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1. Website
http:/ /economia.uniroma2.it/ master-science /economics / corso/211/
2. Textbooks
The textbooks used in the course are:
- “Mathematics for Economists” by C. Simon and L. Blume, Norton & Company;
- “Statistical Inference” by G. Casella and R.L. Berger, Duxbury.
3. Entrance qualifications

It is taken for granted that students have a basic knowledge of calculus and linear algebra. In particular
they know: how to study a function in one variable, the fundamental theorem of calculus, how to
evaluate a definite integral, how to study a system of linear equations, the basic geometry of three-
dimensional space.

As a reference one can use the Appendices Al, A2, A3, A4 and PartI- Part II of the book by Simon-
Blume.

4. Course content

The course has four parts: Calculus, Linear Algebra, Optimization and Probability.
The main goals of the course are the study of:

- integration in several variables (Fubini, change of variable formula, polar coordinates, ...);
- linear transformations, eigenvalues, eigenvectors, projections and the spectral theorem;
- unconstrained and constrained optimization (Taylor formula in several variables, Kuhn-Tucker);

- limit theorems in probability and conditional expectation (weak law of large numbers, central limit
theorem, multivariate gaussian).



The detailed program is available in the website of the course.

5. Learning outcomes

Upon completion of the course the student will have the mathematic background to understand the
notions required in Statistics, Econometrics and in the other parts of Economics and Finance where a
quantitative approach is needed.

6. Teaching material

In the website of the course you find all the needed teaching material. In particular you have:

- the detailed program;

- the arguments of the lectures on a day-by-day basis;

- the practice sessions;

- simulations of the written examination containing all the rules;

- a list of other textbooks and suggested readings;

- and much more.

7. Additional information

Teaching will be in English throughout the course.



AP PENDIX A1

Sets, Numbers,
and Proofs

The basic ingredients of mathematics are sets, numbers, and functions. This ap-
pendix begins with a presentation of the vocabulary of sets and of numbers and
concludes with a discussion about mathematical proofs.

A1.1  SETS
Vocabulary of Sets

A set is any well-specified collection of elements. A set may contain finitely many
or infinitely many elements, but the criterion for membership in the set must be
well understood. For any set A, we write a € A to indicate that a is a member of
set A, and a & A to indicate that a is not in the set A. The most commonly used
set in this book is the set R of all real numbers.

We sometimes encounter the set which contains no elements. 1t is called the
empty set or null set and is denoted by .

We will use standard notation for defining sets. For example, the set of all
nonnegative numbers is written as

Ry ={x€R:x=0}
Since every element of R, is an element of R, we say that R, is a subset of R,
and write Ry C R or R D R,. Sometimes, a set is defined simply by listing its
elements:A = {1,2,3},oreven N = {1, 2, 3,...}, provided the ellipsis (.. .) is well
understood.

Operations with Sets

Given two sets A and B, new sets can be formed through the following set opera-
tions on A and B:

(1) A U B, spoken “A union B,” is the set of all e.ements that are either in A
or in B (or in both):

AUB={x:x EAorx € B}

847
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(2) A N B, spoken “A intersect B,” is the set of all elements that are common
to both A and B:

ANB={x:xE€Aandx € B};

(3) A — B, or sometimes A \ B, spoken “A minus B,” is the set of all elements
of A that are not in B:

A-B={x:xEAandx &€ B}.

If it is clear that all sets under discussion are subsets of some (universal) set U,
U — A is often written as A€, and called the complement of A (in U). For example,
if all sets under discussion are sets of real numbers, then the complement of R,
(R+)5, is the set of all negative numbers, {x € R : x < 0}.

A1.2 NUMBERS

Vocabulary

Nearly all the sets discussed in this text are sets of numbers. The most basic
numbers aré the counting numbers {1, 2, 3, ...}, also called the natural numbers.
The set of natural numbers is usually denoted by N:

N={1,234...)

The sum or product of two natural numbers is another natural number, but the
difference of two natural numbers need not be in N. For example, 3 — 5 & N. If
N is augmented by the number zero and by the negatives of the natural numbers,
the resulting set is the set of integers, and often denoted by

Z={..,-3-2-10+1,+2 +3,...}

The sum, difference, and product of two integers in another integer, but the quotient
of two integers is usually not an integer. So, the next natural extension is to the set
Q of all quotients of integers: '

QE{%:a,bEZ;b;&O}.

This set Q is called the set of rational numbers, since it is formed by taking
ratios of integers. The set of rational fiumbers has the desired propeérty that if a
and b are elements of Q, then so are a + b, a — b, a - b, and a/b. (We always rule
out division by 0.)

Can every number be written as the quotient of two integers? In other words,
is every number a rational number? Although it is not readily apparent, some
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important numbers, like V2, e, and m, cannot be written as quotients of integers.

The proof that /2 cannot be written as a quotient of integers will be presented
later in this appendix. Numbers that cannot be written as ratios or quotients of
integers are called irrational numbers.

Rational numbers can also be distinguished from irrational numbers by their
decimal expansions. Numbers whose decimal expansions terminate after a finite
number of digits (like 0.25 or 3.12345) or repeat the same pattern with perfect
regularity from some point on (like 1.33333 - - - or 3.256256256 - - -) are rational
numbers. On the other hand, numbers whose decimal expansions never end and
have no repeating pattern are irrational numbers. Since any number that is not
rational is irrational, the set of all rational and irrational numbers is the set of all
numbers R.

As we will see in Appendix A3, in order to solve certain polynomial equations
that are needed to model oscillatory phenomena, mathematicians have expanded
the set of numbers R to include “imaginary numbers” —anumbers whose squares
are negative numbers. To distinguish the set of numbers we are considering from
this expanded number system, the set R of rational and irrational numbers is called
the set of real numbers.

In the remainder of this appendix certain subsets of integers play an important
role. This is a natural place to present their formal definitions. '

Definition An integer u is called an even number if there is an integer m such
that n = 2m. An integer that is not even is called an odd integer.

Definition A natural number m is called a prime number if whenever m can
be written as the product m = a - b of two natural numbers, thena = lorb = 1.
The first six prime numbers arc 1,2, 3,5, 7, and 11.

Properties of Addition and Multiplication

An important feature about numbers is that we can operate on them via addition
and multiplication — and their inverse operations, subtraction and division — to
obtain other numbecrs.

The operations of addition (+) and multiplication () on pairs of real numbers
are characterized by the following properties:

(1) (Closure) If a and barcinR, soarca + band a - b.

(2) (Commutative) Foranya, b €E R,a+b=b+aanda-b=>b"a.

(3) (Associative)lfa,b,c € R,(a+b)+c = a+(b+c)and(a-t)-c = a*(b-c).

(4) (Identity) There is an element 0 € R such thata + 0 = a for alla € R.
There is‘an element | € Rsuchthata-1 = aforalla € R.

(5) (Inverse) For any a € R, there is an element b € R such thata + b = 0;
such a b is usually written as —a. For any nonzero a € R, there is an
element ¢ € R such thata - ¢ = 1; such a ¢ is usually written as 1/a.

(6) (Distributive) Foralla,bc € R,a-(b+c¢c)=a-b+a-c.
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Each of the first five properties has an additive and a multiplicative component.
The last property is the link between these two operations.

Least Upper Bound Property

There are two more abstract properties of real numbers that arise a number of
times throughout this book: the least upper bound property and the greatest lower
bound property.

Definition Let S be a subset of R and let b € R. Then, the number b is called
an upper bound for S if 2 = b for all a € S; the number b is called a lower
bound for S if b < aforalla € S.

Definition If b is an upper bound for S and no element smaller than b is an
upper bound for S, then b is called a least upper bound (lub) for S. Similarly, if
b is a lower bound for S and no number larger than b is a lower bound of S, then
b is called a greatest lower bound (glb) for S.

We can now state the least upper bound and greatest lower bound properties
on R.

(Least upper bound and greatest lower bound properties) Let S be any
subset of R. If § has an upper bound, it has a least upper bound; if S has a lower
bound, it has a greatest lower bound.

Example Al1.1 Let S be the set of all numbers of the form

S ={0.3,0.33,0.333,0.3333,...}.

Of course, 0 is a lower bound and 1 is an upper bound for S. The least upper
bound of S is 1/3. The greatest lower bound is 0.3, the first element in this
increasing sequence of numbers. Notice that this set S contains its glb, but not
its lub.

EXERCISES

Al.l1 LetA be the set of even integers, B the set of odd integers, C the set of integers from
1 to 10, and D the set of nonnegative real numbers. Describe CUA, C UB, C — B,
AND,BUD,AUB,andA NB.

Al1.2  Find the glb and the lub (if one exists) of each of the following sets of real numbers:

a) the natural numbers N, b) {1/1,1/2,1/3,...,1/n,.. .},
o {1/2 -1/2,2/3,-2/3,3/4,...), d) {x€R:0<x<1),
e) {xeR:0=x<1} f){xeR:0=sx=1}
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A1.3 PROOFS

One of the important roles of mathematics in the sciences is to deduce complex
scientific principles from a collection of generally agreed on assumptions. For
example, in classical physics one deduces from Newton’s law of motion (F = ma)
that the planets move in planar elliptical orbits about the sun. In econemics
one deduces from the consumer’s budget equation that a 1 percent increase in
a consumer’s income leads to a 1 percent average increase in expenditure on the
goods under study and that an increase in the price of any good leads to a decrease
in the average consumption of all goods.

The first such scientific system one encounters is usually the Euclidean model
for planar geometry that one studies in secondary school. Beginning with the
undefined terms “point” and “line” and with the well-accepted system of Euclid’s
axioms (for example, “Given two points P and Q, there is exactly one line that
contains P and Q;”), one uses careful techniques of mathematical logic to prove
theorems about geometric objects, for example, the angles of a triangle sum to
180° or the sum of the squares of the lengths of the legs of a right triangle equals
the square of the length of the hypotenuse.

The same principles of logic work in all these sciences. One starts with a
clearly stated (and, hopefully, generally accepted) set of hypotheses and, usually,
with some previously proven principles. Each of these hypotheses and theorems
states that if some situation A occurs, then situation B must occur too; in short,
A implies B (A = B). For example, situation A can be “sides PQ and PR of
triangle POR have the same length,” and situation B can be “ZPOR = ZPRQ
in APOR.” (See Figure A1.1.) F iﬁxally, one applies the principles of mathematical
logic to carefully deduce new principles from the axioms and old principles.

P

Q —>¢

' Figure

If the length of PQ equals the length of PR in APQR, £ PQR = /PRQ. Al.l
Direct Proofs

The direct way of proving that A = B is to find a sequence of accepted axioms
and theorems of the form A; — A;4, fori = 1,...,n, so that A, = A and
Apv1 = B:

A=A)=A =A== A3 = ---= A, = A, =B 1)
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The hard part, of course, is to find the sequence of theorems that fills in the gap
from A to B in (1). Proofs of the form (1) are called direct proofs; the method is

called deductive reasoning.

We illustrate deductive reasoning by deriving some properties of numbers from
the six properties of addition and multiplication listed above. These proofs also
rely on some basic properties of-equality which we will accept as basic axioms;

for example, for all ¢, b, c,d € R,

a=bandb=c=a =g,

a=b=a+c=b+g

a=b=a-

a=bandc=d=a-

c=b-g

c=b-d

)
)
(4)
)

We will write out these first proofs rather carefully, that is, we will skip few steps
and we will justify each step with a phrase or sentence. '

Theorem A1.1 Forany x, 5,z ER,ifx+2z=y +z thenx = y.

Proof

l.x+z=y+z

There exists (—z) such that
z+(—2)=0.

N

3. (x+2)+(—2)=(y +2)+(—2).
4. x+ (z+ (—2)=y+ (z+ (—2)).
5.x+0=y+0.

6. x = y.

Hypothesis.
Additive inverse property.

Rule (3).

Additive associative property.

Step 2.
Additive identity property. B

Theorem A1.2 Foranyx ER,x -0 = 0.

Proof

1.0+0=0.
2.x-(0+0)=x"-0.
3.x-0)+(x-0)=(x-0).

4. (x-0)+ 0= (x-0).
5.(x:0)+(x-0=(x-0+0
6. x-0=0.

Additive identity property.
Rule (4).

Distributive property.
Additive inverse property.
Rule (2).

Theorem Al.1. B

The following proposition about even integers will be useful in proving that

/2 is an irrational number.

an even integer.

Theorem A1.3 Let m be an even integer and p be any integer. Then, m - p is
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Proof
1. m is an even integer. Given.
2. There is an integer g such that Definition of even integer.
m=2-q.
3 m-p=@2-9-p. Rule (4) above.
V' 4 m-p=2-(q-p). Associative property of
multiplication.
S. m- piseven. Definition of even integer. B

Converse and Contrapositive

Given a proposition A = B. we now discuss two closely related propositions:
the converse and the contrapositive.

Definition Consider a proposition P of the formA = B: if hypothesis A holds,
conclusion B holds. The converse of P is the statement B => A, which reverses
the hypothesis and conclusion of P.

If statement P is true, its converse need not be true. For example, suppose 2 is
the proposition: if (A) a person lives in Detroit, (B) that person lives in Michigan.
Proposition P is true, but its converse — if a person lives in Michigan, that person
lives in Detroit — is not true.

As another example, suppose A is the situation “n is a prime number greater
than 27 and B is the situation “'n is an odd number.” It is true that A implies B, but,
as the integer 9 = 3 - 3 illustrates, it not true that B implies A.

Definition If the proposition A = B and its converse B =—> A are both true,
we say that A holds if and only if B holds or that A is equivalent to B. The
equivalence of A and B is written asA < B.

For example, if A is the statement that “u is an even prime” and B is the
statement “n = 2" both A => B and B = A are true.

There is a proposition formed from proposition P that is true when P is true:
the contrapositive of 7. We have been writing A = B to denote the proposition
that when situation A holds, so does situation B. Write ~A for the statement “it is
not true that A holds.”

Definition The proposition ~B => ~A is called the contrapositive of the
proposition A = B.

For example, the contrapositive of the proposition “If a person is President of
the United States, he or she must be at least 35 years old,” is “If a person is not yet
35 years old, he or she is not President of the United States.” Earlier, we discussed
the proposition that if (A) n is a prime integer different than 2, then (B) n is an odd
integer. The contrapositive states that if (~B) x is not an odd integer, then (~A) n
is not a prime different than 2; or restated, if # is even, then # either equals 2 or is
not a prime.

The contrapositive of Theorem A1.3 will be useful later. One way of stating it
15 as follows.
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Theorem A1.4 Suppose that a, b, and c are integers witha - b = c. If c is
odd, then a and b are odd too.

The following result can be considered a corollary of Theorem A1l.4 in that it
is a special case of Theorem A1.4 or follows almost without proof from Theorem
Al4.

Theorem A1.5 Let a be an integer. If a® is odd, so is a.

Indirect Proofs

Since a proposition A == B is true if and only if its contrapositive is true, one way
to prove A = B is to prove ~B =—> ~A. This idea can be extended: one way to
prove that B is true is to consider all alternatives to B. If every such alternative to B
leads to a contradiction — of A itself, of an axiom of the system, or of a previously
proven proposition — then B must be true. This line of reasoning is called indirect
proof or proof by contradiction, or sometimes reductio ad absurdum.

For example, suppose you left a professional (U.S.) football game early with
the score tied: Detroit 10, Chicago 10. When you arrive home, you learn that the
final score was Detroit 12, Chicago 10. You know that there are only four wz{ys
to score points in a professional football game: 1) by a 7-point touchdown and
successful place kick; 2) by a 6-point touchdown and unsuccessful place kick,
3) by a 3-point field goal place kick, and 4) by a 2-point safety in which the
scoring team tackles its opponent behind its own touchdown line. Knowing the
10-10 and 12-10 scores enables you to eliminate the first tkree possibilities and
to conclude (by indirect reasoning) that Detroit won by a safety.

Many of the results in this book can be more easily proved indirectly than
directly. To carry out an indirect mathematical proof of A = B, one assumes
at some point that situation B does not hold and then applies rigorous inductive
arguments until a contradiction is reached. The assumption in the proof that B
does not hold is sometimes called the “working hypothesis.”

We illustrate proof by contradiction by proving that \/5 is an irrational number.
First, we state without proof two principles that can be derived from our basic
axioms, but whose derivation we omit to save time and space. The first proposition
is the converse of Theorem Al.5.

Theorem A1.6 Let a be an integer. If a2 is even, so is a.

Theorem A1.7 Suppose a = p/q is a rational number with p and q integers.
Then, p and g can be chosen so that both are not.even integers.
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The proof of Theorem A1.7 is based on the fact that if 2 divides both p and g,
then a 2 can be factored out of the denominator and numerator of the fraction p/gq.

Theorem A1.8 /2 is an irrational number.

Proof

fun—y

W

Pt

20

S AN B

12.

13.

14.
15.

16.
17.
18.
19.

. \/5 is either rational or
irrational.
Suppose that V2 is rational.

. 2 = p/q, where p and q are

not both even.
V22 =(p/9)- (p/9).
. 2= /4.

2 q2 = pz.

p? is even.

p is even.

p = 2 - m for some integer m.
pp=2m-2m.

pr =22 -m.

2-¢*=2-2-md).

There exists 1/2 such that
(1/2)-2=1.

(1/2)-2-¢ = (1/2)-2-(2- m?).
g =2 -m?

g* is even.

g is even.

p and q are both even.
Contradiction to Step 3.

. /2 is irrational.

Mathematical Induction

Definition of irrational
number.

Working hypothesis.

Al.7.

Property of equality.
Definition of square root and
rule for multiplication of

fractions.

Rule (4) above.

Definition of even.

Theorem Al.6.

Definition of even.

Rule (5) above.

Definition of square; associative
and commutative laws of
multiplication.

Rule (2) applied to Steps 6
and 11.

Multiplicative inverse.

Rule (4) above.

Multiplicative associative and
inverse properties.

Definition of even number.

Theorem Al.6.

Steps 8 and 17.

Working hypothesis is false. B

There is a third method of mathematical proof that differs significantly from proofs
by deduction and proofs by contradiction: proof by induction. Inductive proofs
can only be used for propositions about the integers or propositions indexed by
the integers, but they are powerful tools in such situations.

To get a flavor for how inductive arguments work, suppose that a hundred men
line up in a straight line, one behind the other, and that each whispers his name
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to the man behind him. Suppose that we know only two things about this line of
men: 1) the first man’s name is David. and 2) directly behind every man whose
name is David is another man whose name is David. We can conclude that all
hundred men are named David. For, we know by statement 1 that the first man is
David. We conclude from statement 2 that the second man’s name is David too.
Applying statement 2 to the second man, we conclude that the third man’s name
is David. too. Continuing this boot strap argument step by step, we conclude that
every man in the line is named David.

It there were an infinite number of men in the line and we knew that statements
1 and 2 held, we could still conclude that all the men in the line are named David.

The principle of induction works just this way. Suppose that we are considering
a sequence of statements indexed by the natural numbers, so that the first statement
is P(1), the second statement is P(2). and the nth statement is P(n). Suppose that
we can verifv two facts about this sequence of statements:

(1) statement P(1) is true:
(2) whenever any statement P(k) is true for some &, then P(k + 1) is also true.

By the same logic as with the line of Davids, we conclude that all of the statements
are true. In an inductive proof. step 2) is called the inductive step. The hypothesis
that some general statement P(k) is true is called the inductive hypothesis.

Let’s work out some examples of proofs by induction. We first prove that the
sum of the first 7 natural numbers 1 +2 + -+ + nis 1n(n + 1).

Theorem A1.9 The sum of the first 7 natural numbers1 +2+ 3+ -+ +n
equals {n(n + 1).

Proof For any natural number n, let P(n) be the statement

+
P(n): 1+2+3+---+n=n(—"2£. (6)

Let’scheck P(1). If weletn = 1 onthe right-hand side of (6), we find 1(1+1)/2,
which does indeed equal the left-hand side when n = 1.

Now, we make the inductive hypothesis by assuming that statement P (k) is
true for some integer k:

_ Kk +1)

1+2+3+---+k 5 (7

Adding (k + 1) to both sides of (7) preserves equality.
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14243+ - +k+(k+1)=

k(k;1)+(k+1)

= (§+1)(k +1)

(kDK +2)
= 5 .

But this last expression is exactly statement P(k + 1). We have shown that P(1)
is true and that [P(k) true = P(k + 1) true] for any k. We conclude, by the
principle of mathematical induction, that P(n) holds for all n. B

Let’s look at one more example, one that uses induction to verify a formula
for the sum of the first #n odd natural numbers.

Theorem A1.10 The sum of the first n odd natural numbers is n?:

1+3+5+7+--+@2n—1)=n’ (8)

Proof Formula (8) is easily seen to be true for n = 1. So, we carry out the
inductive step. Assume (8) holds for some positive integer k:

14+3+5+7+ -+ (2k—1)=k% )

The next odd number to be added to the left-hand side of (9)is2(k + 1) - 1 =
2k + 1. We preserve equality if we add it to both sides of (9).

1+3+-+2k— 1)+ 2k +1)— 1) = k* + (2k + 1). (10)
But the right-hand side of (10) clearly factors as (k + 1)?. We conclude that
1+3+- -+ @k—1D+ 2%k +1)—1) = (k+ 1)
which is precisely statement (9) with k£ + 1 replacing k. By the principle of

mathematical induction, we conclude that (9) holds for all natural numbers n.
|

EXERCISES

AL3  Write out careful proofs of the following properties of set operations:
a) (AN B) = A°UB¢;
b) (AU B) = AN B
)ANBUC)=ANB)UMANC).
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Al4
AlS

Al.6

AL7

Show that \/5 is an irrational number.

Use mathematical induction to prove the squared version of (6): 12 +22+- - - +n? =
n(n + 1)(2n + 1) /6.

Leta, = 1/[n(n + 1)]. Compute a;, a; + a,, a; + a, + a3, and a; +a, + a3 + a,.
Guess a; + a; + -+ - - + a,, for any natural number n. Use mathematical induction to
verify your guess.

Use mathematical induction to prove that n < 2" for all natural numbers n.




AP PENDIX A 2

Trigonometric
Functions

Most of the specific functions encountered in elementary mathematical approaches
to economics are polynomials, quotients of polynomials (rational functions), or
exponentials. As the independent variable x goes to infinity, the graph of each of
these three types of functions either goes to infinity (very quickly for exponential
functions) or approaches a finite horizontal asymptote. None of these functional
forms can model the regular periodic patterns that play an important role in the
social, biological, and physical sciences: business cycles and agricultural seasons,
heart rhythms, and hormone level fluctuations, and tides and planetary motions.
The basic functions for studying regular periodic behavior are the trigonometric
functions, especially the sine, cosine, and tangent functions.

A2.1 DEFINITIONS OF THE TRIG FUNCTIONS

The domain of the trigonometric functions is more naturally the set of all geometric
angles than some set of real numbers. We start with that approach and measure
angles in degrees for the time being.

£,

24

A

Angle 0 is formed by rotating ray £, to £.

859

Figure
A2.1
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Consider the acute angle 8 in Figure A2.1 formed by the rays £, and £, from
the point A. Think of 8 as being swept out by a counterclockwise rotation about
the point A from ray £, to ray £,. In this case, we will call £, the initial ray and
£, the terminal ray of angle &. Pick a point B on the terminal ray £, and draw a
perpendicular line » from B to the initial ray £, intersecting £, at the point C as
in Figure A2.2. Triangle ABC is a right triangle with hypotenuse AB, opposite leg
BC, and adjacent leg AC, relative to the angle 6.

4

A
Figure
A2.2 Computing the sine, cosine, and tangent of 0.

The six trigonometric functions are defined by taking ratios of the lengths of
these three sides of triangle ABC:

opposite leg _ ||BC|

ine 0 _ _ |
He hypotenuse [IAB]|

cosine § = 2djacentleg "AC"’
hypotenuse I|AB||
opposite leg IIBCI|

t tg = _ '
aneen adjacent leg lIAC||
_ adjacentleg _ ||ACI|

COtangent 0 opposite leg = "BC“ ’
hypotenuse _ ||AB||

te = = ,
e adjacent side  ||ACI|
cosecant § = hypotenuse _ ||4B|

opposite leg  ||BC||’

r
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where ||AC|| denotes the length of line segment AC. These six functions represent
all the possible ratios of the three sides of triangle ABC. The first three trigono-
metric functions — sine, cosine, and tangent — are the most important of the six.
As the following theorem asserts, the last four can be expressed in terms of the
first two.

Theorem A2.1 Every trig function can be expressed as a quotient of sine and
cosine. In particular,

tangent 6 = sine 6 cotangent 6 = cosine 6
g cosine 6’ g sine 8 ’
1
secant § = - , and cosecant 8 = — .
cosine 6 sine 0

The above definitions are independent of how far the point B is from A on
the second ray £,. To see this, suppose that B’ is another point on £,. Let n’ be
the perpendicular line from B’ to £, meeting £, at the point C’, as indicated in
Figure 2.3. Since » and n' are both perpendicular to £,, they are parallel to each
other. Therefore, the corresponding sides of triangles ABC and AB'C’ are parallel
to each other. By a fundamental result of the Euclidean geometry one studies in
high school, triangles ABC and AB'C’ are similar to each other; they have equal
sets of angles, and therefore the ratios of their corresponding sides are equal.
Therefore, the six trig functions have the same values whether one uses triangle
ABC or triangle AB'C’.

o)

A

The values of the trig functions are independent of the size of the defining triangle.

Figure
A23
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For angles that do not lie between 0° and 90°, there is a sign convention
necessary for a consistent definition of the trigonometric functions. The simplest
way to describe this convention is to choose the point B in Figure A2.2 so that
it is always / unit away from the tip of the angle at A. Since the orientation of
the angle under study should not make a difference, we can, without any loss of
generality, always take the point A at the tip of the angle to be the origin of some
xy-coordinate system, and its initial ray £, to be the positive x-axis. To carry out
this approach, draw the circle S of radius 1, the unit circle. For any angle 0, think
of 6 as being swept out counterclockwise by rays from the origin starting with
the positive x-axis. As before, call the terminal ray £€,. Choose the point'B on £,
1 unit from the origin, that is, on the unit circle S, as indicated in Figure A2.4.

Measuring 0 as a counterclockwise rotation on the unit circle S from the positive
X-axis.

Suppose that the coordinates of the point B are (b, b;) in this coordinate
system. Then, the perpendicular segment from B to the x-axis £; meets £, at the
point C = (b, 0); furthermore,

lACIl = b, and |IBC]| = b,.

Since ||AB|| = 1 in this approach, the above definitions of the trigonometric
functions become

sin0=%=b2, tan 0 = —, sec0=bl,

1 1
) b Q)]

1 1
= e— = b , = —’ = —
cos 6 ] 1 cot 6 by csc 5,

Note the use of the standard abbreviations for the six trig functions.
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We now extend formally the definitions of these functions to all angles. For
any angle ¢, sweep out ¢ counterclockwise on the unit circle beginning with the
positive x-axis, and let B(b,, b;) be the point where the terminal ray intersects
the unit circle S. Then, the six trigonometric functions are defined by the six
expressions in (1); b; and b, can be positive or negative depending on the size
of ¢. For example, since b; is negative when B lies in the third quadrant (where
x; and x, are negative) and in the fourth quadrant (where x, is positive and x; is
negative), sin ¢ is negative when ¢ lies between 180° and 360°. Similarly, the
tangent and cotangent functions are negative precisely when B lies in the second
or fourth quadrants, that is, when 90° < ¢ < 180° or 270° < ¢ < 360°.

