5q “ 4 ˚ 5 “ 20.

6.1. Differentiation

The concept of differentiation can be extended to function of several variables. There are two

main ways to differentiate a function of several variables: partial differentiation and total
differentiation. Partial differentiation considers how the function changes with respect to one

variable while holding others constant, while total differentiation considers the overall change of a

function with respect to a variable, taking into account how all other variables,

Partial differentiation. Partially differentiating a function is very close to the differentiation

process of a unidimensional function. There are as many partial derivatives as there are input

variables. To compute the partial derivative of a function f with respect the i-th variable at a given

point x0 P Rn we consider a small change in variable i while keep all other variables constant.

Definition 6.1 Let f : Rn Ñ R. The partial derivative of f with respect to the i-th variable at point

x0 P Rn in the domain of f is defined by

B f
Bxi

`

x0
1, . . . ,x

0
n
˘

“ lim
hÑ0

f
`

x0
1, . . . ,x

0
i ` h, . . . ,x0

n
˘

´ f
`

x0
1, . . . ,x

0
i , . . . ,x

0
n
˘

h
.

There are several (equivalent) notation for denoting the partial derivative of a function with

respect to its i-th variable. The most common way is probably B f
Bxi

but we also find notations such

as fxi , fi Bxi f , Bi f .

In practice, computing a partial derivative is very similar to computing the derivative of an

univariate function. To find B f
Bxi

of a given function f , simply use the usual differentiation rules as if

f were solely a function of xi and treat all other variables as if they were constants.
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Example 6.2 Consider f px,yq “ xy. To compute B f
Bx , we simply treat y as a constant and apply the

usual differentiation rules to x. Hence B f
Bx px,yq “ y.

Example 6.3 Consider f px,yq “ xy2 `y. To compute B f
By , we simply treat x as a constant and apply

the usual differentiation rules to xy. Hence B f
By px,yq “ 2xy ` 1.

Total differentiation. Sometimes we may be interested in how a function changes as several of

its variables simultaneously change. We usually denote the total derivative of a function as d f and

it is defined as:

d f “

n
ÿ

i“1

B f
Bxi

dxi.

Intuitively, the total change of the function is the result of how each change of variable dxi affects

the function as captured by the partial derivative B f
Bxi

.

Example 6.4 Consider f px,yq “ xy. Its total derivative writes d f “ ydx ` xdy.

6.2. Higher-order derivatives

As we have seen before, differentiating the derivative of a univariate function yields a second-order

derivative. Repeatedly applying this process allowed us to compute higher-order derivatives.

We can also compute higher-order derivatives in the case of multivariate function but the main

difference is that it is now not obvious what we mean by ’repeatedly differentiating’. Indeed, as they

are many variables, there are several ways in which we can differentiate an already differentiated

function.

We can obviously decide to compute the direct second-order partial derivative B f 2{Bx2
i which

consists in partially differentiating f with respect to xi two times.

Example 6.5 Consider f px,yq “ x2y ` 4x. The first-order partial derivative with respect to x is
B f
Bx “ 2xy ` 4 and the second-order partial derivative with respect to x is B f 2

Bx2 “ 2y.

But we can also first differentiate a function with respect to xi and then differentiate a second

time with respect to another variable x j. We call this derivative the mixed (or cross) partial derivative

and denote by B f 2

BxiBx j
.

Example 6.6 Consider f px,yq “ x2y ` 4x. The first-order partial derivative with respect to x is
B f
Bx “ 2xy ` 4 and the mixed partial derivative with respect to x and y is B f 2

BxBy “ 2x.

If a function has n variables, then, it will have n2 second order partial derivatives. It is

common to arrange these n2 partial derivatives into an n ˆ n matrix whose pi, jqth entry is the
`

B2 f {Bx jBxi
˘

px˚q. This matrix is called Hessian matrix:
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D2 fx “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

B2 f
Bx2

1

B2 f
Bx2Bx1

¨ ¨ ¨
B2 f

BxnBx1

B2 f
Bx1Bx2

B2 f
Bx2

2
¨ ¨ ¨

B2 f
BxnBx2

...
... . . . ...

B2 f
Bx1Bxn

B2 f
Bx2Bxn

¨ ¨ ¨
B2 f
Bx2

n

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

7. Optimization: Multivariate functions and constrained opti-
mization

7.1. Unconstrained optimization

Univariate case. We have already seen how to find and characterize extreme points of univariate

functions. We briefly recall the rules we established in that case.

Type First-order condition Second-order condition

Local maximum f 1px˚q “ 0 f 2px˚q ą 0

Local minimum f 1px˚q “ 0 f 2px˚q ă 0

Saddle point f 1px˚q “ 0 f 2px˚q “ 0

Global maximum f 1px˚q “ 0 f 2pxq ă 0, for all x

Global minimum f 1px˚q “ 0 f 2px˚q ą 0, for all x

Multivariate case. When considering function of several variables, f : Rn Ñ R, finding extreme

points is relatively similar to the univariate case. Let us first introduce the following definition.