A2.2 GRAPHING TRIG FUNCTIONS

1t we use the definitions in (1) to graph the sine function, we need only keep track
of b, as 0 goes from 0° to 360°. At 8 = 0°, b, = 0 and sin0 = 0. As 0 rises from
0° to 90°, b, rises from 0 to 1. As 0 passes from 90° to 180° to 270°, b, decreases
from +1 to 0 to —1. As 6 goes from 270° to 360°, b, increases from —1 back
to 0. As 6 increases beyond 360°, B moves once again around the unit circle. If
we move B clockwise around the unit circle S, we sweep out negative angles (by
definition), but we continue to use the formulas in (1) to define their sine, cosine,
etc. We conclude that the graph of 6 — sin 0 is the curve in Figure A2.5.

+1-

1 |
-90 0 920 180 270 360 450

The graph of 6 — sin 6.

Similarly, by keeping track of b; as B moves around the unit circle, we generate
the graph of the cosine function pictured in Figure A2.6. By keeping track of
b, /b, as B moves around the unit circle, we generate the graph of the tangent
function in Figure A2.7. Note that as 6§ moves toward 90°, B approaches (0, 1)
and tan 6 = b, /b, approaches +c,

Why do we need more than one functjon to keep track of angles? For one
thing, as Figures A2.5 and A2.6 indicate, for every number y between —1 and
+1, there are two angles 6, and 6, between 0° and 360° such that sin 8; = sin 6,.
However, for these two angles, cos 6, and cos 6, have different signs. For example,
sin180° = sin0° = 0, but cos 180° = —1 and cos0° = +1. Since (b}, b;) =
(cos 6, sin ), cosine and sine together completely specify each angle.

Figure
A25
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+1

| 1
-90 0 90 180 270 360 450

~“1F

The graph of 0 — cos 6.

The graph of 6 — tan 6.

In addition, each trig function has its own advantages and its own uses. For
example, the sine and tangent functions are natural since as 6 moves from —90° to
0° to +90°, the sine shadows it while moving from —1 to 0 to +1 and the tangent
shadows it while moving from — to 0 to +c. The tangent function is especially
useful in applications because its definition involves the length of the two legs of
the defining right triangle and, in fact, exactly tracks the slope of the hypotenuse
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of that triangle. On' the other hand, as Figure A2.6 indicates, the cosine function
satisfies

cos 6 = cos(—0); 2)

that is, the cosine is an even function. In particular, the cosine of an angle is
independent of whether the angle is measured clockwise or counterclockwise.

A2.3 THE PYTHAGOREAN THEOREM

For the rest of this section we will use some of the basic Euclidean geometry
that one studies in high school to derive useful properties of the trigonometric
functions. The key geometric principle is the Pythagorean Theorem: the sum of
the squares of the legs of a right triangle equals the square of the length of the
hypotenuse; a®> + b*> = ¢? in Figure A2.8.

a
By the Pythagorean Theorem, a® + b* = c2.
The application of the Pythagorean Theorem to Figure A2.4 yields
b} + b2 =1, 3)

since the hypotenuse has length 1. Using the definitions (1) of the trig functions,
equation (3) translates to

cos’ @ +sin’ @ = 1 for all angles 6. 4)

Dividing (3) through by b? yields

2 2
1+(?) =(£) or 1+ tan® = sec? 4. 5)
1 1

Figure
A2.8
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Dividing (3) through by b3 yields

b 9

- l - Bl L)
—— = —_— - — - A
(bz) +1 (bz) or cot"6+1=csc"0 (6)

A2.4 EVALUATING TRIGONOMETRIC FUNCTIONS

To understand the trigonometric functions a little better, we evaluate the sine,
cosine, and tangent functions at the three important acute angles: 30°, 45°, and
60°. These evaluations rely on the basic result of Euclidean geometry, that two
sides of a triangle are equal if and only if the angles opposite these sides are equal.

For the 45° angle in Figure A2.9, we have drawn right triangle OBC, motivated
by Figure A2.2. (We have put aside the unit circle approach for a moment.)
Since £O = 45° and LOCB = 90°, LOBC = 45°. (The angles of a triangle
sum to 180°.) Since LCOB = LOBC, ||OC|| = |ICBI||. If we chose B so that
loCll = |ICB|| = 1, then by the Pythagorean Theorem,

lOBII> = llOCIP + |BCIF =1+1=2

So, ||OB|| = \/5 We conclude that

- _ IIBCll _ 1
45° = 0 = — =~ 0.7071,

0Bl ~ 2
ocC 1

0s45° = u = — = (0.707], @)
108l ~ /2
IBCll _ 1

tand5® = ——1 = - =1
llocll 1

The 45-45-90 isosceles triangle.
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To compute the values of the trig functions at 30° and 60°, consider the 60-
60-60 equilateral triangle ABC in Figure A2.10, and draw the bisector of 2B, BD.
Since

LA=/C=60° and <ABD = /DBC = 30°, (8)

LADB = LCDB = 90°. We use the right triangle ABD to evaluate the trig
functions at 30° and at 60°.

60° 11 60°

D

The 60-60-60 equilateral triangle.

Recall from high school geometry that two triangles are congruent if in the
two triangles, two corresponding pairs of angles and the sides between them are
equal (angle-side-angle rule). Therefore, (8) implies that triangles ABD and BDC
are congruent; and so,

4Dl = IDcll = Z1IABI.

If we choose units so that ||AD|| = 1, then ||AB|| = 2, and by the Pythagorean
Theorem,

I1BDIl = VIIABI? - JIADIP = /3.

It follows that

Figure
A2.10
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\BDI|
tan60° = ——— = /3 = 1.732,
lIAD|
. ane _ IADI 1
sin30° = —— == =0.,
IABIl 2
IBDIl _ /3
c0s30° = — = — = 0.866,
. llaBlf 2
tan30° = M = L = (0.577.

These values are consistent with the graphs in Figures A2.5, A2.6, and A2.7.

A2.5 MULTIANGLE FORMULAS

Finally, we consider the behavior of the trigonometric functions with regard to the
sums and differences of angles. The following theorem, presented without proof,
summarizes these rules.

Theorem A2.2 For any two angles a and b,

sin(a + b) = sinacosb + cosasinb,
sin(a — b) = sinacosb — cosasinb,
cos(a + b) = cosacosb — sinasinb,

cos(a — b) = cosacosb + sinasinb.
In the special case thata = b,

sin 2a = 2sinacosa,

cos2a = cos’a — sin? a.

Theorem A2.2 will be important in deriving the formulas of (sinx)’ and (cos x)'.
Of course, it also extends the set of angles whose sines and cosines can be computed
exactly. For example, knowing the sin and cos of 45° and 30°, we can compute
the sin and cos of 15° and 75°.

A2.6 FUNCTIONS OF REAL NUMBERS

We have formulated the trigonometric functions as functions of geometric angles.
We can easily consider each of them as functions defined on the set of real numbers
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by associating to any real number r the angle of r °. In fact;we implicitly did this
when we drew the graphs in Figures A2.5, A2.6, and A2.7.

However, just as there are a number of different measures of distance (inches,
feet, yards, miles, centimeters, meters, etc.), there are a number of different mea-
sures of an angle. The most intuitive is the degree, which is defined by the fact
that an angle of 180° yields a straight line and that an angle of 360° describes a
complete revolution about the circle.

But why 360? Any number could have served about as well. Since the right
angle is a natural cornerstone among angles, some engineers find it convenient
to measure angles by what percentage of a right angle they are, using the term
“grads” for the underlying unit. In this approach, a right angle is an angle of 100
grads, a 45° angle is an angle of 50 grads (50 percent of a right angle), and a 60°
angle is an angle of 662 grads (665 percent of a right angle).

In some sense, a more natural approach is to start with the unit circle — the
circle of radius 1 pictured in Figure A2.3 — and to describe an angle by the length
of the arc of the unit circle which that angle sweeps out. The word “radians” is
used to describe this unit of measurement. Since the circumference of a circle of
radius 1 is 27, an angle of 360° is the same as an angle of 27 radians. A right
angle, which corresponds to 1/4 of the way around the circle, is measured as

1
_0271':

radians.
4

N[ 3

In general, since 360° corresponds to 27 radians, an angle of x° is an angle of y
radians where

1 1
360" 27
T 180
that = — = —
so tha 180x and x = - y.

The graph of the sine function in radians is presented in Figure A2.11.

ADAANAN S
INRAAATATAYE

The graph of x v sin x with x measured in radians.

Figure
A2.11
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If you are evaluating trig functions'on a hand-held scientific calculator, you
must tell the calculator the units with which you are measuring angles. When they
are switched on, most scientific caltulators start in degrees mode, and indicate so
with DEG showing in a corner of the display window. To change units to radians cr
grads, push the DRG button on your calculator and watch the corresponding units
change to RAD or GRAD in the window.

A2.7 CALCULUS WITH TRIG FUNCTIONS

When one uses calculus to work with trig functions, it is understood that all angles
are_measures in radians, because it is in radians that the derivatives have the
simplest expressions. The key ingredient in the calculus approach to tsig functions
are the following two convergence results. '

Theorem A2.3 When angles x are measured in radians,

?-—»1 as x— 0, ©)

cosx —-1

. —0 a x—0. (10)

The proof of these results takes us a little out of our way, and so it is presented
at the end of this section. Figure A2.12 presents the intuition behind (9). Since
angles are measured in radians, the size x of ZBOC is the length of arc BD on the

ah
\_

The geometry behind (9).
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unit circle, and sinx = ||BC|| = b,. Asx — 0, b, = sinx — 0, and the length
of the arc BD becomes very close to the length of the segment BC. (Use your
calculator to see that (9) holds as x — 0 when x is measured in radians.)

Using the results of Theorem A2.3, one can easily compute the expressions
for the derivatives of the six trigonometric functions.

Theorem A2.4 Suppose that angles x are measures in radians. Then,

(sinx)’ = cosx, (cosx)' = —sinx,
(tanx)’ = secx?, (cotx)’ = —csc?x,
(secx)’ = tanx - secx, (cscx)) = — cotx - cscx.

Proof The proof uses the definition of the derivative and the anglc-sum formula
in Theorem A2.2:

sin(x + ) —sinx _ sinxcosh + cosxsinh — sinx
h h

sinx(COSh — 1) + cosx(smh)
h h )

Now, let 4 tend to 0. By Theorem A2.3, (cosh — 1)/h — 0 and (sinh)/h — 1.
Therefore,

(11)

sin(x + h) — sinx
h

— sinx = }'in‘(l) (def. of derivative)

dx
=sinx-0-+cosx-1 (by (11))

= Ccosx.

Similarly,

cos(x + h) —cosx _ cosxcosh — sinxsinh — cosx

h h
= Ccosx cosh — - 1—) — sinx (sinh)
(=2 i
tends to cosx - 0 — sinx - 1 as A — 0. Therefore, (cosx)’ = —sinx. Since tan,

cot, sec, and csc can be expressed as quotients of sin and cos (Theorem A2.1),
their derivatives can now be calculated using the quotient rule of differentiation.
(Exercise.) B
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A2.8 TAYLOR SERIES

The Taylor series can be a powerful technique for working with nonlinear func-
tions. As described in Section 30.3, the Taylor series of a function f: R — R about
the point x = 0 is

1 1 1 1
FO) + 1110 + Zf1O0 + PO + SO0t + o (12)

Since (sinx)’ = cosx, (cosx)’ = — sinx,sin0 = 0, and cos0 = 1, the even order
derivatives of the sine function are 0 at x = 0, while the odd order derivatives.are
+ 1. The Taylor series for the sine function at x = 0 is

s 1s 1o, 1 o,
X 3-!X +§x %x +9—!X . (13)

Similarly, the Taylor series of the cosine function at x = 0 is

1,1 4, 1 ¢ 14 N
1—2—!)( +4—!x ax +§X + . (14)

(Exercise.) For each fixed x, the consecutive terms of the series in (13) and (14) go
to zero (rather rapidly). (Exercise.) It follows — with quite a bit of analysis — that-
the series in (13) and (14) converge for any x.

Example A2.1 Taylor series yield an effective method for computing values of
sin and cos. Let’s use this method to compute sin(7r/4) to three decimal places.
The first four terms in (13) for x = 7/4 are

3
x = (.7853982, - % =~ —(.0807455,
; : 19)
X X
57 = (0.0024904, and - = = —(0.0000366

Since further terms have zeros in the first five decimal places, they do not affect
the first three digits of the Taylor series approximation of sin(7/4). Adding the
four numbers in (15) yields

sin % ~ 0.7071065,

an answer that is, in comparison with the true answer of 1 /\/5 = (.7071068 in
(7), correct to six significant figures.
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A2.9 PROOF OF THEOREM A2.3

We close this section by sketching a proof of the basic convergence results in
Theorem A2.3. Draw the unit circle S, as in Figure A2.13. Let 6 be an acute angle
from the origin whose initial ray is the positive x-axis, as in Figures A2.3 and
A2.13. Let B be the point where the terminal ray of 6 meets S. Let BC be the
perpendicular line segment from the point B to the initial ray of 6. Let A be the

point (1, 0), and let AD be the vertical line segment from A to the terminal ray
of 6.

B D
1
1
(0) C |A
Figure
AOBA C sector OBA C AODA. A2.13

As Figure A2.13 indicates, triangle OBA C sector OBA C triangle ODA.
Therefore,

area of AOBA = area of sector OBA = area of AODA. 16)
Now, area of AOBA = = - [10All - IBC
= % -1-sin6,
q .
area of sector OBA = T area inside §

3|
19

N =
=
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area of AODA - ||OAll - |lAD]|

Nl= N

-1-tané.
Substituting these calculations into (16) yields

1. 1 1
- =_-6=<= ]
5 sin 6 26 3 tan 0 (17)

Divide (17) through by 3 sinx:

6
1= —— =cosh,
sin 6
and invert:
1 sin 6
— =— =1
cos 0 6

As 8 — 0, cos 8 — 1 and (sin 6)/6 is forced to converge to 1; this proves (9).
To prove (10), note that

cosx—1 cosx—1 cosx+1

X X cosx + 1

_ cos’x —1

x(cosx + 1)

—sin?x

= (by (4))

x(cosx + 1)

sinx —sinx
X cosx +1

0
—»1-5=0, asx— 0 (by (9))

EXERCISES

A2.1 Prove Theorem A2.1 from the definitions of the trig functions.

A2.2 Draw the graphs of the cotangent, secant, and cosecant functions.

A23 Provethat cos § = sin(90° — 6) and sin § = cos(90° — 6).

A2.4 Evaluate sine, cosine, and tangent at 120°, 135°, 150°, 210°, 225°, and 240°
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A2.5
A2.6
A2.7

A2.8

A29

A2.10

A2.11

A2.12
A2.13

Evaluate cotangent, secant, and cosecant at 30°, 45° and 60°.

Derive formulas for cos %a and sin %a in terms of cosa.

Use Theorem A2.2 and the previous exercise to compute the sine and cosine of
15°, 22.5°, and 75°.

Compare the graphs of sin x in Figures A2.5 and A2.11 by graphing both on the
same coordinate grid.

Use a hand calculator to see that (9) holds when x is measured in radians, but not
when x is measured in degrees.

Use (sinx)’ = cosx and (cosx)’ = —sinx and Theorem A2.1 to compute the
derivatives of the other four trig functions.

Use the Taylor series to compute cos(7/4) and sin(w/3), and compare your
answers with the exact answer computed earlier. ‘

Show that (13) and (14) are the Taylor series (12) for the sine and cosine functions.
For any fixed number a — no matter how large — show that a" /n! — 0 as n — =,




A PPENDIX A 3

Complex Numbers

A3.1 BACKGROUND
The solutions of a quadratic equation
ax* +bx+c=0 (1)

arc given by the quadratic formula

—b * /b?> — 4ac
x= P . (2)

The only caveat is that the expression b?> — 4ac under the radical must be positive
for the answers (2) to be a pair of real numbers. For example, (2) tells us that the
solutions of x — 4x + 3 = O are x = 1 and x = 3 (check) and that the solutions
of

x*—4x+13=0 A3)
+ /16 — + .-
are x = ix 126 2 _4= > 36. (Check.) 4)

Since the square of every real number — positive or negative —is a paositive
number, no real number has a square equal to —36; and therefore, equation
(3) has no real solution. However, as we will see at the end of this section,
there are situations where one needs to work with a solution of equation (3) —
even a solution that does not have any meaning. To get around this problem,
mathematicians have extended the concept of a number and have created a new
kind of number — the complex number — which includes square roots of negative
numbers.

The key step in this extension is to let the symbol i stand for V—1, so that

i = —1, and to set up this extended number system so that it has all the properties

876
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of the usual real number system, in particular, the six properties in Section Al.2.
In this case,

V=36 =36 —1=136-V/-1=6i
and the “solutions” (4) of equation (3) can be formally written as
2+3i and 2-3i 5)
Definitions

The set of complex numbers, ofter denoted C, is the set of real numbers augmented
by an extra symbol i. A typical complex number has the form a + bi, where a and
b are real numbers. The formal definition follows.

Definition A complex number is a number of the form a + bi, where a and b
are real numbers, and the symbol i formally satisfies i = —1. The real number a
is called the real part of a + bi; the real number b is called the imaginary part of
a + bi. A complex number bi whose real part is 0 is called an imaginary number.

Definition As we will see below, for any complex number a + bi, the related
complex number a — bi plays a number of important roles. The complex number
a — bi is called the complex conjugate of a + bi. When the symbol z is used to
denote the complex number a + bi, its conjugate a — bi is written as z:

a+ bi =a— bi
Arithmetic Operations

Two complex numbers can be added, subtracted, multiplied, or divided; the result
is a new complex number. For example, for real numbers a,, a;, by, b;:

(ay + bii) + (az + byi) = a; + a, + byi + byi
= (a; + a3) + (b; + by)i
(ay + byi) — (az + byi) = a; —a; + byi — byi
= (a1 —a2) + (by — )i,
(a1 + bai) - (a2 t+ bai) = (a1 a2) + (a1 - bai) + (bri - a2) + (bii - bi)
= (a1a2 — b1 by) + (a1 b, + az by);,
since byi - byi = bybyi?> = byby(—1). In particular,

(a + bi)2 = (a + bi) - (a + bi) = (a* — b*) + 2abi, (6)
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and the product of a complex number « + bi and its complex conjugate a — bi is
(a + bi)y-(a — bi) = a* + b7, @)

a positive real mmmber .

Division s a little trickier. To obtain a complex number of the form A + Bi
from a quotient (¢ + byi)/(a> + b>i) of complex numbers. multiply numerator and
denominator of the quotient by a- — bai. the complex conjugate of the denominator
a> + boilto get a real denominator:

ay + bli a + bli U — I)li

as + bsi as + bl as — bai

(a\a> + byby) + (arby — a; )i
a:; + I)g

a as + b[[): (lzbl - a|b2 .
=l—=F7=1]"7 — = 2 b
as + bs a; + b;

a complex number of the form A + Bi.

Lxample A3.1  For example,

(2+3)+ @ +5)=6+8i
2 +3i)- (4 + 50) = =7 + 224,
2+3i 2+43i 4—5i 23 2

— - == =

4+5 4+5 4—-5 41 4]
2+ 3i)- (2 - 3i) = 13.

A3.2 SOLUTIONS OF POLYNOMIAL EQUATIONS

Complex conjugates arise naturally in the solution of polynomial equations, be-
cause, as the following theorem asserts, if a complex number zg = a + bi is a
solution of a polynomial equation with real coefficients, so is its complex conju-
gale zy = a — bi. Before proving this statement, we collect the basic properties of
the complex conjugation operation.

Theorem A3.1

(a) A complex number z = a + bi equals its complex conjugate z = a — bi
if and only if z is real; that is,z = aand b = 0.
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Furthermore, for any complex numbers z; and z».

by zy + =2/ + > and
()

(3]

L= I

D+

N

Proof Suppose a + bi = a — bi. Subtract a from both sides of this equation:
bi = —bi. Divide both sides by i: b = —b. But the only real number b that
equals its negative is b = 0. Follow these steps in reverse order to prove the
converse. The proofs of parts b and ¢ follow directly from the above definitions

’ of the addition and multiplication operations and are left for the exercises. B

We now show that the complex roots of a real polynomial equation occur
in conjugate pairs. For example. the roots of the quadratic (3) are the conjugate
complex numbers 2 + 3/ and 2 — 3i.

Theorem A3.2 Consider the polynomial equation
¢y +cx + C:XZ -+ C,,.\'” = 0, (8)

whose coefficients ¢y, ¢y, . .., ¢, are real numbers. If zy = a + bi is a solution
of (8). then so is its complex conjugate 2z, = a — bi.

—

Proof Suppose that zy = a + bi is a specific solution of polynomial equation (8)
so that

o + C12y + CZZ(JJ + -+ C”Z:; =0. (9)
Take the complex conjugate of both sides of (9):

— . N ) . on
()= Cpy + Ci129 + (.22() + + C"ZU

=t gt ezt e (by Theorem A3.2.2)

=@+ t+Eic + - +¢z"  (by Theorem A3.2.3)
= + ClZ_U + (‘22—02 + -+ C”Z—U" (by Theorem A321)
The last line states that z, = a — bi satisfies equation (9).
Of course, formula (2) gives the solution of every second order polynomial

cquation. One can use this formula to check directly that if a + bi is a complex
solution of ¢y + ¢, x + ¢;x* = 0, so is a — bi. (Exercise!) B

A3.3 GEOMETRIC REPRESENTATION

Just as real numbers can be represented geometrically on the real number line, as
in Figure 2.1, a complex number a + bi can be considered as an ordered pair of
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real numbers (a, b) and represented as a point in two-dimensional xy-space with
x coordinate a and y coordinate b, as'in Figure A3.1. In fact, one can think of
the complex numbers {a@ + bi : @, b € R} as simply another way of writing the
set of all ordered pairs {(a, b) : a, b € R} in the Cartesian plane. (The only real
difference lies in the fact that there is a natural multiplication on the set of complex
numbers, but not on the set of ordered pairs in the plane.) In this representation,
the horizontal or x-axis is called the real axis, the vertical or y-axis is called
the imaginary axis, and the Cartesian plane is called the complex plane. The
complex numbers a + 0i whose imaginary parts are zero can be identified with
the real numbers on the real number line.

Imaginary
axis

Real axis

Representing a + bi in the complex plane.

In the complex plane, the Euclidean distance of the point z = a + bi from the

origin is va* + b? by the Pythagorean Theorem. However, by (7), this distance
can be written as

Va2 + b2 = J(a + bi)(a — bi) = \/zZ. (10)

This real number (10) that represents the “distance” of the complex numbera + bi
for the complex zero 0 + 0i is called the norm or modulus of @ + bi. It is written
as |a + bi| since it generalizes the absolute value of a real number.

Consider the right triangle drawn in Figure A3.2, whose legs lie along the axes
and whose hypotenuse is the vector from the origin to a + bi. The length r of this
vector is the distance from (0, 0) to (a, b), the modulus Va2 + b? of a + bi. Let 0
denote the angle that this vector makes with the positive real axis, as pictured in
Figure A3.2. The angle 0 is called the argument of the complex number a + bi.
By the definitions of the cosine and sine functions in the last section,

)

=S

a .
cosf = - and sinf =
r

so that a + bi = (rcos0) + (rsin)i = r(cos 0 + isin 6). (11)
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Expression (11) is called the polar coordinate representation of a -+ bi. It is
especially helpful in evaluating powers of a + bi. For example,
(a + bi)* = [r(cos 6 + isin §)]’
= r*(cos 6 + isin 9)?
= r?(cos’ 0 —sin’ 6 + 2cos @sin i)  (by (6))
= r2(cos 26 + isin20) (by Theorem A2.2).

The identity
(a + bi)®> = r?(cos20 + isin20) (12)

makes it casy to locate (a + bi)? in the complex planc. [ts modulus r? is the square
of the modulus r of a + bi and its argument 20 is twice the argument 8 of a + bi,
as illustrated in Figure A3.3.

a+ bi
N
[
|
’ l
b
|
|
|
he L)
a
Figure
Polar coordinate representation of a + bi. A3.2
(a + bi?
r.’
a+ bi
226 s
(S
Figure

Using (12) to locate (a + bi)?* in the plane. A33
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The identity (12) generalizes to all powers of a + bi. The generalization, called
DeMoivre's theorem, plays an important role in the solution of linear difference
equations in Chapter 23.

Theorem A3.3 (DeMoivre’s theorem) For any complex number a + bi with
polar representation r(cos 8 + isin 8) and any positive integer 1,

(a + bi)" = r"(cosnf + isin nb). (13)

Proof 'The proof is by induction on n. We know that identity (13) holds for
n = 1, 2. Suppose that it holds for n = & so that

[r(cos 6 + isin0)]' = r¥(cosk® + isink). (14)
We want to show that it holds forn = k& + 1. Now,
[r(cos 6 + isin 0)]k o rk(cosk# + isink@) - r(cos 6 + isin )

= rk*!((cos k8 cos 8 — sin kB sin 6) (15)

+ i(sink® cos § + cos k0 sin 6))
using the rule for the product of complex numbers. But, by Theorem A2.2,

cos((k + 1)0) = cos(kf + 6)
= cosklcos O — sinkfsin 6
sin((k + 1)8) = sin(k6 + )

= sin k6 cos 6 + sin 6 cos k6.
Therefore, (15) can be rewritten as
[r(cos 6 + isin 6)]/(+l = r**'[cos(k + 1)8 + isin(k + 1)8].

This completes the inductive step and verifies that (13) holds for all integers 7.
a

A3.4 COMPLEX NUMBERS AS EXPONENTS

In working with linear differential equations, one often encounters the expression

¢ P — the number e with the complex number a + bi as its exponent. How does

one interpret a complex number as an exponent?
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For this discussion, the Taylor series of x — ¢* will come in handy. The Taylor
series representation of €* about the point x = 0 is the infinite series

— 11 12 13 ln

The infinite series on the right-hand side of (16) represents the function x — ¢&*
because it converges to €* for every value of x. Therefore, it is natural to use the
power serics (16) to define complex powers of e.

Definition For any complex number z = a + bi, define €* to be the limit of the
infinite series

1.

1 1
l+z+zzz+§z3+4!

z4+5%25'+-'-. (17)

Notice that for real numbers a, that is, for complex numbers a + 0i with zero
imaginary part, this definition (17) gives the usual value e”. What happens for pure
imaginary numbers 0 + bi with zero real part? Plug z = ib into (17), and separate
terms without i’s from terms with i’s:

;i ) 1 . 1 . 1 . 1 .
eb=1+ib+ 2—!(zb)2 + i(zb)3 + 4—!(11;)4 + 5(zb)5 + .-
(i _ 1,2, 1,4 _ (V3 1,5
since iZ = —1,3 = —i,i* = 1, and so on. But, by the discussion at the end of

Appendix A2, the series in the first set of brackets is the Taylor series for cos b, and
the series in the second set of brackets is the Taylor series for sin b. We conclude
that, by the above definition of complex exponentiation, for any real number b,

e® = cosb + isinb. (18)

Identity (18) is called Euler’s equation. If we take b to be  in (18), the straight-
line angle.in radians, then

é" =-1 or —€7"=1, 19)

since cosm = —1 and sin w = 0. Equation (19) is an aesthetic combination of
the three esoteric numbers e, i, and . For example, successful math department
intramural baseball teams have been known to boast: “We’re number —¢'™ ”
Complex exponentiation retains the important properties that exponentiation
with real numbers enjoys. For example, for any two complex numbers z; and z,,

@t = - e, (20)

»
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To prove (20), write out the Taylor series of €*' and of ?2, multiply them out term
by term, and then collect terms to recover the Taylor series of ¢* *%2. (Exercise.)

Finally, we use Euler’s equation (18) and (20) to derive a simpler expression
for 2+ b

el - ebl

= €’ (cosb + isinb). (21)

a+bi _

Some texts use the simple formula (21) to define complex exponentiation %%
instead of the Taylor series definition (17).

A3.5 DIFFERENCE EQUATIONS

We motivated the existence of complex numbers by asserting that mathematicians
want every quadratic equation (1) to have a pair of solutions, even if the proposed
solutions are not real. We close this section by expanding on this theme, in
particular by explaining the need for formal solutions of equation (1).

Consider the simple linear difference equation

Xps1 = 1.05x,, (22)

where x, denotes the amount of some quantity in time period n. For example, x,
might be the money in an (inactive) savings account after n years, in which case
the multiplier 1.05 is 1 plus the annual S percent interest rate. Since the amount
in the account at the end of any year is 1.05 times the amount present at the end
of the previous year, an account that opens with x¢ dollars will contain (1.05)"x
dollars after n years. In other words, a solution of (22) is

xn, = (1.05)"x, (23)
where xq is the initial deposit.

Often, one studies a slightly more complex dynamic in which the amount x,,
present in any one year depends on the amounts present in each of the past rwo
years: x,—; and x,—; for example,

Xn = 4xp-1 — 3xp-2. (24)
Motivated by the solution (1.05)" of the simpler equation (23), one looks for

solutions of (24) of the form x, = a" by plugging x, = a" into (24) and solving
for the unknown parameter a:

a" =4a""1 - 3a"72, (25)
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Dividing both sides of (25) by a"~? yields
a?=4a-3 or a*—4a+3=0. (26)

The solutions of this quadraticarea = 3anda = 1;andso x, = 3" and x, = 1"
are solutions of (24). (Check).
Now consider the difference equation

Xp = 4x,-; — 13x,-5. 27

Looking for a solution of the form x, = a", we once again plug x, = a" into (27)
and are led to the quadratic equation

a*=4a—13, or a*—4da+13=0. (28)

The only solutions of (28) are the complex numbers 2 + 3i and 2 — 3/, as we saw at
the beginning of this section. As is shown in Chapter 23 and in the exercises below,
one can use DeMoivre’s theorem to manipulate these two solutions to obtain two
real solutions:

Xy = 13"2cosnBp and x, = 13"/ sinnéy. (29)

where 6, = 0.588 radians (33.69°). The complex solutions of (28) are needed to
begin the process of solving the dynamic (27). Furthermore, oscillatory behavior
is an important phenomenon in all the sciences; but difference equations that have
oscillatory solutions, like (24) or (27). are exactly the ones whose underlying
quadratic equations have complex roots.

EXERCISES

A3.1 Use the quadratic formula (2) to show that 2 + 3/ and 2 — 3/ are the solutions of
(1). Then, verify that they are indeed solutions by plugging each back into (1) and
carrying out the multiplications and additions.

A3.2 Letzy =2—-3i,z=3+4i,andz; = | + /. Compute = + =2, 2, — =3, 2 * o1,
2y 23,21 /23,20 * 3, 33, 2y ¢

A3.3 Write 1 /(a + bi) in the form A + Bi.

A3.4 Prove parts h and ¢ of Theorem A3.1.

A3.5 Prove that complex conjugation preserves subtraction and division too.

A3.6 Use the quadratic formula (2) to shew directly that if a + i is a solution of (1),
sois a — fi.

A3.7 Find all three solutions of x* — 1 =0andof x* + 1 = 0.

A3.8 Write ¢'*/, e™/2, and ¢2~™ without complex numbers as exponents.

A3.9 Use the definition (17) of complex exponentiation to prove (20).

A3.10 Verify that x, = 3" and x, = 1” are soluticns of difference equation (24). Show
that x, = ¢;3" + ¢, 1" is a solution for any constants ¢ and ¢;.
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A3.11

a) Show that x, = k;(2 + 3i)" + k(2 — 3i)" is a solution of (27) for any constants
k, and k;, real or complex.

b) In this expression for x,, replace k; by any complex number ¢, + c,i, replace k;
by the conjugate c; — c,i, and replace (2 % 3i)" by their polar representations
from DeMoivre’s theorem.

c) Carry out the multiplications and summations in this new expression for x, to
obtain a solution that is a sum of the expressions in (29).
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Integral Calculus

A4.1 ANTIDERIVATIVES

After a while, the student of calculus is expected to know how to compute deriva-
tivés so well that he or she can reverse the process. In this vein, an antiderivative
of a function f(x) is a function F(x) Whose derivative is the original F: F' = f.The
function F is also called the indefinite integral of f and written F(x) = [ f(x) dx.
The usual laws of differentiation yield the following table of indefinite integrals,
where C denotes an arbitrary constant:

af(x)d.\'=ajf(x)dx (f+g)dx=Ifdx+Jgdx
- \.n+l 1]
x"dv = - +C (n# -1) —dx =lnx+C
J n+1 ) x
edx=¢"+C I fl(xydx =™ + C
[ [ 1 n+]
(F@) f'@)dx = —=(F)"™ +C (n# =)
1,
—f'(x)dx =Inf(x) + C
| 7/ @ = n )
Example A4.1
3 4x3 X3
2 /2 _ 2 - XX
I(4x +x Jr)dx 3 +3/2 3lnx+C
43,25
=3+ X2 - +C
3 3% 3lnx + C

Example A4.2 To illustrate the next-to-last rule in the above list, let’s try to
compute the antiderivative of (x> + 3x2 + 1)3(x? + 2x). By the Power Rule, the
only viable candidate is some constant multiple of (x> + 3x? + 1)*. We take the
derivative of k(x* + 3x? + 1)* and then try to find the appropriate constant k.

887
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By the Power Rule,

[k + 327 + 1] = ak(e? + 362 + 17 - 32 + ) (1)
The latter expression will equal (x* + 3x? + 1)* - (x> + 2x) if and only if

4k(3x? + 6x) = (x® + 2x),

x2 + 2x x2 4+ 2x 1

T A3+ 6x) L2+ 2x) 12

or

We conclude that

j(x3 + 3x% + 1)*(x* + 2x)dx = %(ﬁ +3x2+1)*+C

Example A4.3 1f we try to use this method to compute the antiderivative of
(x> + 3x? + 1) - (x? + 3x), we would once again look for a candidate of the
form k(x3 + 3x + 1)*. Using (1), the derivative of this candidate function will
equal (x> + 3x2 + 1)* - (x2 + 3x) if and only if

4k(3x* + 6x) = x* + 3x,

x>+ 3x x2 + 3x

T AGC +6x) 1202 + 2x) @)

or

which cannot be further simplified. Since we assumed « constant in our dif-
ferentiation (1) but found in (2) that it ‘couldn’t be constant in order for our
candidate to work, we conclude that we cannot use this method to find the
desired antiderivative.

Integration by Parts

Another convenient rule for computing antiderivatives is the converse of the Prod-
uct Rule. The Product Rule states that, for two differentiable functions u(x) and

v(x),
@-v=u-v+u-v.

Taking antiderivatives of both sides, we find

u-v=ju'-v+Ju-v',
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which is usually written as

fu(x) V(x)dx = u(x) - v(x) - Ju'(x) -v(x)dx 3)

and is called integration by parts. It is especially useful when u(x) is a function,
like x*, whose derivative u’ is simpler than u itself and when the antiderivative v

of v/ is reasonable to work with.

Example A4.4 Use integration by parts to integrate xe** with u(x) = x and
v/(x) = e™. Since the corresponding u/(x) = 1 and v(x) = je=*, we find by (3)

2 2

\

1 5. 1 -
=§A‘€'\—§I€"\d.¥+c
1 .. 1,
=§xe"—zel‘+C.

A4.2 THE FUNDAMENTAL THEOREM OF CALCULUS
For numbers a and b, the definite integral of f(x) from a to b is F(b) — F(a),
where F(x) is an antiderivative of f. We write this as

Ibf(x)dx = F(b) — F(a), whereF' = f.

The definite integral plays an important role when one wants to aggregate or sum
the values of a continuous function. Consider a function that is continuous for
a = x = b. Divide the interval [a, b] into N equal subintervals, each of length
A = (b —a)/N. Let xg, x4, ..., xy denote the endpoints of these subintervals:

xo=a x3=a+A], x,=a+2A,..., xx =a+NA=b

Form the sum

fG)(xy — x0) + flx2)(x2 = x1) + -+ + fQxn)(xw — Xn-1)

4
-5 7 A “
i=)
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which is called a Riemann sum. The Fundamental Theorem of Calculus states
that if we iterate this process, each time dividing [a, b] into smaller and smaller
subintervals, in the limit we obtain the definite integral [ : f(x)dx:

N b
lim 3 = j £(x) .

Example A4.5 Consider the function f(x) = x* betweenx = Oand x = 2. If we
divide [0, 2] into 10 equal parts, each of length 0.2, then (4) becomes \

f(0.2): 0.2 + f(0.4)- 0.2 + f(0.6)- 0.2 + - - -
+ f(1.8) - 0.2 + f(2)- 0.2 = 3.08.

If we next divide [0, 2] into 20 equal subintervals, (4) becomes

£(0.1)- 0.1 + £(0.2)- 0.1 + £(0.3)- 0.1 + - - -
+ f(1.9)- 0.1 + f(2)- 0.1 = 2.87.

If we keep increasing the number of subintervals,” we obtain a sequence that
tends to 8/3 = 2.667. On the other hand,

The Fundamental Theorem holds under more general circumstances. First, we
need not partition [a, b] into equal subintervals, as long as, in the limit process,
the 'ength of the [argest subinterval goes to zero. Second, we need not always
evaluate f at the right endpoint in each subinterval [x;—,, x;], as we did in (4). We
can evaluate f at any point in each subinterval.

A4.3 APPLICATIONS
Area under a Graph

If f is a positive function on [a, b], as pictured in Figure A4.1, each f(x;)(x; — x;-1)
in the Riemann sum is the area of the rectangle that has base [x;—j, x;] and height
f(x;). The sum of the areas of these rectangles approximates the area under the
graph of f. As we take finer subdivisions, the corresponding rectangles give better
and better approximations to the region under the graph of f. By the Fundamental

Theorem of Calculus, the area under the graph of f froma to b is | : f(x)dx.
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y=f(x)

=X X1 X2 X3 X3 X5

Figure
The Riemann sums of a positive function f approximate the area under the graph. A4.1

Consumer Surplus

Let p = f(q) be the market (inverse) demand function relating selling price to
quantity demanded for some commodity O, as pictured in Figure A4.2. Think of O
as a major purchase item, like a house or car, so that most consumers w:ll buy only
one of Q. In this case, it is convenient to think of the demand function g = f~'(p)
as counting how many consumers have reservation price = p.

Area = (g, — 0) » f(qy)

Area = (q; - q)) » f(q,)

p=flg

Figure
An inverse demand function. A4.2
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In order to compute the consumers’ total willingness to pay for Q, let’s suppose
that the supplier sells Q in small lots Aq, with g, = n- Agqforn=1,2,...,N.
According to the inverse demand function, the supplier can charge p; = f(q;)
dollars and still sell all of the first lot, with corresponding consumer expenditure
of g1 - p1 = (g1 — 0) - f(q1)- Next, the firm offers the second Ag lot, with
Ag = g — q;. In all, g, units will be sold. According to the inverse demand
function, the firm can charge p» = f(g,) dollars and still sell this second lot.
Total consumer expenditure is now f(q,)(q;1 — 0) + f(g2)(g2 — q,), an amount
represented by the combined area of the two rectangles in Figure A4.2. Continue
this process, offering A g units for sale at each step. Total consumer expenditure will
be 31 £(q:)(qi — gi—1)- This is the Riemann sum of the inverse demand function in
Figure A4.2. By the Fundamental Theorem of Calculus, if A g is small enough, this
Riemann sum will be well approximated by the area under the graph of the inverse
demand function. As a result, the area under the graph of the inverse demand
function from g = 0to g = g" is often called the total willingness to pay for ¢*
units. On the other hand, since ¢* units of commodity Q were actually sold at price
p* = f(q"), the actual expenditure was g* f(¢*). The total willingness to pay minus
the actual expenditure is called the consumer surplus. Both of these concepts
play important roles in the evaluation of the benefits of a project in benefit-cost
analysis.

Present Value of a Flow

Suppose that P(t) represents a flow of income over time ¢ in years from t = a
to ¢t = b. More precisely, P(f) is the annual rate at which income is flowing in
at time ¢. Let’s compute the present value of this flow if the interest rate is r.
Partition the time axis from a to b into discrete intervals of equal length A. In
subinterval [t;_), t;], income of approximately P(t;)(¢; — t;—;) will be achieved,
since P(t) is in units of income per year and (t; — ¢;—) represents the fraction of
a year under consideration. The present value of the income in this period will be
e "iP(t;)(t; — ti—)). To get the present value of the entire flow, we add all these
present values over subintervals together:

PV =D e "P(t)(t = ti-1)-
By the Fundamental Theorem of Calculus, we can use

b
I e~ P(t) dt
t

=a

to represent the present value of the entire flow.
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A4.1

Ad4.2

A4.3

Ad.4

A4.5

A4.6

EXERCISES

Find the indefinite integral of each of the following functions:

a) 4x® — X3, b) 12x% — 6x'/? +3x7V/%2 — x7,
¢) 6™, d) e+ (x + 1),
3x1/2 + x~1/2
2 1/2
e)(x +2x+4) (X+1), DW
Use integration by parts to integrate:
a) [xInxdx,

b) | x2e>dx.

Calculate the Riemann sum of f(x) = x? from x = 0 to x = 2, dividing [0, 2] into
20 equal subintervals and evaluating f at the left endpoint of each subinterval at

each step.

Find the area between the graph and the x-axis for each of the following functions:

a) \Jx,fromx = 1tox = 4;
b) xInx,fromx =1tox =e.

Suppose the commodity Q has inverse demand function p = 3¢™'/2 and that
presently 100 units are being sold. What is the commodity’s consumer surplus?

Suppose we know that the interest rate will vary over time according to the expres-
sion r(¢). What is the present value of a flow of income P(f) fromt = atot = b

using this variable interest rate?
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Preface

For better or worse, mathematics has become the language of modern analytical
economics. It quantifies the relationships between economic variables and among
economic actors. It formalizes and clarifies properties of these relationships. In
the process, it allows economists to'identify and analyze those general properties
that are critical to the behavior of economic systems.

Elementary economics courses use reasonably simple mathematical tech-
niques to describe and analyze the models they present: high school algebra
and geometry, graphs of functions of one variable, and sometimes one-variable
calculus. They focus on models with one or two goods in a world of perfect com-
petition, complete information, and no uncertainty. Courses beyond introductory
micro- and macroeconomics drop these strong simplifying assumptions. However,
the mathematical demands of these more sophisticated models scale up consider-
ably. The goal of this text is to give students of economics and other social sciences
a deeper understanding and working knowledge of the mathematics they need to
work with these more sophisticated, more realistic, and more interesting models.

WHY THIS BOOK?

We wrote this book because we felt that the available texts on mathematics for
economists left unfilled some of the basic needs of teachers and students in this
area. In particular, we tried to make the following improvements over other texts.

1. Many texts in this area focus on mathematical techniques at the expense of
mathematical ideas and intuition, often presenting a “cookbook approach.” Our
book develops the student’s intuition for how and why the various mathematical
techniques work. It contains many more illustrations and figures than competing
texts in order to build the reader’s geometric intuition. It emphasizes the primary
role of calculus in approximating a nonlinear function by a linear function or
polynomial in order to build a simple picture of the behavior of the nonlinear
function — a principle rich in geometric content.

2. Students learn how to use and apply mathematics by working with concrete
examples and exercises. We illustrate every new concept and technique with
worked-out examples. We include exercises at the end of every section to give
students the necessary experience working with the mathematics presented.

3. This is a book on using mathematics to understand the structure of eco-
nomics. We believe that this book contains more economics than any other

xXi
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math-for-economists text. Each chapter begins with a discussion of the economic
motivation for the mathematical concepts presented. On the other hand, this is
a book on mathematics for economists, not a text of mathematical economics.
We do not feel that it is productive to learn advanced mathematics and advanced
economics at the same time. Therefore, we have focused on presenting an intro-
duction to the mathematics that students need in order to work with more advanced
economic models.

4. Economics is a dynamic field; economic theorists are regularly introducing
or using new mathematical ideas and techniques to shed light on economic theory
and econometric analysis. As active researchers in economics, we have tried to
make many of these new approaches available to students. In this book we present
rather complete discussions of topics at the frontier of economic research, topics
like quasiconcave functions, concave programing, indirect utility and expendi-
ture functions, envelope theorems, the duality between cost and production, and
nonlinear dynamics.

5. Itis important that students of economics understand what constitutes a solid
proof — a skill that is learned, not innate. Unlike most other texts in the field, we
try to present careful proofs of nearly all the mathematical results presented — so
that the reader can understand better both the logic behind the math techniques
used and the total structure in which each result builds upon previous results. In
many of the exercises, students are asked to work out their own proofs, often by
adapting proofs presented in the text.

An important motivation for understanding what constitutes a careful proof
is the need for students to develop the ability to read an argument and to decide
for themselves whether or not the conclusions really do follow from the stated
hypotheses. Furthermore, a good proof tells a story; it can be especially valuable
by laying bare the underlying structure of a model in such a way that one clearly
sees which of the model’s component parts are responsible for producing the
behavior asserted in the statement of the economic principle. Some readers of this
text will go on to draw conclusions from economic models in their own research.
We hope that the experience of working with proofs in this text will be a valuable
guide to developing one’s own ability to read and write proofs.

WHAT’S IN THIS BOOK?

At the core of modern microeconomics is the hypothesis that economic agents
consciously choose their most preferred behavior according to the alternatives
available to them. The area of mathematics most relevant to such a study is
the maximization or minimization of a function of several variables in which
the variables are constrained by equalities and inequalities. This mathematical
problem in all the necessary generality, sometimes called the Lagrange multiplier
problem, is'a focal point of this book. (See especially Chapters 16 to 19.) The
chapters of this book are arranged so that this material can be reached quickly.and
efficiently.
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This text begins with overviews of one-variable calculus (Chapters 2 to 4) and
of exponentials and logarithms (Chapter 5). One can either cover this material
during the first weeks of the class or, more commonly we believe, can ask students
to read it on their own as a review of the calculus they have taken. The examples
and exercises in these earliest chapters should make either process relatively
simple.

The analysis of solutions to optimization problems usually involves studying
the solutions to the systems of equations given by the first-order conditions. The
first half of this book focuses on the study of such systems of equations. We first
develop a rather complete theory of the solutions of linear systems, focusing on
such questions as: Does a solution exist? How many are there? What happens
to the solution as the equations change a little? (Chapters 6 to 10.) We then
turn to the study of the more realistic and more complex nonlinear systems
(Chapters 11 to 15). We apply the metaprinciple of calculus to this study of
nonlinear systems: the best way to study the behavior of the solutions of a nonlinear
system is to examine the behavior of a closely related linear system of equations.
Finally, we pull all this material together in Chapters 16 to 19 in our discussion
of optimization problems — unconstrained and constrained — that is the heart of
this text.

Chapters 20 through 25 treat two other basic mathematical issues that arise
in the study of economic models. Chapters 20 and 21 give an in-depth presenta-
tion of properties of economic relationships, such as homogeneity, concavity, and
quasiconcavity, while Chapter 22 illustrates how these properties arise naturally
in economic models. Furthermore, there are often natural dynamics in economic
processes: prices adjust, economies grow, policies adapt, economic agents max-
imize over time. Chapters 23, 24, and 25 introduce the mathematics of dynamic
systems, focusing on the eigenvalues of a matrix, linear difference equations, and
linear and nonlinear differential equations.

This book is laid out so that.one can get to the fundamental results and
consequences of constrained optimization problems as quickly as possible. In
some cases, for example, in the study of determinants, limits of sequences, and
compact sets, there are important topics that are slightly off the beaten path to the
study of constrained optimization problems. To keep the presentation as flexible as
possible, we have placed the description of these topics in the last five chapters of
this book. Chapter 26 presents details about the properties of determinants outlined
in Chapter 9. Chapter 27 completes the application of matrix algebra in Chapters
7 and 8 to the determination of the size of the set of solutions of a linear system,
ending with a discussion of the Fundamental Theorem of Matrix Algebra. Chapter
28 presents economic applications of the Fundamental Theorem. Chapter 29 does
some fine-tuning on the study of sets and sequences introduced in Chapter 12.
Chapter 30 collects some of the more complex proofs of the multivariable analysis
presented in Chapters 13, 14, and 15. In classroom presentations the material in
any of these last five chapters can be presented: 1) right after the corresponding
material in the earlier chapter, 2) at the end of the course, or 3) not at all, depending“
on the amount of time available or the needs of the students.
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COORDINATION WITH OTHER COURSES

Often the material in this course is taught concurrently with courses in advanced
micro- and macroeconomics. Students are sometimes frustrated with this arrange-
ment because the micro and macro courses usually start working with constrained
optimization or dynamics long before these topics can be covered in an orderly
mathematical presentation.

We suggest a number of strategies to minimize this frustration. First, we have
tried to present the material so that a student can read each introductory chapter
in isolation and get a reasonably clear idea of how to work with the material of
that chapter, even without a careful reading of earlier chapters. 'We have done
this by including a number of worked exercises with descriptive figures in every
introductory chapter.

Often during the first two weeks of our first course on this material, we present
a series of short modules that introduces the language and formulation of the more
advanced topics so that students can easily read selected parts of later chapters on
their own, or at least work out some problems from these chapters.

Finally, we usually ask students who will be taking our course to be famil-
iar with the chapters on one-variable calculus and simple matrix theory before
classes begin. We have found that nearly every student has taken a calculus course
and nearly two-thirds have had some matrix algebra. So this summer reading
requirement — sometimes supplemented by a review session just before classes
begin — is helpful in making the mathematical backgrounds of the students in the
course more homogeneous.
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CHAPTER 1

Introduction

1.1 MATHEMATICS IN ECONOMIC THEORY

Within the last 30 years, mathematics has emerged as the “language of economics.™
Today economists view mathematics as an invaluable tool at all levels of study.
ranging from the statistical expression of real-world trends to the development of
fully abstract economic systems. This text will provide a broad introduction to the
close relationship between mathematics and economics.

On the most basic level, mathematics provides the foundations for empirical
propositions about economic variables — propositions like ““a 10 percent increase
in the price of gasoline causes a 5 percent drop in the demand for gasoline.” The
mathematical expression of this relationship is the demand function. In particular,
the above observation can be summarized by the statement “the elasticity of
demand for gasoline is —0.5.” We learn this empirical relationship by using
techniques of statistics, which is itself a branch of mathematics. Using statistics, the
economist transforms raw data from the real world into numerical generalizations
such as the one just mentioned.

Furthermore, once such a statistical relationship has been formulated, it can be
combined with others of the same type. Piece by piece, the economist constructs an
entire network of interlocking relationships. This network enables the economist
to draw conclusions about economic variables that are related to each other only
indirectly. Starting with the information that the demand for gasoline (within a
certain community) falls halt as much as its price rises, the economist might
explore how the price of gasolinc is related to the price of oil, the cost of living,
or the demand for clectricity.

At the same time, the role of mathematics in economics extends far beyond the
domain of statistical technique. For example, economists construct mathematical
representations of markets and communities to understand better how they work.
The very process of making a model forces the economist to pick out the. most
important aspects of a situation and then try to express them mathematically. The
finished model provides a structured basis for further study. It is never possible
to comprehend all the subtle social, cultural, and economic dimensions of a real-
world situation at any one time. However, a mathematical model reduces the
complexity of the real world to manageable proportions.
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In fact, if we think of a model simply as the reduction and organization of
subject matter for study, it is clear that models are not unique to mathematical
analysis. Even social sciences Such as sociology or anthropology, whose tech-
niques are more “literary” than mathematicai, rely heavily on models of some
sort, in both the exploration and the presentation of their material. At the same
time, there are many reasons why mathematical modeling is particularly helpful
in economics.

For one thing, a mathematical model forces the economist to define terms
precisely. The economist must state the underlying assumptions clearly before
embarking on a complex train of thought. Right from the start, the exact nature of
the abstraction the economist is working with is clear not just in the economist’s
mirid, but in the mind of every person who reads the work. As a result, discussion
about the real-world relevance of the model is likely to be sharply focused. It may
even be possible to translate the theoretical model into statistical formulas, so that
its validity can be tested with data from the real world.

Mathematics is used not just to organize facts, but to actively generate and ex-
plore new theoretical ideas. Often, economists use mathematical techniques such
as logical deduction to derive theorems which apply to a wide variety of economic
situations, instead of just to a specific local or national community. Consider, for
example, the statement “competitive market allocations of resources are Pareto
optimal,” a theorem of central importance in most intermediate courses on micro-
economic theory. In simplified form, this theorem asserts that in a competitive
market system, when markets clear so that supply balances demand, any feasible
change in consumption or production that improves the lot of some people will
make some others worse off. In marked contrast to statements like “demand for
gasoline falls half as much as the price of gasoline rises,” this theorem does not
originate in direct observation of the day-to-day world. Nor is it expressed sta-
tistically. Instead, it is a universal principle logically derived from an idealized,
mathematical description of various markets. Because the mathematics used in
developing the theorem is so far removed from direct observation, it is impossible
to empirically test the theorem’s ultimate truth or falsity. Only its applicability to
the world economy or to the economy of a particular country or region is ever
open to question. ,

Mathematics is not only a powerful tool for gaining insights from models of
the economy; it is also needed to broaden the applicability of a model that is too
narrowly constructed to be useful. Exercises in undergraduate economics texts, for
instance, usually limit themselves, for the sake of simplicity, to the preduction or
sale of two goods. The advanced student or working economist uses mathematics to
extend these textbook models so that they address more information at one time —
taking into account inflation, additional goods, additional competitors, or any
number of other factors. At this point, let’s work through a specific example of this
latter use of mathematical modéling in economics. We will see how mathematics is
used to increase the scope of a simple geometric model familiar from intermediate
microeconomic theory.
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1.2 MODELS OF CONSUMER CHOICE

Two-Dimensional Model of Consumer Choice

When we study the neoclassical model of consumer choice in an intermediate
microeconomic theory course, we usually assume that the consumer has only
two goods to choose from — for the purposes of this discussion, gadgets and
widgets. Let x; be a variable which represents the amount of gadgets purchased
by our consumer, and let x; be a variable representing the consumer’s purchascs of
widgets. The pair (x,, x,) represents a choice of an amount for both goods and is
called a “commodity bundle.” If we assume that x; and x, could be any nonnegative
numbers, then the set of all possible commodity bundles can be represented
geometrically as the nonnegative quadrant in the plane. We will call this quadrant
“commodity space.” In Figure 1.1 the number of gadgets in a commodity bundle
is measured on the horizontal axis, while the number of widgets is measured on
the vertical axis.
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Two commodity bundles in commodity space.