Definition 7.1 The gradient vector of a function f : Rn Ñ R is the vector whose components are

the partial derivatives of f :

∇ f pxq “

»

—

—

—

—

—

–

B f
Bx1

pxq

...

B f
Bxn

pxq

fi

ffi

ffi

ffi

ffi

ffi

fl

.

The first-order condition in the multivariate case simply corresponds to the condition ∇ f pxq “ 0.

Example 7.1 Consider f px,yq “ ´px´2q2 ´y2 `4. The gradient of the function writes as ∇ f pxq “

r´2px ´ 2q,´2ys. Hence the unique candidate to an extreme point is x˚ “ p2,0q as ∇ f pxq “ 0.
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Second-order conditions are, however, a bit more complicate to use than in the univariate case.

Definition 7.2 The Hessian Matrix of f is the n ˆ n matrix whose pi, jq-th entry is the partial

crossed derivative
`

B2 f {Bx jBxi
˘

px˚q. That is,

D2 fx “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

B2 f
Bx2

1

B2 f
Bx2Bx1

¨ ¨ ¨
B2 f

BxnBx1

B2 f
Bx1Bx2

B2 f
Bx2

2
¨ ¨ ¨

B2 f
BxnBx2

...
... . . . ...

B2 f
Bx1Bxn

B2 f
Bx2Bxn

¨ ¨ ¨
B2 f
Bx2

n

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Second-order conditions can be summarized as:

• If the Hessian is positive definite at x˚, then f attains a local minimum at x˚;

• If the Hessian is negative definite at x˚, then f attains a local maximum at x˚;

• If the Hessian has both positive and negative eigenvalues then x˚ is a saddle point for f (and

in fact this is true even if x˚ is degenerate).

In those cases not listed above, the test is inconclusive.

7.2. Constrained optimization

Optimizing a function may be subject to some constraint on the admissible value of the solutions.

This is typically the case in economics when a consumer must choose the best possible consumption

bundle while being constrained by their budget. We briefly consider equality and inequality

constraints in the case of a two-dimensional objective function (results naturally extend to the case

of n-variable function).

The abstract formulation of a constrained maximization problem we are considering is the

following:

max
x1,x2

f px1,x2q

s.t. px1,x2q P C,

where C is the constraint set, that is, the set of admissible values for x “ px1,x2q.

Example 7.2 Consider f px,yq “ xy and C “ tx,y | x ` y “ 1u.

Example 7.3 Consider f px,yq “ x ` y and C “ tx,y | x ` y ď 5u.

It is usually not obvious how to find the solution without a proper method. We first introduce

the substitution method which is relatively simple but only works with equality constraints that are

well-behaved. We then introduce Lagrange and Kuhn-Tucker multipliers to solve more general

problems.
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Substitution method. Consider the case in which the constraint is an equality constraint of the

type hpx1,x2q “ c where h is function and c is a constant in R. We do not enter into too many

technical details but the substitution method essentially works when there is a way to invert h to

solve for x1 or x2, that is, find a function ϕ such that x2 “ ϕpx1,cq that satisfies hpx1,ϕpx1,cqq “ c

for all x1. Then, one substitute this equation into the objective function and solves

max
x1

f px1,ϕpx1,cqq.

We can then use the rules we know for finding the solution of an unconstrained problem. That is,

we can simply find the first-order condition with respect to x1 which writes as follows:

B f
Bx1

f px1,ϕpx1,cqq `
Bϕ

Bx1
px1,cq

B f
Bx2

px1,ϕpx1,cqq “ 0.

Example 7.4 Consider maximizing f px1,x2q “ x1x2 subject to hpx1,x2q “ 1 where hpx1,x2q “

x1 ` x2. We can simply solve the equality constraint for x2, that is, x2 “ 1 ´ x1 (here it means

that ϕpx1,c1q “ c ´ x1). Plugging this equation into the objective function we therefore have to

maximize f px1,1´x1q “ x1p1´x1q. We immediately get that B f {Bx1 “ 1´2x1 and B f 2{Bx2
1 “ ´2.

Finally, the first-order condition yields that x˚ “ 0.5 which is a global maximum as the second-order

derivative is always negative.

Lagrange method (equality constraints). Let f and h be differentiable functions of two variables,

where f is the objective function and hpx1,x2q “ c is an equality constraint.

Definition 7.3 The Lagrangian of an optimization problem is a function denoted by L defined as

follows:

L px1,x2,λ q “ f px1,x2q ` λ phpx1,x2q ´ cq,

where λ P R is called the Lagrangian multiplier.

Under some conditions, solving the unconstrained problem maxx1,x2,λ L px˚
1,x

˚
2,λ

˚q is equiva-

lent to solving the constrained problem maxx1,x2 f px1,x2q s.t. hpx1,x2q “ c. Hence, we can apply

the method of first-order conditions, the following equations are necessary conditions for an

extreme point (omitting the arguments for convenience):

BL

Bx1
“

BL

Bx2
“

BL

Bλ
“ 0,

or, equivalently, we have to solve the following system of equations (still omitting the arguments
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for clarity):

B f
Bx1

` λ
Bh
Bx1

“ 0

B f
Bx2

` λ
Bh
Bx2

“ 0

hpx1,x2q ´ c “ 0.