Consumers have preferences about commodity bundles in commodity space:
Given any two commodity bundles, the consumer either prefers one bundle to the
other or is indifferent between the two. If the consumer’s preferences satisfy some
consistency hypotheses, they can be represented by a utility function. A utility
function assigns a real number to each commodity bundle. If the consumer prefers
commodity bundle (x;, x;) to bundle (y;, y;), then the utility function assigns
a higher number to (xj, x;) than to (y;, y2). We write U(x,, xz) for the number
assigned by the utility function to bundle (x;, x2). We usually depict this situation
by drawing a sampling of the consumer’s indifference curves in ¢ommodity
space, as shown in Figure 1.2. The utility function assigns the same number to all
bundles on any given indifference curve. In other words, the consumer is indifferent
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Indifference curves in commodity space.

between any two bundles on the same indifference curve. The arrow in Figure 1.2
indicates the direction of preference. Commodity bundles on indifference curves
far from the origin are preferred to those on indifference curves near the origin to
indicate that this consumer prefers “more™ to “less.”

We use this representation of consumer preferences to describe the consumer’s
choice.Suppose a consumer is confronted with a set B of commodity bundles and
1s asked to choose among them. The consumer will choose so as to maximize his
or her utility function on the set B. The problem of maximizing a given function
on a given set is a mathematical problem.

We have just described a very simple mathematical model of consumer choice.
This model has abstracted from — ignored — many aspects of choice that. in
some contexts, we would consider very important. For example. how did the
consumer “learn™ enough about the products to make an informed choice? How
does the consumer use this information in making a choice? More generally. where
did the consumer’s preferences come from, and how are they influenced by the
environment in which the dccision is being made? Some choice activities are
habitual; for example, the decision to light a cigarette. We have said nothing about
habit formation in our model. Some choices are regulated by social custom: for
example, the decision made by a corporate executive to wear a suit to work. Again.
the role of social custom is not explicit in our model. By ignoring these and other
aspects of choice, we have constructed a simple. casily understandable model ot
choice behavior. However, the fact that potentially important factors have been
ignored may limit the usefulness of this simple modcl. For some applications. a
more sophisticated model may be required.

Fortunately, we are not interested in using this model to explain all choice
behavior. We are interested-only in those choices which arise in markets. We
describe these choice situations as follows: Associated with each commodity is a
price: p; for the price of gadgets and p- for the price of widgets. Our censumer
has M dollars to divide among the two goods. The consumer cannot spend more
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Budget set OAD and indifference curves.

money than he or she has. The cost of commodity bundle (x;, x;) is p,x; + p2xa.
This cost cannot exceed M. Our theory need only-apply to choice sets of the form

B ={(x,x2): %120, x =0, pyx; + pyx; = M}.

These are the budget sets that the consumer could conceivably face.'

Budget sets are easy to visualize. In the commodity space, draw the line
segment given by the equation px; + p.x; = M. Everything on or under this line
is affordable. These are the points in the triangle OAD in Figure 1.3.

The maximization problem is also easy to visualize. The consumer will choose
from the budget set so as to be on as high an indifference curve as possible. In
Figure 1.3 commodity bundle c is the most preferred commodity bundle in OAD.
Optimal bundle c — sometimes called the consumer’s bundle demanded at prices
D1 and p, — can be characterized by the fact that the indifference curve u, of which
¢ is a member, lies completely outside the budget set except at the point ¢, where
it is tangent to the budget line. This is usually stated as: At c, the consumer’s
marginal rate of substitution (the slope of the indifference curve through c) equals
the price ratio (the slope of the budget line).

In this two-dimensional setting, various thought experiments can be performed:
What happens to the daemand for gadgets as the price of gadgets increases? As the
price of widgets increases? As income increases? These experiments are some-
times referred to as ¢omparative statics problems. The experiments of increasing
the consumer’s income M and the price p; of gadgets are performed in Figures
1.4and 1.5.

IThis set notation will be used throughout the book. In words, B is the set of all pairs of numbers
(xy, x2) such that both numbers are nonnegative and the inequality p;x; + pyx; = M is satisfied.

Figure
1.3
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In intermediate microeconomics classes, we record the results of these experi-
ments in graphs, such as demand curves and Engel curves. At this point we begin to
see some of the limits of this geometric approach. Even in this simplest two-good
case, demand for any one good depends on three things: the price of the good,
the price of the other good, and income. There is no possible way to represent
these: relationships simultaneously in a two-dimensional picture. Thus we are left
with:the rather unsatisfactory method of shifting demand curves around when we
want to talk about changes in income or changes in the price of the other good.
We also have no convenient way to talk rigorously about how demand is affected
by the shape of indifference curves. In intermediate microeconomic theory we
typically examine two polar cases — straight line (perfect substitute) indifference
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curves and right angle (perfect complement) indifference curves. But these are
rare special cases. Furthermore, we need to know how results we might discover
in this setting are affected by relaxing the hypothesis that there are only two goods.

Multidimensional Model of Consumer Choice

None of these questions can be answered in our geometric framework. We must
turn to other mathematical techniques; in particular, multivariate calculus and
matrix algebra. To do this, we need to pose the problem analytically. Suppose that
our model economy has n goods. Commodity bundles are now lists (xy. x>,..., x,),
and a utility function assigns a number U(x,. ..., x,) to each such list (x,, ..., x,).
The consumer’s maximization problem can be stated in the following way

maximize U(x), ..., .x,)
subject to the constraints

Pi\X1 t paxa+ o+ pux, =M,

x1=0...,x,=0.

The system of mathematical equations that one uses to describe the “tangency”
conditions when there are n unknowns rather than 2 unknowns is complex. It
contains 2n + 1 different equations and 2n + 1 unknowns. The study of all
the questions of the preceding paragraph reduces to the study of this system of
equations. These questions appear in the mathematical analysis as questions about
the existence of solutions to the equation system, and questions about how the
solutions to the system change with changes in the parameters, such as prices and
income. In this text we will discuss ideas and techniques of multivariable calculus
and linear algebra that provide sharp answers to these questions.



CHAPTER 2

One-Variable Calculus:

Foundations

A central goal of economic theory is to express and understand relationships be-
tween economic variables. These relationships are described mathematically by
functions. If we are interested in the effect of one economic variable (like govern-
ment spending) on one other economic variable (like gross national product), we
are led to the study of functions of a single variable — a natural place to begin our
mathematical analysis.

The key information about these relationships between economic variables
concerns how a change-in one variable affects the other. How does a change in the
money supply affect interest rates? Will a million dollar increase in government
spending increase or decrease total production? By how much? When such rela-
tionships are expressed in terms of linear functions, the effect of a chang 2 in one
variable on the other is captured by the “slope” of the function. For more general
nonlinear functions, the effect of this change is captured by the “derivative” of
the function. The derivative is simply the generalization of the slope to nonlinear
functions. In this chapter, we will define the derivative of a one-variable function
and lcarn how to compute it, all the while keeping aware of its role in quantifying
relationships between variables.

2.1 FUNCTIONS ON R!
Vocabulary of Functions

The basic building blocks of mathematics are numbers and functions. In working
with numbers, we will find it convenient to represent them geometrically as points
on a number line. The number line is a line that extends infinitely far to the right
and to the left of a point called the origin. The origin is identified with the number
0. Points to the right of the origin represent positive numbers and points to the
left represent negative numbers. A basic unit of length is chosen, and successive
intervals of this length are marked off from the origin. Those to the right are
numbered +1, +2, 43, etc.; those to the left are numbered —1, —2, —3, etc. One
can now represent any positive real number on the line by finding that point to

10
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the right of the origin whose distance from the origin in the chosen units is that
number. Negative numbers are represented in the same manner, but by moving
to the left. Consequently, every real number is represented by exactly one point
on the line, and each point on the line represents one and only one number. See
Figure 2.1. We write R! for the set of all real numbers.

The number line R,

A function is simply a rule which assigns a number in R! to each number in
R!. For example, there is the function which assigns to any number the number
which is one unit larger. We write this function as f(x) = x + 1: To the number 2
it assigns the number 3 and to the number —3/2 it assigns the number —1 /2. We
write these assignments as

f(2)=3 and f(=3/2)=—-1/2

The function which assigns to any number its double can be written as g(x) = 2x.
Write g(4) = 8 and g(—3) = —6 to indicate that it assigns 8 to 4 and —6 to —3,
respectively.

O?ten, we use one variable, say x, for the input of the function and another
variable, say y, for the output of the function. In this notation, we would write the
above two functions f and g as

y=x+1 and y = 2x,

respectively. The input variable x is called the independent variable, or in eco-
nomic applications, the exogenous variable. The output variable y is called the
dependent variable, or in economic applications, the endogenous variable.

Polynomials

Analytically speaking, the simplest functions are the monomials, those functions
which can be written as f(x) = ax* for some number a and some positive integer
k; for example,

fik) =3x" filx)=-x', and fi(x) = —10x> (1)

The positive integer exponent & is called the degree of the monomial; the number a
is called a coefficient. A function which is formed by adding together monomials
is called a polynomial. For example, if we add the three monomials in (1), we
obtain the polynomial

h(x) = —x” + 3x* — 10x2,

Figur
2.1
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where we write the monomial terms of a polynomial in order of decreasing degree.
For any polynomial, the highest degree of any monomial that appears in it is called
the degree of the polynomial. For example, the degree of the above polynomial 4
is 7.

There are more complex types of functions: rational functions, which are
ratios of polynomials, like

exponential functions, in which the variable x appears as an exponent, like
=,10"; trigonometric functions, like y = sinx and y = cos x; and so on.

Graphs

Usually, the essential information about a function is contained in its graph. The
graph of a function of one variable consists of all points in the Cartesian plane
whose coordinates (x, y) satisfy the equation y = f(x). In Figure 2.2 below, the
graphs of the five functions mentioned above are drawn.

Increasing and Decreasing Functions

The basic geometric properties of a function are whether it is increasing or de-
creasing and the location of its local and global minima and maxima. A function is
increasing if its graph moves upward from left to right. More precisely, a function
f is increasing if

x| > x, implies that f(x;) > f(x2).

The functions in the first two graphs of Figure 2.2 are increasing functions. A
function is decreasing if its graph moves downward from left to right, i.e., if

x; > x, implies that f(x;) < f(x2).

The fourth function in Figure 2.2, fo(x) = —x’, is a decreasing function.

The places where a function changes from increasing to decreasing and vice
versa are also important. If a function f changes from decreasing to increasing at
xo, the graph of f turns upward around the point (xo, f(xo)), as in Figure 2.3. This
implies that the graph of f lies above the point (xo, f(xg)) around that point. Such
a point (xo, f(x)) is called a local or relative minimum of the function f. If the
graph of a function f never lies below (x,, f(xo)), i.e., if f(x) = f(xo) for all x,
then (xo, f(xo)) is called a global or absolute minimum of f. The point (0, 0) is a
global minimum of fi(x) = 3x* in Figure 2.2.
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Similarly, if function g changes from increasing to decreasing at z;, the graph
of g cups downward at (zy, g(zy)) as in Figure 2.4, and (zo, g(2o)) is called alocal or
relative maximum of g; analytically, g(x) < g(z,) for all x near zy. If g(x) < g(z0)
for all x, then (z,, g(zy)) is a global or absolute maximum of g. The function
f3 = —10x? in Figure 2.2 has a local and a global maximum at (0, 0).

8l o)

Functiong has a maximum at zy.

Domain

Some functions are defined only on proper subsets of R!. Given a function f, the
set of numbers x at which f(x) is defined is called the domain of f. For each of the
five functions in Figure 2.2, the domain is all of R!. However, since division by
zero is undefined, the rational function f(x) = 1/x is not defined at x = 0. Since
it is defined everywhere else, its domain is R! — {0}. There are two reasons why
the domain of a function might be restricted: mathematics-based and application-
based. The most common mathematical reasons for restricting the domain are that
one cannot divide by zero and one cannot take the square root (or the logarithm)
of a negative number. For example, the domain of the function #,(x) = 1/(x*> — 1)
is all x except {—1, +1}, and the domain of the function hy(x) = /x — 7 is all
x=17. '

The domain of a function may also be restricted by the application in which the
function arises. For example, if C(x) is the cost of producing x cars, x is naturally
a positive integer. The domain of C would be the set of positive integers. If we
redefine the cost function so that F(x) is the cost of producing x tons of cars, the
domain of F is naturally the set of nonnegative real numbers:

R.,={xe€R':x=0}

The nonnegative half-line R+ is a common domain for functions which arise in
applications.
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Notation If the domain of the real-valued function y = f(x) is the set D C R},
either for mathematics-based or application-based reasons, we write

f:D—RL
Interval Notation

Speaking of subsets of the line, let’s review the standard notation for intervals in
R!. Given two real numbers a and b, the set of all numbers between a and b is
called an interval. If the endpoints a and b are excluded, the interval is called an
open interval and written as

(ab)={x ER!:a <x < b}

If both endpoints are included in the interval, the interval is called a closed interval
and written as

[a,b)={x ER' :a = x = b}.

If only one endpoint is included, the interval is called half-open (or half-closed)
and written as (a, b] or [a, b). There are also five kinds of infinite intervals:

(@, =) = {x ER!: x > a},
[a, <) = {x € Rl : x = a},
(—x,a)={x€R':x <a},
(—»,a] ={x ER' : x = a},

(—o, +) = RL

EXERCISES

2.1 For each of the following functions, plot enough points to sketch a complete graph.
Then answer the following questions:
a) Where is the function increasing and where is it decreasing?
b) Find the local and global maxima and minima of these functions:

)y=3x-2; i)y=-2x i) y = x* + 1;
WMy=x+x  vy=x-x  vi)y=l

2.2 In economic models, it is natural to assume that total cost functions are increasing
functions of output, since more output requires more input, which must be paid for.
Name two more types of functions which arise in economics models and are naturally
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increasing functions. Name two types of such functions that are naturally decreasing
functions. Name one type that would probably change from increasing to decreasing.
2.3 The degree of a rational function is the degree of its polynomial numerator minus the
degree of its polynomial denominator. Any integer — positive, negative, or zero —
can be the degree of a rational function. What is the degree of each of the rational
functions in (2)?
2.4 What is the domain of each of the following functions:

L by O y=
x=1 ’ \/x—.l’ e +1

X 1
dy=—=— y=Vi-a% fly= ——
x= =1 Vi—-xt—-1

2,5 What is the domain of each of the four rational functions in (2)?
2.6 What is the natural domain of the economics functions mentioned in Exercise 2.27?

a)y

2.2 LINEAR FUNCTIONS

The simplest possible functions are the polynomials of degree 0: the constant
functions f(x) = b. Since such functions assign the same number b to every real
number x, they are too simple to be interesting. The simplest interesting functions
are the polynomials of degree one: functions f of the form

f(x) = mx + b.

Such functions are called linear functions because they are precisely the functions
whose graphs are straight lines, as will now be demonstrated.

The Slope of a Line in the Plane

First, let’s look at the geometry of lines in the Cartesian plane. The main charac-
teristic which distinguishes one line from another is its steepness, which we call
the slope of the line. A natural way to measure the slope of a line is to start at any
point (xg, yo) on the line and move along the line so that the x-coordinate increases
by one unit. The corresponding change in the y-coordinate is called the slope of
the line.

Example 2.1 For example, if we start at the point (1, 0) on the line £, in Figure
2.5 and move along the line until we reach the point whose x-coordinate is 2,
we will be at the point (2, 3). Since y increases by 3 units in this process, we say
that the slope of line £, in Figure 2.5 is 3. The diagonal line £, in Figure 2.5
makes a 45° angle with the horizontal. Its slope is +1, since when x increases
by one unit, so does y as one moves up £,. The slope of line £3, which makes
an angle of —45° with the horizontal in Figure 2.5, is —1. Lines steeper than
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Figure
Some slopes in the plane. 2.5

£ have slopes between +1 and +=. Lines which slope upward but are flatter
than £, have slopes between 0 and + 1. Horizontal lines have slope zero. Lines
which slope downward from left to right, like €3, have negative slope.

We need to convince ourselves that the slope of a line is independent of the
starting point in the computation of the slope. To compute the slope of the line in
Figure 2.6, we can start at the point (x;, y;) and move to the point (x; + 1, y{) in
triangle #1. In this case we compute the slope as y; — y;, a number which is the
ratio of the two legs of right triangle #1. If we start instead at the point (xy, y2) and
move to (x; + 1, y;), we compute a slope of y; — y, the ratio of the two legs in
triangle #2. Note that the corresponding sides of triangles #1 and #2 are parallel
to each other. By fundamental results of plane geometry, triangles #1 and #2 are
similar to each other and therefore the ratios of corresponding sides are equal:

Ys=Y2 _ ¥ —n

1 1

This proves that one computes the same slope for € no matter where one starts.

Finally, look at right triangle #3 in Figure 2.6, which is formed oy moving
from (x3, y3) to (x4, y4) along £. Coordinate x, is not necessarily x3 + 1. By the
same geometric analysis, triangle #3 is similar to triangles #1 and #2. Therefore,
the corresponding ratios are all equal:

_ ) I _ I
Ya—Ys _ 7Y _ V1T Y1 _ slope of £.

X4 — X3 1 1
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(x4, ¥4

Ya— )3

Computing the slope of line £ three ways.

This use of two arbitrary points of a line to compute its slope leads to the following
most general definition of the slope of a line.

Definition Let (xo, yo) and (xy, ;) be arbitrary points on a line £. The ratio

Yo

X1 — Xp
is called the slope of line £. The analysis in Figure 2.6 shows that the slope of £
is independent of the two points chosen on £. The same analysis shows that two

lines are parallel if and only if they have the same slope.

Example 2.2 The slope of the line joining the points (4, 6) and (0, 7) is

This line slopes downward at an angle just less than the horizontal. The slope
of the line joining (4, 0) and (0, 1) is also —1/4; so these two lines are parallel.
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The Equation of a Line

We next find the equation which the points on a given line must satisfy. First,
suppose that the line £ has slope m and that the line intcrcepts the y-axis at the
point (0, b). This point (0, b) is called the y-intercept of £. Let (x, y) denote an
arbitrary point on the line. Using (x, y) and (0, b) to compute the slope of the line,
we conclude that

y—b _
x-0
or y — b = mx; that is, y = mx + b.

The following theorem summarizes this simple calculation.

Theorem 2.1 The line whose slope is m and whose y-intercept is the point
(0, b) has the equationy = mx + b.

Polynomials of Degree One Have Linear Graphs

Now, consider the general polynomial of degree one f(x) = mx + b. Its graph is
the locus of all points (x, y) which satisfy thc equation y = mx + b. Given any two
points (xy, y;) and (x3, y2) on this graph, the slope of the linc connecting them is

Y2 =y _ (mxy +b) — (mx, +b)

X2 — X X2 — X
_m(x —xy) _
X2 — X

Since the slope of this locus is m cverywhere, this locus describes a straight line.
One checks directly that its y-intercept is h. So, polynomials of degree onc do
indeed have straight lines as their graphs, and it is natural to call such functions
linear functions.

In applications, we sometimes neced to construct the formula of the linear
function from given analytic data. For cxample, by Theorem 2.1, the line with
slope'm and y-intercept ((), b) has equation y = mx + b. What is the equation of
the line with slope m which passes through a more general point, say (xq, yo)? As
in the proof of Theorem 2.1, use the given point (xy, y) and a generic point on the
line (x, y) to compute the slope of the line:

Y~ Y _
X = X

It follows that the equation of the given line is y = m(x — x;) + yy, or
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If, instead, we are given two points on the line, say (xq, yo) and (x, y;), we can
use these two points to compute the slope m of the line:

m= 21"

X — Xo

We can then substitute this value for m in (3).

Example 2.3 Let x denote the temperature in degrees Centigrade and let y denote
the temperature in degrees Fahrenheit. We know that x and y are linearly related,
that 0° Centigrade or 32° Fahrenheit is the freezing temperature of water and
that 100° Centigrade or 212° Fahrenheit is the boiling temperature of water. To
find the equation which relates degrees Fahrenheit to.degrees Centigrade, we
find the equation of the line through the points (0, 32) and (100, 212). The slope
of this line is

212-32 _ 180
100-0 100

9
3

This means that an increase of 1° Centigrade corresponds to an increase of
9/5° Fahrenheit. Use the slope 9/5 and the point (0, 32) to express the linear
relationship:

x + 32.

I
Wi
o
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Interpreting the Slope of a Linear Function

The slope of the graph of a linear function is a key concept. We will simply call
it the slope of the linear function. Recall that the slope of a line measures how
much y changes as one moves along the line increasing x by one unit. Therefore,
the slope of a linear function f measures how much f(x) increases for each unit
increase in x. It measures the rate of increase, or better, the rate of change of the
function f. Linear functions have the same rate of change no matter where one
starts.

For example, if x measures time in hours, if y = f(x) is the number of
kilometers traveled in x hours, and f is linear, the slope of f measures the number
of kilometers traveled each hour, that is, the speed or velocity of the object under
study in kilometers per hour.

This view of the slope of a linear function as its rate of change plays a key
role in economic analysis. If C = F(q) is a linear cost function which gives the
total cost C of manufacturing g units of output, then the slope of F measures the
increase in the total manufacturing cost due to the production of one more unit.
In effect, it is the cost of making one more unit and is called the marginal cost.
It plays a central role in the behavior of profit-maximizing firms. If u = U(x) is
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a linear utility function which measures the utility u or satisfaction of having an
income of x dollars, the slope of U measures the added utility from each additional
dollar of income. It is called the marginal utility of income. If y = G(z) is a linear
function which measures the output y achieved by using z units of labor input, then
its slope tells how much additional output can be obtained from hiring another unit
of labor. It is called the marginal product of labor. The rules which characterize
the utility-maximizing behavior of consumers and the profit-maximizing behavior
of firms all involve these marginal measures, since the decisions about whether
or not to consume another unit of some commodity or to produce another unit of
output are based not so much on the total amount consumed or produced to date,
but rather on how the next item consumed will affect total satisfaction or how the
next item produced will affect revenue, cost, and profit.,

EXERCISES

2.7 Estimate the slope of the lines in Figure 2.7.

(a) (b) (©) (d)

Four lines in the plane.

2.8 Find the formula for the linear function whose graph:
a) has slope 2 and y-intercept (0, 3),
b) has slope —3 and y-intercept (0, 0),
¢) has slope 4 and goes through the point (1, 1),
d) has slope —2 and goes through the point (2, —2),
e) goes through the points (2, 3) and (4, 5),
f) goes through the points (2, —4) and (0, 3).
2.9 Assuming that each of the following functions are linear, give an economic interpre-
tation of the slope of the function:
a) F(q) is the revenue from producing q units of output;
b) G(x) is the cost of purchasing x units of some commodity;
¢) H(p) is the amount of the commodity’ consumed when its price is p;
d) C(Y) is the total national consumption when national income is Y;
e) S(Y) is the total national savings when national income is Y

Figure
2.7



Figure
2.8
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2.3 THE SLOPE OF NONLINEAR FUNCTIONS

We have just seen that the slope of a linear function as a measure of its marginal
effect is a key concept for linear functions in economic theory. However, nearly
all functions which arise in applications are nonlinear ones. How do we measure
the marginal effects of these nonlinear functions?

Suppose that we are studying the nonlinear function y = f(x) and that currently
we are at the point (xo, f(xp)) on the graph of f, as in Figure 2.8. We want to
measure the rate of change of f or the steepness of the graph of f when x = x,.
A natural solution to this problem is to draw the tangent line to the graph of f at
Xo, as pictured in Figure 2.8. Since the tangent line very closely approximates the
graph of f around (xo, f(xp)), it is a good proxy for the graph of f itself. Its slope,
which we know how to measure, should really be a good measure for the slope
of the nonlinear function at x,. We note that for nonlinear functions, unlike linear
functions, the slope of the tangent line will vary from point to point.

We use the notion of the tangent line approximation to a graph in our daily
lives. For example, contractors who plan to build a large mall or power plant and
farmers who want to subdivide large plots of land will generally assume that they
are working on a flat plane, ever though they know that they are working on
a rather round planet. In effect, they are working with the tangent plane to the
earth and the computations that they make on it will be exact to 10 or 20 decimal
places — easily close enough for their purposes.

So, we define the slope of a nonlinear function f at a point (x.,, f(xy)) on.its
graph as the slope of the tangent line to the graph of f at that point. We call the
slope of the tangent line to the graph of f at (xi, f(xy)) the derivative of f at x,,
and we write it as

d
fl(xu) or d_f(xu)-

fixy)

/ X

The graph of a nonlinear function.
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The latter-notation comes from the fact that the slope is the change in f divided by
the change in x, or A f/Ax, where we follow the convention of writing a capital
Greek delta A to denote change.

Since the derivative is such an important concept, we need an analytic definition
that we can work with. The first step is to make precise the definition of the tangent
line to the graph of f at a point. Try to formulate just such a definition. It is not
“the line which meets the graph of f in just one point,” because point A in Figure
2.9 shows that we need to add more geometry to this first attempt at a definition.
We might expand our first attempt to “the line which meets the graph of f at just
one point, but does not cross the graph.” However, the x-axis in Figure 2.9 is the
true tangent line to the graph of y = x3 at (0, 0), and it does indeed cross the graph
of x3. So, we need to be yet more subtle.

(0,0)

A tangent line (x-axis) and a nontangent line to the graph of x°.

Unfortunately, the only way to handle this problem is to use a limiting process.
First, recall that a line segment joining two points on a graph is called a secant
line. Now, back off a bit from the point (xo, f(xo)) on the graph of f to the point
(xo + Ay, f(xo + hy)), where A, is some small number. Draw the secant line £, to
the graph joining these two points, as in Figure 2.10. Line £, is an approximation
to the tangent line. By choosing the second point closer and closer to (xo, f(x0)),
we will be drawing better and better approximations to the desired tangent line.
So, choose h, closer to zero than h; and draw the secant line £, of the graph of
f joining (xo, f(x0)) and (xo + Ay, f(xo + h2)). Continue in this way choosing a
sequence {h,} of small numbers which converges monotonically to 0. For each n,

draw the secant line £, through the two distinct points on the graph (xo, f(xo)) and

(xo + hn, f(x0 +hy)). The secant lines {£,} geometrically approach the tangent line
to the graph of f at (xo, f(xo)), and their slopes approach the slope of the tangent
line. Since £, passes through the two points (xo, f(xo)) and (xo + hn, f(x0 + hr)),

Figure
2.9
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(Xo + h], f(XO + h]))
\
Xg + hz, f(XO + hz))

(Xo + h3, f.(Xo + h3))

! 1

X0 Xg + h3 Xo + h: Xp + h]
Figure
2.10 Approximating the tangent line by a sequence of secant lines.

its slope is

f(xo + hy,) — f(xo) _ f(xo +h,) — f(xo)‘

(xo + hy) — xp h,

Therefore, the slope of the tangent line is the limit of this process as h, converges

to 0.

Definition Let (xo, f(x0)) be a point on the graph of y = f(x). The derivative

of f at xq, written

d
f'(xg) or g(xo) or Ey(xo),

is the slope of the tangent line to the graph of f at (xo, f(xo)). Analytically,

flxo + 1) — f(xo)
h

f'(x0) = lim

if this limit exists. When this limit does exist, we say that the function f is

differentiable at x, with derivative f/(x).
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2.4 COMPUTING DERIVATIVES

Example 2.4 Let’s use formula (4) to compute the derivative of the 51mp1est

the sequence

nonlinear function, f(x) = x2, at the point x; =
fairly steep at the point (3, 9) as indicated in Figure 2.11, we expect to find f/(3)
considerably larger than 1. For a sequence of h,’s converging to zero, choose

{h,} = 0.1,0.01,0.001, ..

3. Since the graph of x? is

L1y, ©)

Table 2.1 summarizes the computations we need to make.

T 3,9
1
1
T
Figure
Tangent line to the graph of f(x) = x* at xy = 3. 2.11
Ash, — 0, the quotient in the last column of Table 2.1 approaches 6. Therefore,
the slope of the tangent line of the graph of f(x) = x? at the point (3, 9) is 6; that
is, f'(3) = 6.
+ hy) —
hn xo + hy f(xo + hy) [xo ;:) fx)
n
0.1 3.1 9.61 6.1
0.01 3.01 9.0601 6.01
0.001 3.001 9.006001 6.001 Table
0.0001 3.0001 9.00060001 6.0001 2.1
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Example 2.5 To prove that f'(3) = 6, we need to show that

(3 + hy)? — 32
hll

—6 as hy—0, (6)

for every sequence {h,} which approaches zero, not just for the sequence (5).
We now prove (6) analytically. For any A,

BG+h? =3 _9+6h+H -9 _h(6+h)
h h h

=6+h,

-

which clearly converges to 6 as # — 0. Now, we know for sure that f(3) = 6.

Example 2.6 Now, add one more degree of generality and compute the derivative
of f(x) = x? at an arbitrary point xo. Let {#,} be an arbitrary sequence which
converges to 0 as n — . Then,

o+ hy)— flx) _ (o +ha)* —x3 _ x3 +2hxo + 2 — x2
h” hn . hll

_ b (2xy + hy)
o

= Zxﬂ + hn;

which tends to 2x, as h, — 0. This calculation proves the following theorem.

Theorem 2.2 The derivative of f(x) = x? at xy is f'(x0) = 2xy.

Theorem 2.2 and Exercise 2.10 can be summarized by the statement that the
derivative of x* is kx*~! for k = 0, 1, 2, 3, 4. We next prove that this statement is
true for all positive integers k. Later, we’ll see that it is true for every real number
k, including negative numbers and fractions. In the proof of Theorem 2.2 and in
the proofs in part b of Exercise 2.10, we used the explicit formula for (x + A)* for
small integers k. To prove the more general result, we need the general formula for
(x + h)X for any positive integer k, a formula we present in the following lemma.
Its proof can be found in any precollege algebra text under “binomial expansion.”

Lemma 2.1 For any positive integer k,

(x+ h)" =xX+add W+ o+ g x4 gkt (7)
k!
where aj= ————, for j=1...,k
o=

In particular, a; = k, a, = k(k — 1)/2, and g, = 1.
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Theorem 2.3  For any positive integer &, the derivative of f(x) = x* at xq is
fl(x0) = hxf ™.

Proof
(xp + bk — xk _ xb kTR 4+ Tk = DxETRT 4 -+ gl —
h “h
_hlka T+ Yk(k = DX+ e a T
- h

™+ Lkt — DX A+

which approaches kx} ™! as /1 — 0. ®

Rules for Computing Derivatives

The monomials x* are the basic building blocks for a large class of functions,
including all polynomials and rational functions. To compute the derivatives of
functions in these larger classes, we need to know how to take the derivative of a
sum, difference, product, or quotient of two functions whose derivatives we know
how to compute. First, recall that we add. subtract. divide. and multiply functions
in the natural way — just by performing these operations on the values of the
functions. For example, if f(x) = x¥ and g(x) = 6x~. then the sum. product. and
quotient functions constructed from these two are. respectively:

(f + Q) = f(x) + glx) = & + 67,
(- () = fx) - glx) = 2" - 637 = 6%,

Ny I _ > 1
(§) &) = gx)  6a° 6

The following theorem presents the rules for differentiating the sum, difter-
ence, product, quotient, and power of functions. These rules, along with Theorem
2.3, will allow us to compute the derivatives of most elementary functions, includ-
ing all polynomials and rational functions.

Part ¢ of Theorem 2.4 is called the Product Rule, part d the Quotient Rule,
and part ¢ the Power Rule. Note that the derivative behaves very nicely with
respect to sums and dlfferences of functions, but the rules for differentiating
products and quotients are a bit more complicated. The proof of each statement in
Theorem 2.4 requires a rather straightforward manipulation of the definition (4)
of the derivative. Parts a and b should be proved as an illustrative exercise. The
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Theorem 2.4 Suppose that k is an arbitrary constant and that f and g are
differentiable functions at x = x;. Then,.

a) (f£8)(x) = f'(x) = g'(x0),
by (*kf)'(x) = k(f'(xo)),
c) (f-8)(x0) = f'(x0)g(x0) + f(x0)g'(x0),

)

o (e - L8[t

& (Fe) = n(fe)" - fl(x),

f) (xk)l = ka_l.

proofs of parts c, d, and e are a little more subtle. The proof of part f is listed as
an exercise below for negative integers £ and will be carried out for fractions k in
Section 4.2.

Example 2.7 We use Theorems 2.3 and 2.4 to calculate the derivatives of some
simple functions.

a) (X7 +3x%—4x*+5) = Ix®+18x° — 8

b) ((2+3x— 1)(x* —8x)) = (2x + 3)(x* — 8x)
+ (x? +3x — 1)(4x> — 8)

6x° + 15x* — 4x> — 24x* — 48x + §,

x? -1 ()21 - (- 1)(2x)
2 x2+1 o (x2 +1)2
_ 4x
T @iy
e) ((*—4ax?+1)) = 5(x% — 4x® + 1)* - (3x* — 8x),

f) Gx*3+3c7y = a3 —3x72
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EXERCISES

2.10 a) Use the geometric definition of the derivative to prove that the derivative of a
constant function is 0 everywhere and the derivative of f(x) = mx is f'(x) = m
for all x.
b) Use the method of the proof of Theorem 2.2 to prove that the derivative of x* is
3x? and the derivative of x” is 4x*.
2.11 Find the derivative of the following functions at an arbitrary point:

a) —7x%, b) 12x77,

c) 3X—3/2’ d) %\/},

e) 3x —9x + 7x*/* =317, f) 4x° — 3%,

g) (¥ + 1) + 3x + 2), Ry (x'? + x7V2)4x® - 3.x),
x—1 X

DT U

k) (x* - 3x%), D 5(x° — 6x2 + 3x)*3,

m) (x* + 2x)*(4x + 5)%

2.12 Find the equation of the tangent line to the graph of the given function for the
specified value of x. [Hint: Given a point on a line and the slope of the line, one can
construct the equation of the line.]

a) f@) =2, % =3  b) f(x)=x/( +2), %= 1.

2.13 Prove parts a and b of Theorem 2.4.

2.14 In Theorem 2.3, we proved that the derivative of y = x* is y' = kx*~? for all positive
integers k. Use the Quotient Rule, Theorem 2.4d, to extend this result to negative
integers k.

2.5 DIFFERENTIABIUTY AND CONTINUITY

As we saw in Section 2.3, a function f is differentiable at x if, geometrically

speaking, its graph has a tangent line at (xo, f(xo)), or analytically speaking, the
limit

i £0%0 * hn) = )

h,.—°0 Iln

®

exists and is the same for every sequence {/,} which converges to 0. If a function
is differentiable at every point xy in its domain D, we say that the function is
differentiable. Only functions whose graphs are “smooth curves” have tangent
lines everywhere; in fact, mathematicians commonly use the word “smooth” in
place of the word “differentiable.”
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Figure
2.12 The graph of f(x) = |x|.

A Nondifferentiable Function

As an example of a function which is not differentiable everywhere, consider the
graph of the absolute value function f(x) = |x| in Figure 2.12. This graph has a
sharp corner at the origin. There is no natural tangent line to this graph at (0, 0).
Alternatively, as Figure 2.13 indicates, there are infinitely many lines through
(0, 0) which lie on one-side of the graph and hence would be candidates for the
tangent line. Since the graph of |x| has no well-defined tangent line at x = 0, the
function |x| is not differentiable at x = 0.

To see why the analytic definition (8) of the derivative does not work for |x|,
substitute into (8) each of the following two sequences which converge to zero:

hy = {+.1, +.01, +.001,..., +(.1)",.. .}
k, = {—.1,—.01, —.001,..., —(.1)",...}

Figure
2.13 . Candidates for tangent lines to graph of |x|.
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Substituting these sequences into the definition (8) of the derivative, we compute

FO+hp) = f©) _ by =0

T i = +1 forall n,
+ —_— R —_
fO+k) = fO) _ Zha =0 _ —1 forall n
kn kn
The first sequence is {1, 1,..., 1,...}, which clearly converges to +1; the second
sequenceis {—1, —1,..., —1,...}, which clearly converges to —1. Since different

sequences which converge to 0 yield different limits in (8), the function |x| does
not have @ derivative at x = 0.

Continuous Functions

A property of functions more fundamental than differentiability is that of conti-
nuity. From a geometric point of view, a function is continuous if its graph has
no breaks. Even though it is not differentiable at x = 0, the function f(x) = |x| is
still continuous. On the other hand, the function

_fx+1 x=0,
=154 TZ ©)

whose graph is pictured in Figure 2.14, is not continuous at x = 0. In this case,
we call the point x = 0 a discontinuity of g. It should be clear that the graph of
a function cannot have a tangent line at a point of discontinuity. In other words,
in order for a function to be differentiable, it must at least be continuous. For
functions described by concrete formulas, discontinuities arise when the function
is defined by different formulas on different parts of the number line and when the
values of these two formulas are different at the point where the formula changes,
for example, at the point x = 0 in (9).

\0

The function g given by (9) is discontinuous at x = 0.

Figure
2.14
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The break in the graph of g at the origin in Figure 2.14 means that there are
points on the x-axis on either side of zero which are arbitrarily close to each other,
but whose values under g are not close to each other. Even though (—.1)" and
(+.1)" are arbitrarily close to each other, g((—.1)") is close to —1 while g((+.1)")
is close to +1. As x crosses 0, the value of the function suddenly changes by two
units. Small changes in x do not lead to small changes in g(x). This leads to the
following more analytic definition of continuity.

Definition A function f: D — R! is continuous at xo € D if for any sequence
{xn} which converges to x in D, f(x,) converges to f(xg). A function is continuous
on a set U C D if it is continuous at every x € U. Finally, we say that a function
is continuous if it is continuous at every point in its domain.

The function g(x) defined in (9) does not satisfy this definition at x = 0
because

lim f((=.1)") = =1, but f(0)= +1.

n—x

Most theorems in economic theory require that the function involved be contin-
uous, if not differentiable. Continuity is a reasonable assumption in applications.
For example, if y = f(x) is a production function, it is reasonable to assume
that a small change in the amount of input x will yield a small change in the
corresponding amount y of output produced.

Continuously Differentiable Functions

If f is a differentiable function, its derivative f’(x) is another function of x. It
is the function which assigns to each point x the slope of the tangent line to the
graph of f at (x, f(x)). We can ask whether or not this new function is continuous.
Geometrically, the function f’ will be continuous if the tangent line to the graph of
f at (x, f(x)) changes continuously as x changes. If f'(x) is a continuous function
of x, we say that the original function f is continuously differentiable, or C! for
short.

Example 2.8 Every polynomial is a continuous function. Since the derivative of
a polynomial is a polynomial of one less degree, it is also continuous. Therefore,
every polynomial is C'.

EXERCISES

2.15 Draw apicture of the arguments in the proof that f(x) = |x| does not have a derivative
at x = 0. Show that f does have a derivative at every point other than 0.
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2.16 For each of the following functions. sketch its graph and describe whether it is
continuous and/or differentiable at the point of transition of its two formulas:

+x°. x=0. _(+xr+ L ox=0.
b) v = \
P < : —-xr-—=1 x<0:
Moovs1 X X< 1.
= d) v = .
) {\ x> ’ {

v -2 x=1.

2.17  Which of the functions in the previous exercise are C' everywhere?

2.18 Sketch the graph of the function f(x) = x*/% and describe the continuity and
differentiability of this function. [The limit in (8) must be finite for the derivative to
exist.]

2.6 HIGHER-ORDER DERIVATIVES

Let f be a C! function on R?. Since its derivative f’(x) is a continuous function on
R!. we can ask whether or not the function f’ has a derivative at a point xy. The
derivative of f’(x) at .x, is called the second derivative of f at x, and is written

d (d d-
f'(x) or T (d—{) (x0) = :h_—{(-\'u)-

Example 2.9 The derivative of the function f(x) = x* + 3x2 + 3x + 1 is the

function f'(x) = 3x° + 6x + 3. lts derivative, the second derivative of f, is
f7(x) = 6x + 6.

Example 2.10  Consider the function

+1ix3, x=0,
f(X)={ 1 s (10)

—3X, X < 0.

Since both branches of f equal O at the transition point x = 0, f is continuous.
The same kind of argument shows that f’ is continuous, since f’ can be written
as

/ — +x, xZO,
fw={% 220

differentiating both sides of (10). Since f’ is continuous, f is C1. However,
because f'(x) = |x|, f is not differentiable at x = 0, and therefore f”(x) does
not exist at x = 0. The second derivative of f does exist at all other points,
however.
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If f has a second derivative everywhere, then f” is a well-defined function of x.
We will see later that the second derivative has a rich geometric meaning in terms
of the shape of the graph of f. If f" is itself a continuous function of x, then we say
that f is twice continuously differentiable, or C2 for short. Every polynomial is
a C? function.

This process continues. If f is C2, so that x — f”(x) is a continuous function,
we can ask whether f” has a derivative at xo. If it does, we write this derivative as

3
o) or fPlz) or L)

For example, for the cubic polynomial f(x) in Example 2.9, f"”(x) = 6. If f"(x)
exists for all x and if f”/(x) is itself a continuous function of x, then we say that
the original function f is C3.

This process continues for all positive integers. If f(x) has derivatives of order
1,2,..., k and if the kth derivative of f,

dk
Y = ()

is itself a continuous function, we say that f is C. If f has a continuous derivative
of every order, that'is, if f is C* for every positive integer k, then we say that f is
C* or “infinitely differentiable.” All polynomials are C* functions.

EXERCISES

2.19 Sketch the graph of the function in (10).

2.20 Compute the second derivatives of the functions in Exercise 2.11.

2.21 Discuss the ctontinuity and differentiability of the functions: a) f(x) = x°/3
b) g(x) = [x], the largest integer < x.

2.7 APPROXIMATION BY DIFFERENTIALS

This completes our introduction to the fundamental concepts and calculations of
calculus. We turn now to the task of using the derivative to shed light on func-
tions. In the next chapter, the derivative will be used to understand functions more
completely, to graph functions more efficiently, to solve optimization problems,
and to characterize the maximizer or minimizer of a function, especially in eco-
nomic settings. We begin our discussion of the uses of calculus by showing how
the definition of the derivative leads naturally to the construction of the linear
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approximation of a function. Since this material is the essence of what calculus is
about, it is included in this chapter alongside the fundamental concepts of calculus.

Recall that for a linear function f(x) = mx + b, the derivative f/(x) = m gives
the slope of the graph of f and measures the rate of change or maryinal change of
f: the increase in the value of f for every unit increase in the value of x.

Let’s carry over this marginal analysis to nonlinear functions. After all, this
was one of the main reasons for defining the derivative of such an f. In formulating
the analytic definition of the derivative of f, we used the fact that the slope of the
tangent line to the graph at (xo, f(xp)) is well approximated by the slope of the
secant line through (xq, f(xo)) and a nearby point (x, + A, f(xo + h)) on the graph.
In symbols,

flxg + h) — f(xo)
h

~ f'(x) (11)

for h small, where = means “is well approximated by” or “is close in value to.”
If we set h = 1in (11), then (11) becomes

flro + 1) = fxo) = f'(x0); (12)

in words, the derivative of f at xq is a good approximation to the marginal change
of f at xy. Of course, the less curved the graph of f at x;, the better is the
approximation in (12):

Example 2.11 ~ Consider the production function F(x) = 1./x. Suppose that the
firm is currently using 100 units of labor input x, so that its output is 5 units.
The derivative of the production function F at x = 100, -

1
F'(100) = ~1007'/2 = — = 0.025,
&

1
40
is a good measure of the additional output that can be achieved by hiring one

more unit of labor, the marginal product of labor. The actual increase in output
is F(101) — F(100) = 0.02494 - - -, pretty close to 0.025. '

Even though it is not exactly the increase in y = F(x) due to a one unit increase
in x, economists still use F'(x) as the marginal change in F because it is easier
to work with the single term F/(x) than with the difference F(x + 1) — F(x) and
because using the simple term F/(x) avoids the question of what unit to use to
measure a one unit increase in x. oy

What if the change in the amount of input x is not exactly one unit? Return to
(11) and substitute Ax, the exact change in x, for 4. Multiplying (11) out yields:

Ay = f(xo + Ax) — f(x0) = f'(x0)Ax, (13)
or f(xo + Ax) = f(x0) + f'(x0)Ax, 14



Figure
2.15
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where we write A y for the exact change in y = f(x) when x changes by Ax. Once
again, the less curved the graph and/or the smaller the change Ax in x, the better
the approximation in (13) and (14).

Example2.12  Consider again a firm with production functiony = 1,/x. Suppose
it cuts its labor force x from 900 to 896 units. Let’s estimate the change in output
Ay and the new output y at x = 896. We substitute

F(x)= ix'2 x =900, and Ax= -4

into (13) and (14) and compute that

By (13). output will decrease by approximately

1 1
FI(,\'O)AX = m -4 = *3—0' units.

By (14). the new output will be approximately

1 29
/ — = —_—— = —_— = o ..
F(900) + F/(900)(—4) = 15 — 35 = 1425 = 14.9666 - -.

The actual new output is F(896) = 14.9663 - - -; once again the approximation
by derivatives is a good one.

From a mathematical point of view, we can consider (14) as an effective
way of approximating f(x) for x close to some xo where f(xo) and f'(xo) are

easily computed. For example, in Example 2.12, we computed % 896, using our
familiarity with $/900 = 15.

Example 2.13 Let’s use (14) to estimate the cube root of 1001.5. We know that
the cube root of 1000 is 10. Choose f(x) = x1/3, xo = 1000, and Ax = +1.5.
Then,

/ - l -2/3 ! - }_ -2/3 _ 1
f'(x) 3x and f'(1000) 3(1000) 300"
Therefore,
. I 1.5
f(1001.5) = £(1000) + £'(1000) - 1.5 = 10 + 300 = 10.005,

close to the true value 10.004998 - - - of y/1001.5.
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Equations (13) and (14) are merely analytic representations of the geometric
fact that the tangent line £ to the graph of y = f(x) at (xy, f(xo)) is a good
approximation to the graph itself for x near x;. As Figure 2.15 indicates, the
left-hand sides of (13) and (14) pertain to movement along the graph of f, while
the right-hand sides pertain to movement along the tangent line £, because the
equation of the tangent line, the line through the point (xq, f(xo)) with slope f'(xq),
is

y = f(x0) + f'(x0)(x — x0) = f(x0) + f'(x0)Ax.

Continue to write Ay for the actual change in f as x changes by Ax, that is, for
the change along the graph of f, as in Figure 2.15. Write dy for the change in y
along the tangent line £ as x changes by Ax. Then, (13) can be written as

Ay = dy = f'(x)Ax

We usually write dx instead of Ax when we are working with changes along the
tangent line, even though Ax is equal to dx. The increments dy and dx along the
tangent line £ are called differentials. We sometimes write the differential df in
place of the differential dy. The equation of differentials

df = f'(xo)dx or dy = f'(xg)dx

for the variation along the tangent line to the graph of f gives added weight to the

d :
notation é for the derivative f/(x).

f(Xo) + f’(XO) AX b————————————————
f(Xo + Ax) f-——— - ———————

dy = fi{xg) Ax

fix) p—-————-HM———-———-

7

Ay = f(xg + Ax) - f(xq)

b

Comparing dy and Ay.
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EXERCISES

2.22 Suppose that the total cost of manufacturing x units of a certain commodity is
C(x) = 2x* + 6x + 12. Use differentials to approximate the cost of producing the
21st unit. Compare this estimate with the cost of actually producing the 21st unit.

2.23 A manufacturer’s total cost is C(x) = 0.1y — 0.25x> + 300x + 100 dollars, where
x is the level of production. Estimate the effect on the total cost of an increase in the
level of production from 6 to 6.1 units.

2.24 It is estimated that ¢ vears from now, the population of a certain town will be
F(1) = 40 — [8/(+ + 2)]. Use differentials to estimate the amount by which the
population will increase during the next six months.

2.25 Use differentials to approximate: a) J50. D) V9997, ¢) (10.003)".

T




CHAPTER 3

One-Variable Calculus:
Applications

Now that we have defined the derivative and learned how to compute it in Chapter 2;
let’s put the derivative to work to shed light on some economic relationships.
The first step in studying the relationship between two variables is to draw its
graph. For nonlinear functions, this can be a difficult task. Sections 3.1 to 3.4
show how the derivative can help us draw graphs more efficiently and more
accurately. Furthermore, many economic problems involve the maximization or
minimization of some economic entity, for example, maximization of profits or
utility and minimization of costs or risk. Section 3.5 demonstrates how to use the
derivative of a function both to solve such optimization problems and to derive the
economic principles behind these solutions. This chapter closes with a description
in Section 3.6 of the main applications of calculus to microeconomics in the study
of production, cost, profit, and demand functions.

3.1 USING THE FIRST DERIVATIVE FOR GRAPHING

The derivative of a function carries much information about the important prop-
erties of the function. In this section, we will see that knowing just the signs of a
function’s first and second derivatives and the location of only a few points on its
graph usually enables us to draw an accurate graph of the function.

Positive Derivative Implies Increasing Function

As we discussed at the beginning of the last chapter, the most basic information
about a function is whether it is increasing or decreasing and where it changes
from one to the other. This is exactly the information we get from the sign of the
first derivative of the function.

Theorem 3.1 Suppose that the function f is continuously differentiable at
X0. Then,

(a) if f'(xo) > 0, there is an open interval containing xy on which f is
increasing, and

(b) if f'(x0) < 0, there is an open interval containing xo on which f is
decreasing.

39
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Figure
31 If f'(xo) > O, the graph of f slopes upward.

Proof We will sketch a geometric and an analytic proof of part a. The proof of
part b is analogous to that of part a.

Figure 3.1 illustrates the simple geometric picture behind the statement of
Theorem 3.1. Since f/(xo) is the slope of the tangent line to the graph of f at xj,
f’(x0) > 0 means that the tangent line slopes upward and therefore the graph
to which it is tangent slopes upward too.

From an analytic point of view, since f is differentiable at xj,

lim flxo + hz — f(xo)

h—0

= f'(x0) > 0.

this inequality implies that if 4 is small and positive, f(xo + k) — f(xo) is positive
too. If we write x; for xo + A, this statement becomes: for x; near x;

x1 > xg = f(x1) > f(xo)-

This means that f is an increasing function near x;. B

The following theorem is the ‘global version of Theorem 3.1. The proofs of
the first two statements follow from the simple observation that if a function is
increasing at each point on an interval, it is increasing on the whole interval. The
last two statements follow directly from the first two.

Theorem 3.2 Let f be a continuously differentiable function on domain
DCR!

If f' > 0 on intérval (a, b) C D, then f is increasing on (a, b).
If f' < 0 on interval (g, b) C D, then f is décreasing on (a, b).
If f is increasing on (g, b), then f’ = 0 on (a, b).
If f is decreasing on (g, b), then f’ = 0 on (a, b).
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Theorems 3.1 and 3.2 are useful in applications in which one has some infor-
mation about the derivatives of f and needs to know whether or not f is increasing.

We will present an example of this phenomenon in Section 3.6 when we prove
that if marginal cost is greater than average cost, then average cost is increasing.

Using First Derivatives to Sketch Graphs

To use Theorem 3.2 to sketch the graph of a given function f, we need to find the
interval; where f’ > 0 and the intervals where f’ < 0. To accomplish this:

(1) First find the points at which f/(x) = 0 or f' is not defined. Such points
are called critical points of f. Hopefully, the function under consideration
‘has only finitely many critical points x,, x5, ..., x;.

(2) Evaluate the function at each of these critical points x,, x5, . . ., x¢, and plot
the corresponding points on the graph. |

(3) Then, check the sign of f’ on each of the intervals

(—00’ xl)} (xl) XZ); ceen (Xk—l, X/(), (Xk, '30)

On any one of these intervals, f' is defined and nonzero. Since f'(x) = 0
only when x = x,,..., xx and since f’ is continuous, f’ cannot change
sign on any of these intervals; it must be ¢ither always negative or always
positive on each. To see whether f’ is positive or negative on any one of
these intervals, one need only check the sign of f' at one convenient point
in that interval.

(4) If f' > 0 on interval I, draw the graph of f increasing over /. If f' < O on
I, draw a decreasing graph over /.

Example 3.1 Consider the cubic function f(x) = x* — 3x. One easily computes
that

flx) =322 =3 =3(x— )(x + 1),

which equals zero only at x = —1, +1. These are the critical points of f. The
corresponding points on the graph of f are (—1, 2) and (1, —2). Next, we check
the sign of f'on the three intervals obtained by deleting the critical points from
RL:

Jy=(—%-1), J,=(-1,+1), and J; =(+1, +x).
Choosing a point from each of these three intervals, we note that:
(@ f'(=2)=9>0,s0 f'>0onJ, and f is increasing onJ;
(b) f'(0) = -3 <0,s0 f' < 0onJ,and f is decreasing on J; and

(¢) f'(+2) =9 >0,s0 f' > 0onJ; and f is increasing on J.

We have summarized this information on the number line in Figure 3.2, and we
have sketched the graph of f in Figure 3.3.
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Jq -1 J,  +1 I3

i . I -
T T+ T T + T nJ

+ + ¢
\ -
el g g Y_} Y =

f' positive ' negative f' positive
f increasing f decreasing f increasing

A summary of first derivative information for f(x) = x> — 3x.

Since it is easy to compute, you should include the y-intercept (0, f(0)) on the
graph of f as you sketch it. The y-intercept for the function in Example 3.1 is
the origin (0, 0). Occasionally, it is straightforward to calculate the x-intercepts of
f. the places where f(x) = 0. When this calculation is simple, plot these points
on the graph too. For the cubic function in Example 3.1, the x-intercepts are the
solutions of f(x) = x(x2 — 3) = 0, namely x = —+/3, 0, +/3.

The graph of f(x) = x> — 3x.

EXERCISES

3.1 Use the techniques of this section to sketch the graphs of the following functions:

a) X +3x, b -8’ +182 11, o) I +9x+3,
d) x' - x, e) xX*3, ) 248 - 3x* + 2.