Notice that the last first-order condition of the Lagrangian problem is simply the equality constraint

itself.

Example 7.5 Consider the same problem as earlier. We want to maximize f px1,x2q “ x1x2 subject

to hpx1,x2q “ 1 where hpx1,x2q “ x1 ` x2. We can write the Lagrangian function as L px1,x2,λ q “

x1x2 ` λ px1 ` x2 ´ 1q “ 0. The first-order conditions of the Lagrangian write as follows:

BL

Bx1
“ x2 ` λ “ 0

BL

Bx2
“ x1 ` λ “ 0

BL

Bλ
“ x1 ` x2 ´ 1 “ 0.

It is immediate that we have that x1 “ x2 “ ´λ from the first two equations. Hence, the third

equation can be rewritten as 2x1 ´ 1 “ 0 which yields that x1 “ x2 “ 1{2 and λ “ ´1{2. The point

p1{2,1{2,λ q is a candidate extreme point of the Lagrangian. Notice that x1 “ x2 “ 1{2 coincides

with our previous result using the substitution method.

Example 7.6 Consider the problem of maximizing f px1,x2q “ xy subject to ´x2 ´ y ` 2 “ 0. The

Lagrangian writes as follows:

L “ xy ` λ p´x2
´ y ` 2q.

The first-order conditions of the Lagrangian are:

BL

Bx
“ y ` λ p´2xq “ 0

BL

By
“ x ` λ p´1q “ 0

BL

Bλ
“ ´x2

´ y ` 2 “ 0.

From the second equation we immediately have that λ “ x. Plugging this into the first equation

yields that y ´ 2x2 “ 0 ô y “ 2x2. Hence, the third equation rewrites as ´x2 ´ 2x2 “ ´2 or

equivalently that 3x2 “ 2. This last equation yields that x “
a

2{3 or x “ ´
a

2{3, and therefore

y “ 2
a

2{3
2

“ 4{3.
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Which of the two is our solution? A closer look at our previous result shows that y ą 0

for both admissible values of x. Therefore, it is immediate to see that f p
a

2{3,yq “
a

2{3y ą

f p´
a

2{3,yq “ ´
a

2{3y for all y ą 0. Hence, our solution can only be with x˚ “
a

2{3 and

y˚ “ 4{3.

Karush-Kuhn-Tucker conditions (inequality constraints). Let f and g be two differentiable

functions of two variables. As before f is the objective function but we now consider inequality

constraints of the form gpx1,x2q ě c. The Karush-Kuhn-Tucker conditions (hereafter, KKT) extend

the Lagrangian method to these type of constraint. As before, we rely on the Lagrangian function:

L px1,x2,µq “ f px1,x2q ` µpgpx1,x2q ´ cq,

where µ P R` is the KKT multiplier.
There are two main differences with the Lagrange method: (i) the KKT multiplier has to be

positive or null and (ii) we replace the first-order condition with respect with the multiplier by what

is called a complementary slackness condition.

Formally, necessary conditions for px˚
1,x

˚
2q to solve the constrained problem are the following

in the unconstrained KKT problem:

First-order conditions:
BL

Bx1
“

BL

Bx2
“ 0,

Complementary slackness: µpgpx1,x2q ´ cq “ 0.

The complementary slackness condition should be understood as follows: if the inequality constraint

strictly holds at a critical point (i.e. gpxq ă c) then the KKT multiplier µ has to be zero. If otherwise

the inequality constraint holds with equality (i.e. gpxq “ c) then the KKT multiplier µ can take any

nonnegative value.

Example 7.7 Consider maximizing f px,yq “ ´x2 ´y2 `3 subject to ´2x´y ě 1. The Lagrangian

writes as follows:

L “ ´x2
´ y2

` 3 ` µp´2x ´ y ´ 1q.

First-order conditions are:

BL

Bx
“ ´2x ` µp´2q “ 0

BL

By
“ ´2y ` µp´1q “ 0,

and the complementary slackness condition is µp´2x ´ y ´ 1q “ 0.

The first-order conditions immediately give that x “ ´µ and y “ ´µ{2. It is clear that if we

had µ “ 0 then we would also have x “ y “ 0 and gpx1,x2q “ 0 ă 1. It is therefore impossible
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that µ “ 0, meaning that we must have µ ą 0. By complementary slackness, we must then have

that ´2x ´ y ´ 1 “ 0. Using previous results this rewrites as ´2x ´ x{2 ´ 1 “ 0 ô x “ ´2{5 and

y “ ´1{5.

Be careful though, as in the previous methods these conditions are only necessary for optimality.

In principle, one must also check second-order conditions or make sure that the initial problem

is itself concave or convex. These issues are beyond the scope of this course as you will mostly

encountered well-behaved problems. The interested reader can find more on these topics in the

textbooks of reference.
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