3.2 Write out the corresponding argument for part b of Theorem 3.1.
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3.2 SECOND DERIVATIVES AND CONVEXITY

Frequently, we need to know more about the shape of the graph than where it is
increasing and where it is decreasing. Consider, for example. a production function
y = f(x), a good example of a function which is naturally increasing. The rate
of increase for a production function varies with the number x of workers. At
first, the additional output that each new worker adds to the production process
increases as specialization and cooperation take place. However. after the gains
from specialization are achieved, the additional output per new worker slows
down and eventually declines as workers compete for limited space and resources.
Figure 3.4 shows the graph of such a production function. Note that it is increasing
for all x. However, for x between 0 and a. its slope (the marginal product of labor)
is increasing too; for x bigger than a, the slope decreases as .x increases.

y

A tvpical production function.

Learning curves. which relate amount learned to time elapsed, often have
graphs shaped like that of Figure 3.4. Amount learned per unit time — the slope of
the curve — is high at first and increasing. However, as the task becomes learned
or as the learner’s mind reaches its capacity to hold more data, the rate of learning
begins to drop.

For v € (0, @) in Figure 3.4, the slope of f'(x) is an increasing function. By

Theorem 3.2, the derivative of f'. f"(x), is nonnegative there: f”(x) = 0 on (0, a). -

For x > a in Figure 3.4, f' is a decreasing function of x: so f”(x) = 0 on (a, ).
A differentiable function f for which f”(x) = 0 on an interval / (so that f’ is
increasing on /) is said to be concave up on /. A differentiable function f for
which f”(x) = 0 on an interval I (so that f’ is decreasing on /) is said to be
concave down on /.

An increasing function can be concave up or concave down on its interval of
increase. These two cases are illustrated in Figure 3.5. Figure 3.6 shows how a

Figure
34
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An increasing function can be concave up or concave down.

A decreasing function can be concave up or concave down.

decreasing function can be concave up or concave down on its domain. Note that
the slope of f is an increasing function of x for a function which is concave up
and is a decreasing function of x for a function which is concave down.

There is also a noncalculus definition of concave up and concave down. This
characterization follows from the observation that for a function which is concave
up, the secant line joining any two points on the graph lies above the graph, as
illustrated in Figure 3.7. For any two points a and b, the set of points between a
and b is given by the set I, = [q, b] of all convex combinations of a and b:

ILp={1—-tha+th:0=t=<1}.
The graph of f above I, is the set of points
{(A—0a+1, f(A—2ta+h): 0=t =1}

On the other hand, the secant line joining the points (g, f(a)) and (b, f(b)) on the
graph of f is given by

(1 = 0)(a, f(@) + £(b, f(®)) = (1 — ya + tb, (1 — )f(a) + tf (b))

for ¢ in [0, 1]. Therefore, the statement that the secant line lies above the graph of
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f(a)

(1 - yf(a) + tf(b)

fl1 - fa + th) |-
f(b) ! (b,f(b))

l

(1-ta+th b
’.:b
X Figure
For a function which is concave up, the secant always lies above the graph. 3.7
f for x € I, can be written as
(1 - 0)f(a) + tf(b) = F((1 - D)a + 1b) (1)

for 0 = ¢ = 1. This characterization of concave up is more general than the
f" = 0 criterion since it also applies to functions which are not differentiable.
Therefore, we’ll use it as our definition of concave up. In fact, condition (1) is
equivalent to the condition f”(x) = 0 on I, for a C? function.

Definition A function f is called concave up or simply convex on an interval
I if and only if

f((1 = na +b) = (1 = )f(a) + tf(b) )

forall g, b € Iand all ¢ € [0, 1]. A function f is called concave down or simply
concave on interval I if and only if

f((A = Da + 1) = (1~ 1)f(a) + tf(b) €)

forallq, b € I'and all ¢ € [0, 1].

Calculus texts prefer the terms “concave up” and “concave down” to the terms
“convex” and “concave.” However, functions of more than one variable which
satisfy condition (2) or (3) play a central role in economic theory, where the terms
“convex” and “concave” are standard. -

Of course, knowing where a function is convex or concave is valuable infor-
mation for sketching its graph. For this purpose, one only needs to know where
f" > 0 and where f” < 0. The test to see whether a function is convex or



Figure
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concave mimics the test used in determining whether a function is increasing or
decreasing, but uses the second derivative instead of the first. First, one finds those
points where f”(x) = 0 by solving this equation for x. These points are called the
second order critical points of f or, if the second derivative actually changes sign
there, inflection points of f. These points divide the domain of f into intervals on
each of which f” is always positive or always negative. On any one such interval,
one need only evaluate f” at a single point in the interval to determine its sign
throughout the interval.

Example 3.2 Let's return to Example 3.1, f(x) = x* — 3x. Using the first
derivative, we determined that f is increasing from —x to x = —1, decreasing
from x = —1tox = +1, and increasing again from x = +1 to +%. Using
only this first derivative test, we find that the graph of f could conceivably be
composed of the three straight line segments shown in Figure 3.8.

A candidate for the graph of f(x) = x> — 3x.

To make this sketch more accurate, we need to compute the regions of concavity
and convexity. These regions can be found simply by computing the second
derivative of the original function: f”(x) = 6x. We note easily that f” is zero
only at 0, that it is negative where x is negative, and that it is positive where x
is positive. Therefore, f is concave for x negative and convex for x positive, as
shown in Figure 3.3.

EXERCISES

3.3 For the functions in Exercise 3.1, compute the regions of convexity and concavity and
include this information on your graphs.
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3.4 Sketch the graph of a function which has the following properties:

a) f'(x)>0forx < I; b) f'(x) <O0forx > 1;
¢) f'x)<0forx<2;  d) f'(x) >0forx>2

3.5 Sketch the graph of a function which has the following properties:
a) flix)>0for—-4<x< -2and2 < x <4,
b) flix) <O0for—x<x< -4, -2<x< +4+2,and4 < x <
¢) f/ix) >0for—x<x<-3and0 < x < 3;
d) f'(x) <0for -3 <x<0andfor3 < x < x.

3.3 GRAPHING RATIONAL FUNCTIONS

We complete our discussion of the use of derivatives to sketch the graphs of
functions by working with rational functions. Because rational functions have
denominators, they are more challenging to graph than polynomials. Furthermore,
it is usually easier to visualize the graph of a polynomial than it is the graph of a
rational function.

The simplest rational function is f(x) = 1/x, whose graph is pictured in
Figure 3.9. Since the denominator of a fraction cannot be zero, this function is
not defined at x = 0. Furthermore, as x approaches 0 from the ncgative side, the
value of f(x) goes to —, and as x approaches 0 from the positive side, the value
of f(x) goes to +0. In both cases, the graph of f “cuddles up” to the vertical line
through the point x = 0, where the function is not defined. Such a vertical line is
called a vertical asymptote of f.

The graph of f(x) = 1/x.

Figure
39
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In general, if f is a rational function whose denominator is zero at the point x
(and whose numerator is not zero at xp), then the vertical line {x = x,} is a vertical
asymptote of f. On either side of this vertical asymptote, the graph of f goes to
+2 or to —oc; one uses calculus techniques to find out which.

In sketching the graph of a rational function, treat the zeros of the denominator
of a rational function like the first and second order critical points that arise in
the process of finding the signs of f’ and of f”, because f’ and f” can change
sign as one crosses a vertical asymptote. In other words, use them to divide the
line into intervals on which f’ or f” have constant sign. If f is negative on the
interval just to the left of the vertical asymptote, then f must go to —oo to the left
of the asymptote, since f is decreasing there, just as it is for 1/x in Figure 3.9. By
similar logic, if f' is positive on that interval, then f goes to + just to the left of
the vertical asymptote. A similar analysis works for points on the right-hand side
of the vertical asymptote.

Hints for Graphing

(1) Remember that to find the x-intercept of a rational function, you need only
set the numerator equal to zero. If there is no x-intercept in a given interval
between critical points and/or asymptotes, the graph does not cross the
x-axis in that interval — an observation which may prove very helpful in
sketching an accurate graph.

(2) Since the function, its first derivative, and its second derivative all provide
information about each other in the graph of a function, avoid using the
word “it” in referring to any of these functions, both in your own mind and
in discussing the process of graphing the function with anyone else. If you
carefully keep track of which derivative of the function you are working
with at any one time, you will save yourself some confusion.

EXERCISES

3.6 Use calculus to sketch the graph of 16(x + 1)/(x — 2)%.

3.4 TAILS AND HORIZONTAL ASYMPTOTES

To complete our guide to drawing graphs of polynomials and rational functions,
we turn our attention to the “tails” of the graph — the shape of the graph for large
positive and large negative values of x.

Tails of Polynomials

For polynomials, the leading term —the monomial of highest degree —
determines the shape of the tail of the graph. To see why this is true, consider a
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concrete example: the cubic x> — 4x? + 5x — 6. If x is very big, say x = 1017,
then x> will be 10°* — a number with 31 digits. On the other hand, —4x? will
be —4 - 102° — a number with only 21 digits. For x = 10'°, adding —4x? to x>
will not affect the 10 left-most digits of x>. A calculator which displays only 10
significant digits will not display the effect of this addition at all. The effect of the
5x + 6 terms is minuscule by comparison. As x gets larger still, the effect of the
nonleading terms on the leading term becomes even more insignificant.
In summary, for |x| very large, the graph of a polynomial

f(x)=apx* +ax* "+ +a_1x+ a
is determined completely by its leading term agx*. To graph the tail of a general
polynomial, we need only know how to graph a general monomial. The graph
of the monomial aygx* is determined by the sign of ay and the parity of k. If
k is even, then both tails go to +o as |x]| — o if @y > 0, and both tails go
to — as |x| — o if g, < 0. Think of the graphs of x* and of —x~ as ex-
amples. If k is odd, one tail of the graph goes to +o and the other to — as
|x| — oo, depending once again on the sign of ay. Think of the graphs of x* and

—x* as examples of this phenomenon.

Horizontal Asymptotes of Rational Functions

Next, consider a general rational function:

a(,x" + a,xl"-' + -+ ar— X + (u
b()X'" + b|.,\”"_I + -+ [7,,,_|X + b,,,'

g(X) = ag. 1."() #* (.

For |x| very large, the behavior of the numerator polynomial is determined by its
leading term ayx* and the behavior of the denominator polynomial is determined
by its leading term byx". In other words, for |x| large, the rational function g
mirrors the behavior of the monomial

_ axt _ay o,

£(x) Box” bo,\ .

In particular, if K > m, then £(x) is a monomial with a positive degree, and the
tails of the rational function g go to =, just like those of a polynomial. On the
other hand, if k < m, then £(x) — 0 as |x] — o, just as 1/x does in Figure 3.9. In
this case, both tails of g are asymptotic to the x-axis as |x| — . We say that the
x-axis is a horizontal asymptote for the graph of g. This is the situation which
arises in Exercise 3.6. Finally, if k = m, then the quotient £(x) of the leading
terms of g is a nonzero constant a,/by. As |x| — ©, g(x) — ay/by; the gr: yh is
asymptotic to the horizontal line y = a,/by. This horizontal line is also called
a horizontal asymptote of the graph of g. Look for both vertical and horizoatal
asymptotes in the graphs of the rational functions in the exercise below.
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EXERCISES

3.7 Sketch the graph of each of the following rational functions:

3.8

X X x-
a) x2 =1 b) M+l ‘) x+ 1
X+ 3x 41 1
a) =1 ) v /) v+ ]

<

In cach of the four graphs below. the graph of the first derivative f' of a function f is
sketched. In each case, determine where the function itself is increasing, decreasing,.
concave up. and concave down. Put this information on a number line and sketch the
graph of the function f. assuming that f(0) = 0.

f1(x)

N\

Figure
3.10

(e}
-

Graphs of four f'’s.
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3.5 MAXIMA AND MINIMA

One of the major uses of calculus in mathematical models is to find and characterize
maxima and minima of functions. For example, economists are interested in
maximizing utility and profit and in minimizing cost. Recall that a function f
has a local or relative maximum at xg if f(x) = f(xg) for all x in some open
interval containing xp; f has a global or absolute maximum at x if f(x) =< f(xp)
for all x in the domain of f. The function f has a local or relative minimum at
xo if f(x) = f(xp) for all x in some open interval containing x,; f has a global
or absolute minimum at xg if f(x) = f(xo) for all x in the domain of f. See the
discussion and graphs at the beginning of Chapter 2.

If f has a local maximum (minimum) at xo, we will simply say that xq is a max
(min) of f. If we want to emphasize that f has a global maximum (minimum) at
X, we will say that xq is a global max (global min) of f.

Local Maxima and Minima on the Boundary and in the Interior

A max or min of a function can occur at an endpoint of the domain of f or at a
point which is not an endpoint — in the “interior” of the domain. These two cases
are illustrated in Figures 3.11 and 3.12 for functions whose domains are the closed
interval [0, 1]. In Figure 3.11, f is increasing on [0, 1] and so its max occurs at the
endpoint x = 1 of [0, 1]. In Figure 3.12, the max of f occurs at x = 1/3 in the
interior of the domain [0, 1]. We will call a max (or min) that occurs at a boundary
point of the domain of f a boundary max or (boundary min). We will call a max
(or min) which is not an endpoint of the domain of f an interior max (or interior
min). Of course, if the domain of f is all of R! or is an open interval, then any
max of f will be an interior max.

The calculus criterion for an interior max or min of f is easy to state and to
understand.

Function with a boundary max at x = 1.

Figure
3.11
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Figure
3.12 Function with an interior max at x = 1/3.

Theorem 3.3 If x; is an interior max or min of f, then x is a critical point
of f.

Proof From an analytic point of view, a function is neither increasing nor de-
creasing on an interval about an interior max or min. By Theorem 3.1, its first
derivative cannot be positive or negative there; that is, f/(xy) must be zero or
undefined — xy is a critical point of f. From a geometric point of view, if the
graph of f has a tangent line at a max or a min, that tangent line must be
horizontal since the graph turns around there, as in Figure 3.13. In other words,
f'(xy) must be zero. W

Figure
3.13 The graph of f at a max xy.
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Example 3.3  For the function f(x) = x* — 3x, pictured in Figure 3.3, the local
| max and local min occur at the critical points x = —1andx = +1, respectively.

Example 3.4 As Figure 3.11 illustrates, the derivative of f at a boundary max
or min need not be zero. The production function pictured in Figure 3.4 has
domain [0, =). Since it is an increasing function. its (global) min occurs at the
boundary point x = 0, where the derivative of f is not necessarily zero.

Second Order Conditions

If xy is a critical point of a function f. how can we use calculus to decide whether
critical point x( is a max. a min. or neither? The answer to this question lies in the
second derivative of f at .

Theorem 3.4

(@) lf.f’(.\'(.) = 0and f"(xy) <0, then x, is a max of f;
(®) if f'(xp) = 0 and f"(xy) > 0, then xq is a min of f; and
(c) if f'(xy) = 0 and f"(xy) = 0, then x;y can be a max, a min, or neither. -

Proof We will present a proof of part a and leave the proof of part b as an
exercise. From a geometric point of view. f’(xy) = 0 means that the tangent
line to the graph of f is horizontal at xy, and f”(xy) < 0 means that the graph
curves downward. as in Figure 3.13. These two conditions together imply that
f has a local max at vy. From a more analytic point of view, f”(xy) < 0 means
that the first derivative f’ of f is a decreasing function in an interval about xo.
The facts that f'is decreasing and that f'(xy) = 0 mean that f'is positive to the
left of xy and negative to the right of xo. By Theorem 3.1, these two derivative
conditions imply that f is increasing to the left of x; and decreasing to the right
of xy. In other words, f has a local max at x.

To verify statement ¢ — that anything can happen when f’(xg) = 0 and
f"(x9) = 0— consider the four graphs in Figure 3.14. Each of these four
functions satisfies //(0) = 0 and f"(0) = 0. However, 0 is a local min for f; and
a local max for f>, while f3 is strictly increasing at 0 and f; is strictly decreasing
at0. |

Remark A critical point of f at which the second derivative f” is zero too is
called a degenerate critical point of f. As part ¢ of Theorem 3.4 indicates, to
determine whether or not any given degenerate critical point is a max, a min, or
neither, one needs more information about the function than the sign of its second
derivative — information like the sign of f’ on a whole interval about the critical
point.
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Figure _
3.14 fix) =27 fax) = =2, filx) = X7, and fo(x) = —x.

Example 3.5 Let’s use Theorem 3.4 to find the local max and mins of f(x) =
x* — 4x* + 4x* + 4. The critical points of f are the solutions of

fi(x) = 4x® — 12¢* + 8x = dx(x — 1)(x — 2) = 0,
that is, x = 0, 1, 2. These three points are the only candidates for a max or min
of f. Let’s check the second derivative, f”(x) = 12x? — 24x + 8, at these three
points:

f'0)=8>0, f'1)=-4<0, and f'(2)=8>0.

By Theorem 3.4, x = 0 and x = 2 are local mins of f and x = 1 is a local max.
The graph of f is presented in Figure 3.15.
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Graph of f(x) = x* — 4x> + 4x* + 4.
Global Maxima and Minima

Note that x = 0 and x = 2 are global minima of f in Figure 3.15. However,x = 1
is definitely not a global max, since f eventually takes on arbitrarily large values
as x — «. In Figure 3.12, neither critical point is a global max or min of f.

In some problems, we want conditions which will guarantee that a critical point
is a global max or a global min of the function under consideration. For example,
if Figure 3.15 represents the profit function of a firm, the firm would be foolish to
settle for the local max at x = 1, since it can generate arbitrarily large profits by
choosing a large value of x. In fact, the function f(x) = x* — 4x> + 4x® + 4 has
no global max.

In general, it is difficult to find a global max of a function or even to prove that
a given local max is a global max. There are, however, three situations in which
this problem is somewhat easier:

(1) when f has only one critical point in its domain,
(2) when f” > 0 or f” <0 throughout the domain of f, and
(3) when the domain of f is a closed finite interval.

We will examine each ot these situations.

Functions with Only One Critical Point

Theorem 3.5 Suppose that:
(a) the domain of f is an interval I (finite or infinite) in R!,
(b) xg is a local maximum of f, and

(¢) xo is the only critical point of f on /.

Then, xy is the global maximum of f on /.

Figure
3.15
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Proof We will show that if x is not the global maximum of f, then f must have
another critical point on /. Suppose there is a point y, in I with f(yg) > f(xo).
Suppose further that y; > x(. (The case where y; < x; is left as an exercise.)
Since f is decreasing just to the right of xp and eventually increasing again
somewhere to the left of yp, it must change from decreasing to increasing
somewhere between xg and yy, say at zg. But then z; is an interior local minimum
of f, and therefore is a critical point other than x; — contradicting the hypothesis
that &, is the only critical point of f. Therefore, x; is the global maximum of f
on its domain /. W

Functions with Nowhere-Zero Second Derivatives

Theorem 3.6 If f is a C? function whose domain is an interval I and if f” is
never zero on /, then f has at most one critical point in /. This critical point is
a global minimum if f” > 0 and a global maximum if f” < 0.

Proof Suppose f" is always positive on domain /. By Theorem 3.2, f’ is an
increasing function on /. This means that f' can be zero at at most one point.
If there is a point xg where f’(x;) = 0, then x; is a local minimum of f since
f"(x0) > 0. By Theorem 3.5, xj is the global minimum of f. &

It follows from Theorem 3.6, and the fact that a function f is convex if and only
if — f is concave, that if f is a C? convex function, then a critical point of f defined
on an interval in R! is necessarily a global minimum of f. Any local maximum
of f must occur on an endpoint of its domain. Similarly, a critical point of a C?
concave function f is necessarily a global maximum of x; any local minimum
must occur on an endpoint of its domain.

Functions with No Global Max or Min

A function whose domain is an open interval need not have a global maximum or
minimum in its domain. For example, the function f(x) = x> — 3x, whose graph is
pictured in Figure 3.3, has neither a global maximum nor a global minimum since
its value goes to + as x — ® and to —% as x — —o. Any strictly increasing
or strictly decreasing function whose domain is an open interval will not have a
maximum or a minimum in its domain. At the same time, there exist functions that
have a global minimum but no global maximum in their domain. Examples are the
function x*, which is pictured in Figure 3.14, and the function x* — 4x> + 4x? + 4,
which is pictured in Figure 3.15.

Functions Whose Domains Are Closed Finite Intervals

However, a famous theorem by Weierstrass states that a continuous function whose
domain is a closed and bounded interval [a, b] must have both a global maximum
and a global minimum in this domain (see Theorem 30.1). Furthermore, as we
will now see, there is a natural method for calculating these global extrema.
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By Theorem 3.3, an interior maximum or minimum of any function must be a
critical point of f. The only other candidates for a maximum or minimum are the
two endpoints of the domain: x = a and x = b. So, if we’re looking for the global
maximum of a C' function f with domain [a, b], we need only:

(1) compute the critical points of f by solving f/(x) = 0 for x in (a, b),

(2) evaluate f at these critical points and at the endpoints a and b of its domain,
and

(3) choose the point from among these that gives the largest value of f in
step 2.

Example 3.6 Suppose that x years after its founding in 1960, the Association
of Smart Statisticians had a membership given by the function f(x) = 2x*> —
45x? + 300x + 500. In the period between 1960 and 1980, what was its largest
and its smallest membership and when were these two extremes realized?
Mathematically, this is the problem of maximizing f(x) = 2x3 — 45x* +
300x + 500 for x in the closed interval [0,20]. The critical points of f, the
solutions of

0 = f'(x) = 6x*> — 90x + 300
= 6(x* — 15x + 50)
= 6(x — S5)(x — 10),

are x = §5,10. To solve the problem, we need only evaluate f at the critical
points x = 5, 10 and at the boundary points x = 0, 20:

£(0) =500, £(5)=1125 f(10) = 1000, f(20) = 10375.

Therefore, the global max occurs at x = 20 and the global min occurs at x = 0.

EXERCISES

3.9 For each of the following functions f with specified domains D, and D, find the
global maximum and the global minimum of f on each D; if they exist. Justify your

answers.

a) 1/x onD, =(1,2) and onD, = [1,2],

b) X + 3x onD, = (—»,+%) and onD, =[0,1),

0) x> = 3x onD, =[—4,-2] and onD, = [0,),

d) X*/(x + 1) onD; = [0,10] and onD, = [0,%),

e) 3x° —5x° onD;, =[-2,+2] and onD; = [—\/‘E, +\/§],

f) x+(1/x) on D, = (0,%) and onD, = (—x,0),
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g 1/(1 + x?) onD, = (-«,+x) and onD, = [l,2],

h) 3x+5+(75/x) onD, =[-2,+2] and onD, =[l1,10].

3.10 A manufacturer produces gizmos at a cost of $5 each. The manufacturer computes
that if each gizmo sells for v dollars. (15 — x) gizmos will be sold. What is the man-
ufacturer’s profit function? What price should the manufacturer charge to maximize
profit?

3.11 A manufacturer can produce economics texts at a cost of $5 apiece. The text currently

sells for $10, and at this price 10 texts are sold each day. The manufacturer figures

that each dollar decrease in price will sell one additional copy each day. Write out
the demand and profit functions. What price v maximizes profit?

Prove part b of Theorem 3.4.

Draw the appropriate figure to illustrate the proof of Theorem 3.5, and carry out the

proof of Theorem 3.5 for the case in which v < xq.

3.14 Adapt the argument in the proof of Theorem 3.6 to the case where f” is greater than
or equal to zero on the domain /.

w
— -
w N

3.6 APPLICATIONS TO ECONOMICS

In this section we discuss some of the ways in which the concepts and techniques
of calculus lead to a better understanding of the principles ot economics. So far in
this chapter, we have used calculus to study the properties of specific functions,
like

M o3 oand VM —ad +4v + 4

in Examples 3.1 and 3.5, respectively. We now need to move on to a consideration
of general types of tunctions which are distinguished. not by their formulas, but
by their properties.

Production Functions

Consider, as an example, a production function y = f(q), which relates the amount
of input ¢, say labor input, to the amount of output v that can be produced with g
units of input. Because we want a theory that is broadly applicable when modeling
the production process, we assume only that the production function we use has
the properties pictured in Figure 3.4 and not that it has a specific functional form,
like f(¢) = /q. When we need to make assumptions about a production function,
y = f(¢) in an economy, we will only assume that:

(1) itis continuous or maybe C?,

(2) itis increasing, and

(3) there is a level of input a such that the production function is concave up,
for 0 = ¢ < a. and concave down for g > a.
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If f is C?, these assumptions translate to the following assumptions about the
derivative of f:

(2" f'(g) > 0 for all ¢, and

(3") forsome a = 0, f"(q) > 0 for g € [0, a) and f"(q) < O for g > a. *)

Occasionally, to build our intuition or to construct concrete models of
economies, we will work with a general class of functional forms. For pro-
duction functions, we often work with the two-parameter family of functions
y = kq", where k and b are positive constants or parameters. Depending on the
size of b, these functions are either always concave up or always concave down
for g > 0. In particular, if 0 < b < 1, a = 0 in (4) and f(q) is always concave
down;if b > 1,a = < in(4) and f(q) is always concave up _The fact that this class
of production functions has two parameters which may be adjusted according to
the production process under consideration adds some richness and flexibility to
its use. Nevertheless, an economist should be uncomfortable with an economic
principle that holds only for an economy governed by production functious in this
class.

Cost Functions

A cost function C(x) assigns to cach level of output x, the total cost of producing
that much output. Like production functions, cost functions are naturally increasing
functions of their argument.v. However, the independent variable for a cost function
is the level of output, while the independent variable for a production tunction is
the level of input.

The derivative C'(x) of a cost tunction is called the marginal cost and is
written MC(x). As we discussed in Section 2.7, MC(x) measures the additional
cost incurred from the production of onc more unit of output when the current
output is x.

The average cost function also plays an important role in cconomic theory. It
is the function

C(v)

ACW) = ==,

which measures the cost per unit produced. Using calculus, one can derive some
uscful relationships between the marginal cost and average cost functions.

Theorem 3.7  Supposc the cost function C(x) is a C' function. Then,

(a) itMC > AC, AC is increasing,
(b) f MC < AC, AC is decrcasing, and
(¢) at an interior minimum of AC, AC = MC.
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Proof To show whether a function is increasing or decreasing, we need only
compute the sign of its first derivative. Using the Quotient Rule, we compute
that the first derivative of AC(x) is

C C'x)-x—1-C(x

A = £ (W) . €0 et
_ C'(0) = (C(x)/x) _ MC - AC

- X B x '

(a) If MC > AC,AC’(x) > 0 and AC(x) is increasing.

(b) If MC < AC,AC'(x) < 0 and AC(x) is decreasing.

(c) Ifxyisaninterior minimum of AC(x), then by Theorem 3.3,AC’(xp) = 0
and MC(xp) = AC(xp). B

Theorem 3.7 has a rich intuitive and geometric content. From an intuitive point
of view, the theorem says that if you do better than your average some day, your
average goes up that day. On days that you do worse than your average, your
average goes down. For baseball fans, a batter who goes hitless in a game will see
his batting average drop; a batter who has a “perfect day at the plate” will raise
his batting average.

Taking a geometric point of view, consider the graph of cost functiony = C(x),
as pictured in Figures 3.16 and 3.17. This graph is sometimes called a cost curve.

Cix)
Slope = MC(x,)
(Xz,C(Xz))
Slope = AC(x,)
(x, C(x7)
Slope = MC(x;)
T~ Slope = AC(x;)
1 ! X
X Xo X2

Figure
3.16 Atx;, AC > MC and AC is decreasing. At x5, MC > AC and AC is increasing.
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Slope = ACixg) = MCixg)

|
Xo

At xy, AC is a minimum and AC = MC.

The marginal cost at point x, MC(x), can be considered as the slope of the tangent
line to this curve at the point (x, C(x)). The average cost at x,

AC() = W0
=0
can be considered as the slope of the line segment from (x, C(x)) to the origin
(0, 0). The cost curve C in Figures 3.16 and 3.17 is an increasing function, and
C(0) > 0 implies that there are some fixed costs — costs independent of the
amount produced. At the points (x|, C(x})) and (x>, C(x2)) on the cost curve in
Figure 3.16, we have drawn the tangent line to the graph, whose slope repcesents
MC(x;), and the line to the origin, whose slope represents AC(x;). Note that
AC(x;) > MC(x)) and that AC(x) decreases as x increases from x;. On the
other hand, at the point (xa, C(xa)), MC(x2) > AC(x2) and AC(x) increases as x
increases from x»; this is consistent with Theorem 3.7. In Figure 3.17, we have
drawn attention to the point (x,, C(xg)) on the graph where the slope of the line to
the origin is at a minimum. At this minimizing point, (xo, C(xo)), the line to the
origin is actually tangent to the graph: AC(xy) = MC(xp), as Theorem 3.7 states.
As x increases from O to « in Figures 3.16 and 3.17, the slope of the line
from (x, C(x)) to the origin starts very large, decreases past x,, reaches its mini-
mum value at x,, and then increases again as x passes X, and becomes arbitrarily
large. If we graph this slope, that is, if we graph the average cost curve AC(x),
versus x, we find a U-shaped curve, as pictured in Figure 3.18. We have also
drawn the marginal cost curve MC in Figure 3.18. The critical property in this
figure is that for x < xp, the MC-curve lies below the AC-curve while AC is
decreasing; for x > xg, the MC-curve lies above the AC-curve as AC increases.
Figure 3.18 plays a major role in the study of the firm in intermediate micro-
€conomics courses.

Figure
3.17



Figure
3.18
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AC

AC

Xy X0 X2

The AC- and MC-curves.

Revenue and Profit Functions

Let C(x) continue to denote a firm’s cost function relative to its output x. Let R(x)
be the firm’s revenue-function, the function which indicates how much money
a firm receives.for selling x units of its output. Like C(x), R(x) should be an
increasing function of x. We write MR(x) for the firm’s marginal revenue function
R'(x). If p(x) is the unit price when the firm’s output is x units, then R(x) is simply
p(x) - x. In a model of perfect competition, that is, a model characterized by the
assumptions that there are many firms and that no individual firm can control the
output price by its productive activity, the price any firm receives for its output is
a constant p(x) = p, independent of the amount x it produces. In this case, the
firm’s revenue function is simply the linear function R(x) = p - x, and

MR = AR = p; ©)

marginal revenue and average revenue are equal.
A firm’s profit function is simply the difference

II(x) = R(x) — C(x)

between its revenue and its cost at any level of output x. Economists often use
the uppercase Greek letter pi, I1, to denote profit. The domain of I1, R, and C is
generally the nonnegative half-line [0, ). If we assume that the goal of the firm is
to choose the output level x* that maximizes its profit, then by Theorem 3.3, the
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optimal output level v* — if not zero — satisfies

ﬂ(.\-”) = Ry =90 = MRGY) — MCLT) = 0,
dx dx dx
or MR(x™) = MC(x").

This principle. that marginal revenue equals marginal cost at the optimnal output, is
one of the cornerstones of economic theory. It is a rather intuitive guideline. A firm
should continue producing output until the cost of producing one more unit (MC)
is just offset by the revenue that the additional unit will bring in (MR). If the firm
will receive more for the next unit than that unit will add to its cost (MR > MC),
then producing that next unit will increase the firm’s profit and it should carry out
the production. If the cost of making one more unit is more than the revenue that
the unit will bring in the market (MC > MR), then producing that additional unit
will cut into the firm’s profit; the firm should have stopped production earlier.

Let’s look more carefully at the perfectly competitive case where the revenue
function is R(x) = p-x. In Figure 3.19, we have drawn a typical average cost (AC)
and marginal cost (MC) curve, as in Figure 3.12. We have added a horizontal line
at y = p to represent a firm’s marginal revenue (MR) and average revenue curve
(AR), according to (5). The optimal output point x* — where MR = MC —is
darkened in Figure 3.19 at the intersection of the MR- and MC-curves.

If the market price p of the output were to increase, the MR-line y = p in
Figure 3.19 would move up and the corresponding optimal output would increase
too. At each stage, price p and optimal output x are related by the equation
p = MC(x) and the optimal output is represented by a point on the marginal cost

AC
AC

MR = AR

|
|
|
|
|
|
|
|
|
|
|
|
|
X0 Xx*

The AC-, MC-, AR-, and MR-curves for a competitive firm.
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curve. Another way of stating the fact that, for every price, the optimal amount of
output a firm will supply lies at the point where the horizontal price line crosses
the MC-curve is to say that the MC-curve gives the locus of the price-optimal
output combinations. In the language of economics, the MC-curve is the firm’s
supply curve, the curve which relates the market price to the amount produced.

Finally, we bring into the picture the second derivative condition that an interior
optimal output x* must satisfy. Since [1'(x) = p — C'(x),

I"(x) = 0 — C"(x).

At the interior maximizer, I1”/(x*) = 0 by Theorem 3.4. This implies that C"(x) =
0 and leads to the principle that at its optimal output the firm should be experiencing
increasing marginal cost.

Demand Functions and Elasticity

A firm’s revenue function R(x) can be written as the product of the amount sold
times the unit selling price. In simple models, we assume that the amount sold
equals the amount x produced. In the model of perfect competition analyzed in
Figure 3.19, we assumed that the selling price is a scalar p that is independent of
the amount produced. However, in models of monopoly (an industry with a single
firm) and oligopoly (an industry dominated by a small number of firms), there is
usually a relationship between the amount x of the product in'the market and the
price at which the product sells. If this relationship is represented by a function
x = F(p), which expresses the amount x consumed in terms of price level p,
then F is called a demand function. If the relationship is expressed By a function
p = G(x) which expresses the price p in terms of the amount x being consumed,
then G is called an inversé demand function. In a single-firm industry, it is the
inverse demand function that is the natural factor of the revenue function, since
the latter can be written as

Rx)=p-x=G(x)*x.

Since G(x) = R(x)/x, the inverse demand function is also the firm’s average
revenue function.

Economists, of course, are deeply interested in how changes in price affect
changes in demand. The natural measure of this sensitivity is the slope of the
demand function, F'(p) or Ax/Ap. As we well know, this marginal demand
describes the effect of a unit increase ‘in price on the purchasing behavior of
consumers. However, this sensitivity indicator has one major disadvantage: it is
highly dependent on the units used to measure quantity and price. Suppose, for
example, that a 10-cent increase in price will lead to a million-gallon decrease in
the consumption of gasoline. The marginal demand is

Ax _ —10°

= -10°
Ap 10
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if we measure x in gallons and p in cents. However, if we measure x in gallons
and p in dollars, then the marginal demand changes by a factor of 100 to

Ax _106 7
A= 1o =10 6)

Finally, if we use a million gallons as our unit of gasoline consumption and the
cent as our unit of price, then the marginal demand becomes

100 million times smaller than the measure in (6). Economists would like a measure
of the sensitivity of demand to price changes which cannot be manipulated by
choice of units and which can be used to compare consumption habits in different
countries with different currencies and different measures of weight or volume.

The solution to this problem is to use the percent rate of change instead of the
actual change. For any quantity, the percent rate of change is the actual change
divided by the initial amount:

Since the numerator and denominator are measured in the same units, the units
cancel out in this division process. For example, if the price changes from $1.25
to $1.50, the percent rate of change of price is

1.50 - 1.25 _ 025 1
1.25 125 5

It will be 20 percent whether we choose dollars, cents, or French franc equivalents
as our unit of currency.

To keep the sensitivity measure completely free of units, we will measure both
the change in quantity and the change in price in percentage terms. Our measure
of sensitivity now becomes the percent change in quantity demanded divided by
the percent change in price,

ax /Ap

x/ ™

in other words, the percent change in demand for each 1 percent rise in price.
This sensitivity measure is called the price elasticity of demand and usually
represented by the Greek letter epsilon, & Rewrite the double quotient (7) as a
single quotient:

g=QAx /Ap _Ax p _Ax p_Ax /x

x/ p x Ap Ap x Ap/p ®
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The factor Ax/Ap in the last two terms is just the marginal demand, while the
quotient x/p in the last term is simply the average demand. So, the elasticity can
be thought of as the marginal demand divided by the average demand.

The marginal decmand can, of course, be well approximated by the slope F'(p)
of the demand function x = F(p). Substituting F'(p) for Ax/Ap and F(p) for x
in (8) yields the calculus form of the price elasticity:

_F')-p
£ = FO) &)

Notation The discrete version (8) of the price elasticity is called the arc elas-
ticity and is usually used to compute € when we know only a finite number of
price-quantity combinations. The differentiable version (9) of the price elasticity
is called the point elasticity and is used when a continuous demand curve has
been estimatcd or in proving theorems about price elasticity.

We will soon use (9) to prove an illuminating rclationship between elasticity
and total revenuc or expenditure. First, we take a closer look at the elasticity
and, in the process, introducc some more vocabulary. A basic assumption about
demand functions is that raising the price of a commodity usually lowers the
amount consumed. Mathematically speaking, demand is a decreasing function of
price. (We arc ignoring the cmpirically rare phenomenon of a Giffen good —a
good for which lower prices lead to lower consumption.) This assumption means
that Ax/Ap in (8) and F'(p) in (9) arc ncgative numbers, as we saw in (6),
and thercfore that the price elasticity of a good is a negative number. (Some
intermediate economics texts define the price clasticity as the absolute value of
the cxpression in (8) or (9) to avoid dealing with negative numbers. We won''t.)

A good which is rather insensitive to price changes will have a price elasticity
close to zero. Nccessities, like fucl oil and medical care, are good examples of
this phenomenon. On the other hand, a good for which small price increases lead
to large drops in consumption — speaking in terms of percentages — will have a
price elasticity that is a large ncgative number. Luxury items, like Lamborghinis
and ermine coats, and items with many close substitutes, like Froot Loops or Cap’n
Crunch ccreals, are examples of this phenomenon. The following definitions add
some precision to these concepts.

Definition A good whose price elasticity lies between 0 and —1 is called in-
elastic. A good whose price elasticity lies between —1 and — is called elastic.
A good whose price elasticity equals —1 is said to be unit elastic.

If the price of a good goes up, the change in total expenditure on that good
is, at first glance, indeterminate, since expenditure is price times quantity, and the
two move in opposite directions. As the next theorem shows, the elasticity of the
good in question resolves this ambiguity.

Theorem 3.8 For an inelastic good, an increase in price leads to an increase
in total expenditure. For an elastic good, an increase in price leads to a decrease
in total expenditure.
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Proof Let x = F(p) be the demand function for the good under study. The total
expenditure at price p is

E(p)=p-x=p-F(p).

To see whether E(p) is increasing or decreasing, we need only check the sign
of its first derivative. By the Product Rule,

E'(p)=p-F'(p) +1-F(p).
Divide both sides by the positive quantity F(p):

E'(p) _ p F'(p)
F(p) F(p)

+1l=e+1, (10)

by (9). If the good is inelastic, —1 < ¢ < 0 and £ + 1 > 0. In this case, (10)
is positive, E'(p) is positive, and therefore E(p) is an increasing function of p.
Similarly, if the good is elastic, ¢ < —1 and € + 1 < 0. Now, each expression
in (10) is negative, E'(p) is negative, and therefore E(p) is a decreasing function
of p. B

In working with concrete economic models, economists sometimes use specific
functional forms for the economy’s demand functions, especially linear demand

x =F(p) =a- bp, a,b>0, (1)
and constant elasticity demand
x=F(p)y=kp™", k,r > 0. (12)

For (11), the demand function i< 1 straight line segment with negative slope —b
and x-intercept a, as pictured in Figure 3.20. Since the slope of F differs from

0 a/2b a/b

The graph of the linear demand function x = a — bp.

.Figur
3.20
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the elasticity of F, it should not be surprising that the elasticity varies along the
demand curve:

=P p_ —bp _ !
F(p) a—bp 1-(a/bp)
frome = Owhenp = 0andx = atoe = —<whenp = a/band x = 0.

In Figure 3.20, the graph of the demand function x = F(p) is drawn in what
appears to be the most natural way — with the independent variable p measured
along the horizontal axis and the dependent variable x measured along the vertical
axis. However, for all the other quantity-price relationships we have studied so
far — cost, revenue, profit, and their marginal and average manifestations — the
output x was naturally the indcpendent variable and was represented along the
horizontal x-axis while the price variable was naturally the dependent variable
and was represented along the vertical y-axis. Because this use of the horizontal
and vertical axes is the more common situation for economic functions and because
we will want to incorporate the demand relationship into our graphical studies of
revenue, cost, and profit curves, as in Figure 3.19, as average revenue curves, we
will graph the demand relationship with quantity on the horizontal axis and price
on the vertical axis.

This section conciudes with the incorporation of the demand, average revenue,
and marginal revenue curves into our analyses of the cost curves in Figure 3.18.
This was done in Figure 3.19 for the case of perfect competition where the
average revenue curve was a horizontal line. Now treat the antipodal case of a
pure monopolist facing a lincar demand curve x = g — bp for its product. The
inverse demand curve is

a
=- - —x 3
P=3 X (13)

[f the monopolist wants to scll x units, it will have to charge the price p given by
(13). Therefore, the monopolist’s revenue function is

a |
R(x) = (B - Bx) ‘X
The marginal revenue is

2
R'(x)= - — Bx,

SR

a curve with the same p-intercept but with twice the slope of the average revenuc
(= inverse demand) curve. These curves are sketched in Figure 3.21. The optimal
output occurs at the point x* above which the MR- and MC-curves cross. The
corresponding selling price p* can be read off the demand curve above x* (not from
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The MC-, AC-, MR- and AR-curves for a pure monopolist.

the MR-curve). One can use Figure 3.21 to show, for example, that if manufacturing
costs increase so that the MC-curve rises, then output will decline and price will
rise.

EXERCISES

3.15 Show that the function f(x) = x> + x + 1 has the essential properties of a cost
function. Carefully graph its corresponding average cost function and marginal cost
function on the same coordinate axes and compare your-answer with Figure 3.18.

3.16 What happens to acompetitive firm whose cost function exhibits decreasing marginal
cost everywhere? Construct a concrete cost function of this type and carry out the
search for the profit-maximizing output.

3.17 a) Which rectangle in Figure 3.19 has an area equal to the firm’s optimal revenue

atx = x*?

b) Using the fact that AC(x) = C(x)/x and thetefore C(x) = AC(x) - x, find the
rectangle whose area gives the total cost of output x*.

¢) Which area in Figure 3.19 represents the firm’s optimal profit?

3.18 Prove that the point elasticity is —1 exactly at the midpoint of the linear demand in
Figure 3.20.

3.19 Compute the point elasticity for the demand function (12) and conclude why (12) is
called the constant elasticity demand.

3.20 What happens to x* and p* if the demand curve rises in Figure 3.21?

3.21 Indicate carefully the rectangle in Figure 3.21 whose area gives the monopolist’s
profit.

3.22 For F(p) = a — bp and C(x) = kx?, calculate explicitly the formula for the optimal
output and its price.

Figur
3.21



CHAPTER 4

One-Variable Calculus:
Chain Rule

Many economic situations involve chains of relationships between economic vari-
ables: variable A affects variable B which in turn affects variable C. For example,
in a modcl of a firm, the amount of input used determines the amount of out-
put produced, and the amount of output produced detcrmines the firm’s revenue.
Revenue is a direct function of output and an indirect or composite function of
input. This chapter presents the Chain Rule, which describes the derivative of a
composite function in terms of the derivatives of its component functions, so that
if the effect of a change in input on output is known and the effect of a change
in output on revenue is known, the effect of a change in input on revenue can be
computed.

Section 4.2 focuses on invertible functions. Such functions correspond to
relationships between economic variables, say A and B, in which sometimes we
want to understand the effect of A on B and other times we are mere interested in
how B affects A. For cxample, economists are usually concerned about how a price
increase affects demand, but they sometimes focus on how a change in demand
affects prices. There is, of course, a close relationship between the derivative of
a function and the derivative of its inverse function; if we know one, we can
deduce the other. We will usc the concept of an inverse function and its derivative
in the next chapter when we study the logarithmic function as the inverse of the
exponential function.

Finally, at the end of this chapter, these mathematical results are used to
compute the derivative of the function f(x) = x™/"_This function arises naturally
in many economic models, such as Cobb-Douglas utility and production functions.

4.1 COMPOSITE FUNCTIONS AND THE CHAIN RULE
Composite Functions

Section 2.4 described the rules for computing the derivative of a function that
is formed by taking the sum, difference, product, or quotient of two other func-
tions. This section presents and then applies the Chain Rule — the formula for

70
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differentiating a function which is formed by taking the composition of two other
functions. If g and h are two functions on R1, the function formed by first applying

function g to any number x and then applying function A to the result g(x) is called
the composition of functions g and 4 and is written as

f) =h(gW) or f(x)=(hog)x)

The function f is called the composite of functions /2 and g; we say that “f is /
composed with g” and the “f is g followed by A.”

Example4.1 Forexample, if g(x) = x* and h(x) = x+4,then (hog)(x) = x> +4.
If the order of composition is reversed in this case, then (g o h)(x) = (x + 4)°.
Note that h o g # g o h.

When we compose two functions, we are taking a function of a function. For
example, if the second function raises x to the power &, that is, if 4(x) = x*, then
h(g(x)) = (g(x))" raises g(x) to the power k. This is the most common composite
function one meets in the calculus of polynomials and rational functions. However,
when dealing with exponential, logarithmic, and trigonometric functions, one
regularly deals with general composite functions.

Example 4.2 The functions which describe a firm’s behavior, such as its profit
function I1, are usually written as functions of a firm’s output y. If one wants
to study the dependence of a firm’s profit on the amount of labor input L it
uses, one must compose the profit function with the firm’s production function
y = f(L), the function which tells how much output y the firm can obtain from
L units of labor input. The result is a function

P(L) =TI (f(L)) = (IL o f)L).
For example, if
M(y)=—y* +6y>—5 and f(L) = 5L%> (1)
then P(L) = TI(f(L)
= —(5LY%)* + 6(SL¥)? - 5

= —625L%3 + 150L% - 5. (2)

Note that a different letter is used to denote profit as a function of L than to
denote profit as a function of y, simply because they are different functions.

Example 4.3 Composite functions arise naturally in dynamic models — models
in which the variables vary over time. For example, let x = F(p) denote the
market demand function for a commodity in terms of its price. Suppose that
because of inflation or external events, the commodity’s price changes over time
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according to the function p = p(t). Then, the commodity’s demand will also
vary over time, in accordance with the composite function

F(0) = F(p(t)).

When working with a composite function f(x) = h(g(x)), it is natural to call
the first function one applies (g in this case) the inside function and the second
function one applies (4 in this case) the outside function. For example, in the
composition (x? + 3x + 2)7, the inside function is g(x) = x> + 3x + 2 and the
outside function is h(z) = z’.

Differentiating Composite Functions: The Chain Rule

In Section 2.4, we introduced the Power Rule, which is the rule for taking the
derivative of a composite function in which the outside function is A(z) = z* for
some exponent k:

Power Rule: %(g(x))k = k(g(x))k_] - g'(x). €))

In words, the derivative of a function to the kth power is k& times the function to
the (k¢ — 1)th power times the derivative of the function. Since the derivative of
h(z) = 2t is h'(z) = kZ*~!, we can think of (3) as the derivative of the outside
function A (evaluated at the inside function g) times the derivative of the inside
function g; in symbols, '

d o Y
—(h(g(x) = (5())  8'c0) @

Formula (4) is precisely the formula for differentiating a general composite 4 o g
of two functions 4 and g. In this general form, it is called the Chain Rule. It is
often quickly summarized as “the derivative of the outside times the derivative of
the inside,” but one must remember that the derivative of the outside function is
evaluated at the inside function.

Example 4.4 Let’s apply the Chain Rule (4) to compute the derivative of the

composite function P = II o f, given by (1) in Example 4.2. The outside
function is ‘

() = —(O)* +6()* = 5;

the derivative of the outside function is

() = —4()’ + 12(),
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and the derivative evaluated at the inside function f(L) = 5L?/3 is
IT'(f(L)) = —4(5L**)* + 12(5L*3).

On the other hand, the derivative of the inside runction f is
10, _
f'@wy =L,
3
Multiplying these two expressions according to the Chain Rule (3) yields

P(L) = — (@) = (@) - f'@)

= (—4(sL¥%) +12(5L7)) - (13—0L—1/3),

which after simplifying equals

10 5000
(—4 - 12512 + 60L%/) - (TL"'B) = - L33 + 200L173,

Note that this agrees with what we compute by directly taking the derivative of
the expression (2) for the composite function P(L):

_3099; 575 4 00217,

(—625L% + 15004 — 5)' =

Example 4.5 To see how the Chain Rule works with functions other than gen-

| eralized polynomials, consider the trigonometric functions sine x and cosine x,
which are usually abbreviated as sin x and cosx. At this point you need only
know that the derivative of the function sin x is the function cos x. To compute
the derivative of the composite function

f(x) = sin(x® + 4x),

note that f is a composite of (x* + 4x), the inside function, and sin z, the outside
function. The derivative of the outside function is

d . .
- sin( ) = cos().

The derivative of the outside function, evaluated at the inside function, is

cos(x® + 4x).
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The derivative of the inside function (x> + 4x) is (3x2 + 4). By the Chain Rule,
the derivative of sin(x? + 4x) is

%(sin(f + 4x)) = cos(x® + dx) - 3x* + 4).

Notation In addition to the phrase “derivative of the outside times derivative
of the inside,” there is one other convenient device for remembering and using the
Chain Rule..Continue to write the inside function as g(x) and the outside function
as h(z). Then, the Chain Rule can be written as

(o]

28 ) = D e) - Eo. ©
To derive a new mnemonic device for the Chain Rule, we will allow ourselves
three abuses of notation. First, write the inside function g as z = g(x), since g(x)
will be used as the argument of the outside function A(z). Second, temporarily
ignoring the above warning about always using different letters for the different
tunctions, write h(x) for h(g(x)). Finally, ignoring the fact that h'(z) is evaluated
at z = g(x), write (5) as

dx  dz dx’

which is a deceptively simple-looking formula.

EXERCISES

4.1 For each of the following pairs of functions g and h, write out the composite functions
g © hand h o g in as simple a form as possible. In each case, describe the domain of
the composite.

a) glx) = x* + 4, h(z) =5z - 1;

b) g(x) = £°, h(z) = (z — 1)@ + 1);
) g)=(x—-D/x+1).  h@)=+1)/(1-2)
d) gx) = 4x +2, h(z) = 4(z = 2);

e) g(x) = 1/x, h(z) = 2> + 1.

4.2 For each of the following composite functions, what are the inside and outside func-

tions? @) V3x2+1, b) (1/x)* +5(1/x)+4, ¢) cosQx—7), d) 3%+,

4.3 Use the Chain Rule to compute the derivative of all the composite functions in
Exercise 4.1 from the derivatives of the.two component functions. Then, compute
each derivative directly, using your expression for the composite function, simplify,
and compare your answers.
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4.4 Repeat the calculations of the previous exercise for the composite functions in Exer-
cise 4.2.

4.5 Given that the derivative of sinx is cos x, the derivative of exp(x) is exp(x) itself, and
the derivative of log x is 1/x, use the Chain Rule to calculate the derivatives of the
following composite functions:

a) sin(x*), b) sin(1/x), ¢) {/sinx, d) sin /x,
e) exp(x? + 3x), ) exp(1/x), g) log(x* + 4), h) sin((x* + 4)%).
4.6 A firm computes that at the present moment its output is increasing at a rate of 2 units

per hour and that its marginal cost is 12. At what rate is its cost increasing per hour?
Explain your answer.

4.2 INVERSE FUNCTIONS AND THEIR DERIVATIVES

The Chain Rule is one of the most useful theorems in calculus, both in analyzing
applications and in deriving other principles of calculus. As an illustration, it will
be used in this section to derive the formula for the derivative of the inverse of a
function when the derivative of the original function is known.

Definition and Examples of the Inverse of a Function

Consider the demand relationship between the market price p and the amount x
that consumers are willing to consume at that price. Economists sometimes find
it convenient to think of this relationship as defining x as a function of p, for
example when computing elasticities, and sometimes as defining p as a function
of x, for example when computing marginal revenue in the process of studying
the profit-maximizing output. The former function is called a demand function,
and the latter an inverse demand function. For example, if the demand function is
given by the linear function

x=3-2p, (6)

+ then the inverse demand function is obtained by solving (6) for p in terms of x:

— 1 _
p= 5(3 x). (7

This same inverse relationship exists between the function in Example 2.3, which
converts degrees Centigrade to degrees Fahrenheit:

F= gc + 32, (8)
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and the function which converts degrees Fahrenheit to degrees Centigrade:
5
C= §(F - 32). 9)

We say that the function p +— 3 — 2p in (6) is the inverse of the function
x— %(3 — x) in (7), and vice versa. Similarly, the functions C — %C + 32 and

Fr— %(F — 32) in (8) and (9) are inverses of each other. More formally, for any
given function f: E; — R!, where E;, the domain of f, is a subset of R!, we say
the function g: E; — R! is an inverse of f if

g(f(x)) = x for all x in the domain E; of f and 0
f(g(2)) = z for all z in the domain E; of g. (10)

Example 4.6 To see that the functions described by expressions (6) and (7) are
inverses of each other, form their composition by substituting the expression
(7) for p into (6):

=3—2(%(3—x))=3—(3—x)=x.

Example 4.7 Other examples of functions and their inverses are:
flx) =2x and  g(y) = 3,

fx) = x? and g(y) =.fy for x,y =0,
f@=x and gG)=y",

_x—1 _1+y
f(x)—x+1 and g@)—m:
=7 ad g0)=.

Note that 1/x is its own inverse.

Suppose the function f has an inverse g. If f assigns the point y, to the point
Xo, then g assigns the point xg to the point y,. In symbols,

fxxo) =yo = g00) = xo.

If f assigns the same point y, to a point zg # Xg, that is, f(29) = yo too, then g
would also need to assign zg to yp; that is, g(yo) = zo. But then g would not be a
well-defined function at yy since it would assign two different numbers x; and zq
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to yo. In order for f to have an inverse g, f cannot assign the same point to two
different points in its domain; in symbols

x1 #F xp = fx1) # f(x2) (11)
or equivalently f(x1) = f(x2) = x1 = x3. (12)

A function f that satisfies (11) or (12) on a set E is said to be one-to-one or
injective on E.

To summarize the previous paragraph, in order for a function to be invertible,
it must be one-to-one. Conversely, if a function f is one-to-one on a set E, there
is a well-defined function g: f(E) — R! which sends each point y in the image
of f back to the (unique) point to which f assigned it. If f is given by a formula
which expresses y in terms of x, one finds a formula for its inverse g by rewriting
the formula for f to express x in terms of y. If this process determines a unique x
for every y, the new formula defines the inverse g of f.

Notation If f is invertible on its domain, then its inverse is uniquely defined.
We often write f~! for the inverse function of f.

It is easy to look at the graph of a function f defined on a interval E of R! and
determine whether or not f is one-to-one on E. As Figure 4.1 illustrates, the graph
of f cannot turn around; that is, it cannot have any local maxima or minima on E. It
must be monaotonically increasing or monotonically decreasing on E. The function
whose graph is pictured in Figure 4.1 is not one-to-one because two points x; and
X, map to the same point y~.

X

x b e
()

1

A function is not one-to-one in an interval containing a local max or min.

Example 4.8 Consider the function f(x) = x2. As a function defined on all of
R!, f is not one-to-one since it sends both x = —2 and x = +2 to the point
y = 4. Its inverse g would have to send y = 4 back to one of the two, say to
x = +2. But then, g(f(—2)) = g(4) = +2 and g does not satisfy the definition

Figure
4.1



Figure
4.2
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(10) of an inverse. However, if we restrict the domain of f to be the nonnegative
numbers [0, »), as we did in Example 4.7, then the restricted f is one-to-one
and therefore it has a well-defined inverse g(y) = ﬁ The domain of g is also
the interval [0, ). See Figure 4.3.

Example 4.9 The function x> — 3x, whose graph is pictured in Figure 3.2, is
not one-to-one on R, since x = —+/3, 0, +4/3 all map to y = 0. As further
evidence, f has two local extrema, so it is not a monotone function. However,
since f is monotone for x > 1, its restriction to (1, %) is invertible.

The following theorem summarizes the discussion thus far.

Theorem 4.1 A function f defined on an interval E in R! has a well-defined
inverse on the interval f(E) if and only if f is monotonically increasing on all
of E or monotonically decreasing on all of E.

For differentiable functions, Theorem 3.2 gives a calculus criterion for a func-
tion to be monotonically increasing or decreasing. Combining that result with
Theorem 4.1 leads naturally to the following theorem.

Theorem 4.2 A C! function f defined on an interval E in R! is one-to-one
and therefore invertible on E if f/(x) > 0 for all x € E or f'(x) < 0 for all
x €E.

From a geometric point of view, if f sends xq to yg, so that the point (xg, yo)
is on the graph of f, then f~! sends yp back to xo and therefore the point (y, xo)
is on its graph. For any point (a, b) on the graph of f, the point (b, a) is on the graph

The graphs of the functions y = 2x and y = %x.
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~<
]
«?
X

y=x

X
The graphs of the functions y = x* and y = \/; forx,y=0.

of f~'. This means that the graph of f~! is simply the reflection of the graph of
f across the diagonal line {x = y}. Figures 4.2 and 4.3 illustrate this phenomenon
for the first two pairs of functions in Example 4.7.

The Derivative of the Inverse Function

Since there is such a close relationship between the graph of an invertible function
f and the graph of its inverse f~', it's not surprising that there is a close rela-
tionship between their derivatives. In particular, if f is C' so that its graph has a
smoothly varying tangent line, the graph of f~' will also have a smoothly varying
tangent line; that is, f~! will be C' too. The following theorem combines this
observation with Theorem 4.2 to give a rather complete picture for the existence
and differentiability of the inverse of a C' function.

Theorem 4.3 (Inverse Function Theorem) Let f be aC' function defined
on the interval / in R'. If f/(x) # O for all x € I, then:

(a) f isinvertible on/,
(b) its inverse g is a C' function on the interval f(/), and
(¢) for all z in the domain of the inverse function g,

; 1
z) = . 13
86 f(8(2) (9

Proof The existence of f~! follows from Theorem 4.1. Since the graph of f~!
is the reflection of the graph of f across the diagonal line {y = x}, the graph of
£~ will have a well-defined tangent line everywhere, i.e., be differentiable, if

Figure
4.3
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the graph of f does. Assuming that g = f~! is differentiable, we compute g’
by first writing the inverse relation as in (10):

fg) = = (14)

Now, take the derivative of both sides of (14) with respect to z, using the Chain
Rule on the left side:

f(e@) - g'@ =1,

1
!
or g2 = ———.
f'(g@@)
Example 4.10 The inverse of y = f(x) = mx is x = g(y) = (1/m)y. Note that
iy = L = L

Example 4.11 Let’s work with the fourth set of functions in Example 4.7. Start
with

x—1
= = 2.
f(x) T and x

Since f(2) = 1/3, the inverse g of f sends 1/3 to 2. Since f'(x) = 2/(x + 1),
f'(2) = 2/9. By Theorem 4.3,

We can check this answer by computing directly that

1+ , 2 ,(1) 9

= _—, = -_, d _ = — = -,

80) = T g0 a-y2 M 8\3) 7 3/m/ "2
The Derivative of x™'"

In Theorem 2.3 and Exercise 2.14, we proved that the derivative of x* is kx*~!
for any integer k. In Theorem 2.4, we stated without proof that this formula holds
for any number k. In this section, we will use Theorem 4.3 and the Chain Rule to
show that this formula holds for any rational number k = m/n.

Theorem 4.4 For any positive integer n,

(xl/"), = %x(l/")']. (15)
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Proof The inverse of y = x!/"is x = y". By Theorem 4.3,

1/n / _ 1 ) _ 1/n
X = ——, evaluatedat y = x'/",
( ) (yn)l

1
= __1, evaluated at y = xl/'l,
ny"
_ 1 lx(l/n)—l. -

nx(ll—l)/ll - n

Theorem 4.5 For any positive integers m and n,

xmm) = 2 xnsm, (16)

Proof Since x"/" = (xl/ ")m, we can apply the Chain Rule directly:

(x”'/")’ = m()cl/")m—l : (xl/")/, (by the Chain Rule)

1
_ mx(m—l)/n . ;x(l_")/"’ (by Theorem 4.4)

= %x("’_")/” = %xW")-‘ (simplifying). ®

Having proved that the derivative of x* is kx*~! for all rational numbers &,
we can extend this result to all real numbers k by approximating any irrational
exponent by a sequence of rational numbers, applying the formula to each rational
number in the sequence, and then using a limiting process.

EXERCISES

4.7 Substitute (6) into (7), (8) into (9), and (9) into (8) and verify that the criterion (10)
of an inverse function is satisfied.

4.8 Calculate an expression for the inverse of each of the following functions, speci-
fying the domains carefully: @) 3x + 6, b) 1/(x + 1), ¢)x*?, d)yx* +x+ 2.
[Hint: Use the quadratic formula for d.]

4.9 For each of the functions f in the previous exercise, use Theorem 4.3 to compute
the derivative of its inverse function at the point f(1). Check your answer by directly
taking the derivative of the inverse functions calculated in the previous exercise.

4.10 Apply the Quotient Rule to the results of Theorems 4.4 and 4.5 to derive the corre-
sponding results for negative exponents.




CHAPTER 5

Exponents and
Logarithms

In the last three chapters, we dealt exclusively with relationships expressed by
polynomial functions or by quotients of polynomial functions. However, in many
economics models, the function which naturally models the growth of a given
economic or financial variable over time has the independent variable ¢ appearing
as an exponent; for example, f(¢) = 2'. These exponential functions occur nat-
urally, for example, as models for the amount of money in an interest-paying
savings account or for the amount of debt in a fixéd-rate mortgage account after ¢
years.

This chapter focuses on exponential functions and their derivatives. It also
describes the inverse of the exponential function — the logarithm, which can turn
multiplicative relationships between economic variables into additive relationships
that are easier to work with. This chapter closes with applications of exponentials
and logarithms to problems of present value, annuities, and optimal holding time.

5.1 EXPONENTIAL FUNCTIONS

When first studying calculus, one works with a rather limited collection of func-
tional forms: polynomials and rational functions and their generalizations to frac-
tional and negative exponents — all functions constructed by applying the usual
arithmetic operations to the monomials ax*. We now enlarge the class of functions
under study by including those functions in which the variable x appears as an
exponent. These functions are naturally called exponential functions.

A simple example is f(x) = 2%, a function whose domain is all the real
numbers. Recall that:

(1) if x is a positive integer, 2* means “multiply 2 by itself x times”;
(2) ifx = 0,2° = 1, by definition;

() if x = 1/n, 2" = J/2, the nth root of 2;

@) if x = m/n, 2"/" = (\"/5)'", the mth power of the nth root of 2; and
(5) if x is a negative number, 2* means 1,/2/, the reciprocal of 2!

In these cases, the number 2 is called the base of the exponential function.
To understand this exponential function better, let’s draw its graph. Since we
do not know how to take the derivative of 2* yet — (2¥)’ is certainly not x2* ™! —

82
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X 2*
-3 1/8
-2 1/4
-1 1/2
0 1
1 2
2 4
3 8

we will have to plot points. We compute values of 2* in Table 5.1 and draw the
corresponding graph in Figure 5.1.

Note that the graph has the negative x-axis as a horizontal asymptote, but unlike
any rational function, the graph approaches this asymptote in only one direction.
In the other direction, the graph increases very steeply. In fact, it increases more
rapidly than any polynomial — “exponentially fast.”

In Figure 5.2, the graphs of fi(x) = 2%, fo(x) = 3%, and f3(x) = 10" are
sketched. Note that the graphs are rather similar; the larger the base, the more
quickly the graph becomes asymptotic to the x-axis in one direction and steep in
the other direction.

The three bases in Figure 5.2 are greater than 1. The graph of y = b* is a bit
different if the base b lies between 0 and 1. Consider A(x) = (1/2)* as an example.
Table 5.2 presents a list of values of (x, y) in the graph of A for small integers x.
Note that the entries in the y-column of Table 5.2 are the same as the entries in the
y-column of Table 5.1, but in reverse order, because (1/2)* = 27*. This means
that the graph of h(x) = (1/2)" is simply the reflection of the graph of f(x) = 2*
in the y-axis, as pictured in Figure 5.3. The graphs of (1/3)* and (1/10)* look
similar to that of (1/2)".

The graph of y = 2~
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The graphs of fi(x) = 2%, fo(x) = 3, and f3(x) = 10".

X (1/2)*
-3 8
-2 4
—1 2
0 1
1 1/2
2 1/4
3 1/8

The graph of y = (1/2)".
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Negative bases are not allowed for the exponential function. For example, the
function k(x) = (—2)* would take on positive values for x an even integer and
negative values for x an odd integer; yet it is never zero in between. Furthermore,
since you cannot take the square root of a negative number, the function (—2)* is
not even defined for x = 1/2 or, more generally, whenever x is a fraction p/q and
q is an even integer. So, we can only work with exponential functions a*, where a
is a number greater than 0.

EXERCISES
5.1 Evaluate each of the following:
23, 2—3’ 81/3, 82/3, 8—2/3, 770, 64-5/6, 6253/4, 25-5/2.

5.2 Sketch the graph of: a)y =5%; b)y =.2%; )y =3(5");, d)y=1"

5.2 THE NUMBER e

Figure 5.2 presented graphs of exponential functions with bases 2, 3, and 10,
respectively. We now introduce a number which is the most important base for
an exponential function, the irrational number e. To motivate the definition of e,
consider the most basic economic situation — the growth of the investment in a
savings account. Suppose that at the beginning of the year, we deposit $4 into a
savings account which pays interest at a simple annual interest rate r. If we will
let the account grow without deposits or withdrawals, after one year the account
will grow to A + rA = A(1 + r) dollars. Similarly, the amount in the account in
any one year is (1 + r) times the previous year’s amount. After two years, there
will be

AQ+r)A +r)=AQ1 +r)?

dollars in the account. After ¢ years, there will be A(1 + r) dollars in the account.

Next, suppose that the bank compounds interest four times a year; at the end of
each quarter, it pays interest at r/4 times the current principal. After one quarter
of a year, the account contains A + A dollars. After one year, that is, after four

compoundings, there will be A (1 + %)4 dollars in the account. After ¢ years, the
account will grow to A(1 + %)4' dollars.

More generally, if interest is compounded n times a year, there will be A(1 + £)
dollars in the account after the first compounding period. A(1 + ,'—1)" dollars in the

account after the first year, and A(1 + Z)" dollars in the account after  years.
Many banks compound interest daily: others advertise that they compound
interest continuously. By what factor does money in the bank grow in one year at
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interest rate r if interest is compounded so frequently, that is, if n is very large?
Mathematically, we are asking, “What is the limit of (1 + £)" as n — <?” To
simplify this calculation, let’s begin with a 100 percent annual interest rate; that
is, r = 1. Some countries, like Israel, Argentina, and Russia, have experienced
interest rates of 100 percent and higher in recent years.
We compute (1 + 1)" with a calculator for various values of n and list the
results in Table 5.3.
n
n (1 + l)
n

1 2.0

2 2.25

4 2.4414
10 2.59374

100 2.704814
1,000 2.7169239
10,000 2.7181459
100,000 2.71826824
10,000,000 2.718281693

One sees in Table 5 3 that the sequence (1 + 1)" is an increasing sequence
in n and converges to a number a little bigger than 2.7. The limit turns out to be
an irrational number, in that it cannot be written as a fraction or as a repeating
decimal. The letter e is reserved to denote this number; formally,

S
e = lim (1 + ;) . (1)
To seven decimal places, e = 2.7182818 - - .

This number e plays the same fundamental role in finance and in economics
that the number 7 plays in geometry. In particular, the function f(x) = €* is called
the exponential function and is frequently written as exp(x). Since 2 < e < 3,
the graph of exp(x) = ¢€* is shaped like the graphs in Figure 5.2.

Next, we reconsider the general interest rate r and ask: What is the limit of the

q
r n
( )
n

in terms of e? A simple change of variables answers this question. Fix » > 0 for
the rest of this discussion. Let m = n/r; so n = mr. As n gets larger and goes to
infinity, so does m. (Remember r is fixed.) Since r/n = 1/m,

() = (o) =(05))
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by straightforward substitution. Letting n — o, we find

. r n . 1 m\r
lim (1 + —) lim ((1 + —) )
n—=%< n m—sx m
(lim (1 + l) )
n—x m

= ¢

In the second step, we used the fact that x" is a continuous function of x, so that
if {x,}>_, is a sequence of numbers which converges to xo, then the sequence of
powers {x},} converges to x;,; that is

(lim x,,,) = lim (x],).

m—x m—x

If we let the account grow for ¢ years, then
nt n\t
lim (1 + i) = lim ((1 + 5) )
n—x n n—sc
n\!
= (lim (1 + i) )
n—x n

—_ r\t — _rt
=() =¢€".

=

The following theorem summarizes these simple limit computations.

Theorem 5.1 As n — o, the sequence (1 + %)"converges to a limit denoted
by the symbol e. Furthermore,

lim (1 + E) = ek,

n—o n

If one deposits A dollars in an account which pays annual interest at rate r
compounded continuously, then after ¢ years the account will grow to Ae”
dollars.

Note the advantages of frequent compounding. At r = 1, that is, at a 100
percent interest rate, A dollars will double to 24 dollars in a year witii no com-
pounding. However, if interest is compounded continuously, then the A dollars
will grow to eA dollars with e > 2.7; the account nearly triples in size.
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5.3 LOGARITHMS

Consider a general exponential function, y = a*, with base a > 1. Such an
exponential function is a strictly increasing function:

x1>x, = a" >a-
In words, the more times you multiply a by itself, the bigger it gets. As we pointed
out in Theorem 4.1, strictly increasing functions have natural inverses. Recall that
the inverse of the function y = f(x) is the function obtained by solving y = f(x)
for x in terms of y. For example, for a > 0, the inverse of the increasing linear

function f(x) = ax + b is the linear function g(y) =- (1/a)(y — b), which is
computed by solving the equation y = ax + b for x in terms of y:

y=ax+b x=%(y—b). 2)

In a sense, the inverse g of f undoes the operation of f, so that

8(f(®) = x.
See Section 4.2 for a detailed discussion of the inverse of a function.
We cannot compute the inverse of the increasing exponential function f(x) =
a* explicitly because we can’t solve y = a* for x in terms of y, as we did in (2).

However, this inverse function is important enough that we give it a name. We call
it the base a logarithm and write

y=log,(2) < a =z

The logarithm of z, by definition, is the power to which one must raise a to yield
z. It follows immediately from this definition that

a°&? =z  and log, (@°) = z. 3)
We often write log,(z) without parentheses, as log, z.
Base 10 Logarithms
Let’s first work with base a = 10. The logarithmic function for base 10 is such

a commonly used logarithm that it is usually written as y = Logx with an
uppercase L:

y =logze= 10’ =z
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Example 5.1 For example, the Log of 1000 is that power of 19 which yields 1000.
Since 10° = 1000, Log 1000 = 3. The Log of 0.01 is —2, since 1072 = 0.01.
Here are a few more values of Log z:

Logl0 =1 since 10! = 10,
Log 100,000 = 5 since 10° = 100,000,
Logl =0 since 10° =1,
Log625 = 2.79588- -+ since 10%788" = 625,

For most values of z, you’ll have to use a calculator or table of logarithms to
evaluate Log z.

One forms the graph of the inverse function f~! by reversing the roles of the
horizontal and vertical axes in the graph of f. In other words, the graph of the
inverse of a function y = f(x) is the reflection of the graph of f across the diagonal
{x = y}, because (y, z) is a point on the graph of f~! if and only if (z, y) is a point
on the graph of f. In Figure 5.4, we have drawn the graph of y = 10* and reflected
it across the diagonal {x = y} to draw the graph of y = Log x.

Since the negative “x-axis” is a horizontal asymptote for the graph of y = 10*,
the negative “y-axis” is a vertical asymptote for the graph of y = Log x. Since 10*
grows very quickly, Log x grows very slowly. At x = 1000, Log x is just at y = 3;
at x equals a million, Log x has just climbed to y = 6. Finally, since for every x,
10* is a positive number, Log x is only defined for x > 0. Its domain is R, 4, the
set of strictly positive numbers.

y = Log x

The graph of y = Logx is the reflection of the graph of y = 10* across the
diagonal {y = x}.

Figu
54
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Base e Logarithms

Since the evponential function exp(x) = €* has all the properties that 10* has, it
also has an inverse. Its inverse works the same way that Logx does. Mirroring
the fundamental role that e plays in applications, the inverse of e* is called the
natural logarithm function and is written as In x. Formally,

Inx=y & ¢ =uyx;

In x is the power to which one must raise e to get x. As we saw in general in (3),
this definition can also be summarized by the equations

é"™ =x and Inée =x 4)

The graph of €* and its reflection across the diagonal, the graph of In x, are similar
to the graphs of 10* and Log x in Figure 5.4.

Example 5.2 Let’s work out some examples. The natural log of 10 is the power
of e that gives 10. Since e is a little less than 3 and 32 = 9, ¢? will be a bit less
than 9. We have to raise e to a power bigger than 2 to obtain 10. Since 3> = 27,
e® will be a little less than 27. Thus, we would expect that In 10 to lie between
2 and 3 and somewhat closer to 2. Using a calculator, we find that the answer
to four decimal places is In 10 = 2.3026.

We list a few more examples. Cover the right-hand side of this table and try
to estimate these natural logarithms.

Ine =1 since e = ¢

Int =0 since €' =1

In0.1 = —2.3025- - since e 2P =0.1;

In40) = 3.688 - - since e>688 = 40;

In2 =0.6931--- since 6B =2
EXERCISES

5.3 First estimate the following logarithms without a calculator. Then, use your calculator
to compute an answer correct to four decimal places:

a) Log500, b) Logs, ¢) Log1234, d) Loge,
e) In30, f) In100, g In3, h) Inm.
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5.4 Give the exact values of the following logarithms without using a calculator:
a) Log10, b) Log0.001, ¢) Log(billion),
d) log, 8, e) log, 36, f) logs 0.2,
g) In(e?), h) In\/e, i) Inl.

5.4 PROPERTIES OF EXP AND LOG
Exponential functions have the following five basic properties:

(1) a -a= ar-hs"
2)a T =1/d,
(3) ar/as — ar—v’
(4) (@) = a”,and
(5) a® = 1.

Properties 1, 3, and 4 are straightforward when r and s are positive intcgers. The
definitions that a ™" = 1/a",a® = 1, a'/" is the nth root of a, and a”/" = (a'/")y"
are all specifically designed so that the above five rules would hold for all real
numbers r and s.

These five properties of exponential functions are mirrored by five correspond-
ing properties of the logarithmic functions:

(1) log(r - s) = logr + logs,
(2) log(1/s) = —logs,

(3) log(r/s) = logr — logs,
(4) logr® = slogr, and

(5) log1 = 0.

The fifth property of logs follows directly from the fifth property of a* and the
fact that a* and log, are inverses of each other. To prove the other four properties,
letu = log, r and v = log, s, so that r = a* and s = a". Then, using the fact that
log,(a*) = x, we find:

(1) log(r - s) = log(a* - @) = log(a"**) = u+ v =logr + logs,

(2) log(1/s) = log(1/a"y =log(a™) = —-v = —logs,
(3) log(r/s) = log(a"/a") = log(a""") =u—v =logr — logs,
(4) logr’ =log(a“) =loga® =us =s-logr.

Logarithms are especially useful in bringing a variable x that occurs as an
exponent back down to the base line where it can be more easily manipulated.
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Example 5.3 To solve the equation 2°* = 10 for x, we take the Log of both sides:
Log2™ = Logl0 or 5x-Log2 =1

It follows that

1

=~ .6644.
5 Log2

x:

We could have used In instead of Log in this calculation.

Example 5.4 Suppose we want to find out how long it takes A dollars deposited
in a saving account to double when the annual interest rate is r compounded
continuously. We want to solve the equation

24 = Ae" (5)

for the unknown ¢. We first divide both sides of (5) by A. This eliminates A
from the calculation — a fact consistent with our intuition that the doubling
time should be independent of the amount of money under consideration. To
bring the variable ¢+ down to where we can work with it, take the natural log of
both sides of the equation 2 = e":

In2 = Ilne"

(6)

= n,

using (4). Solving (6) for ¢ yields the fact that the doubling time is¢ = (In2)/r.

Since In2 = 0.69, this rule says that to estimate the doubling time for
interest rate r, just divide the interest rate into 69. For example, the doubling
time at 10 percent interest is 69/10 = 6.9 years; the doubling time at 8 percent
interest is 69/8 = 8.625 years. This calculation also tells us that it would take
8.625 years for the price level to double if the inflation rate stays constant at 8
percent.

As we discussed in Section 3.6, economists studying the relationship between
the price p and the quantity g demanded of some good will often choose to
work with the two-parameter family of constant elasticity demand functions,
q = kp®, where k and ¢ are parameters which depend on the good under study.
The parameter ¢ is the most. interesting of the two since it equals the elasticity
(p/q)(dq/dp). Taking the log of both sides of g = kp® yields:

Ing = Inkp® = Ink + elnp. @)

In logarithmic coordinates, demand is now a linear function whose slope is the
elasticity .
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EXERCISES

5.5 Solve the following equations for x:

a) 2% =18; by =1; ¢)2* = ¢5;

5.6 Derive a formula for the amount of time that it takes money to triple in a bank account
that pays interest at rate r compounded continuously.

5.7 How quickly will $500 grow to $600 if the interest rate is 5 percent compounded
continuously?

5.5 DERIVATIVES OF EXP AND LOG

To work effectively with exponential and logarithmic functions, we need to com-
pute and use their derivatives. The natural logarithmic and exponential functions
have particularly simple derivatives, as the statement of the following theorem
indicates.

Theorem 5.2 The functions e* and Inx are continuous functions on their
domains and have continuous derivatives of every order. Their first derivatives
are given by

a) () =

Xl= Y

b) (Inx) =

If u(x) is a differentiable function, then
c) (eu()f))’ = (e"(")) u'(x),

_ ¥

D (nu) = L

if u(x) > 0.

We will prove this theorem in stages. That the exponential map is continuous
should be intuitively cleai from the graph in Figure 5.4; its graph has no jumps
or discontinuities. Since the graph of Inx is just the reflection of the graph of &*
across the diagonal {x = y}, the graph of Inx has no discontinuities either, and so
the function In x is continuous for all x in the set R, ; of positive numbers.

It turns out to be easier to compute the derivative of the natural logarithm first.
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Lemma 5.1 Given that y = Inx is a continuous function on R+ 4, it is also
differentiable and its derivative is given by

(lnx) =

klr—-

Proof We start, of course, with the difference quotient that defines the derivative,
and we then simplify it using the basic properties of the logarithm. Fix x > 0.

1

In(x +h) —Inx _ lln(x+h) =ln(1 + ﬁ)h
h h x x

l/x)

1/h])

=in(1+

Now, let m = 1/h. As h — 0, m — . Continuing our calculation with
m = 1/h, we find

+‘ _ . m
lim MR TInx o (1 + i’f)

h—0 h m—

Therefore, (Inx)’ = 1/x. The fact that we can interchange In and lim in the
above string of equalities follows from the fact that y = Inx is a continuous
function: x,, — x implies that In x,, — Inxp; or equivalently,

lim(Inx,,) = In (limx,,,). [ ]
m m

The other three conclusions of Theorem 5.2 follow immediately from the
Chain Rule, as we now prove.

Lemma 5.2 If A(x) is a differentiable and positive function, then

h'(x)
h(x)’
Proof We simply apply the Chain Rule to the composite function f(x) = In A(x).

The derivative of f is the derivative of the outside function Iny— which
is 1/y—evaluated at the inside function h(x)—so it’s 1/h(x)—times the

(l nh(x)) =
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derivative h’(x) of the inside function A:

1 K
(Inh(x)) = ek h(x) = h((;))

We can now easily evaluate the derivative of the exponential function y = €*,
using the fact that it is the inverse of In x.

Lemma 5.3 () = e*.

Proof Use the definition of Inx in (4) to write Ine* = x. Taking the derivative
of both sides of this equation and using the previous lemma, we compute

(Ine*) = % () = 1.

It follows that

(e_\’)l — ex' [

Finally, to prove part ¢ of Theorem 5.2, we simply apply the Chain Rule to the
composite function y = ¢“*), The outside function is e?, whose derivative is also
e*. Its derivative evaluated at the inside function is e“**). Multiplying this by the
derivative of the inside function u(x), we conclude that

0 , -
(eu(.\)) — eu(.\)ul(x).

Example 5.5 Using Theorem 5.2, we compute the following derivatives:

c) (Se"z)l = 10xe", d) ('Inx) =¢elnx+ iv'
x
e) (In rz), = % - 2x = é', £ ((lnx)z)/ _ Zl)lclx,

(
o (@) =F"—x™ B (G +3x+1) =

2x+ 3
x2+3x+1°

— (l _ 4\')83_".,
Example 5.6 The density function for the standard normal distribution is

/]

1
f) = Ee
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Let’s use calculus to sketch the graph of its core function

glx) = e/,
We first note that g is always positive, so its graph lies above the x-axis every-
where. Its first derivative is

g'(x) = —xe 72,

Since e**/2 is always positive, g’(x) = 0 if and only if x = 0. Since g0) =1,
the only candidate for max or min of g is the point (0, 1). Furthermore, g’(x) > 0
if and only if x < 0, and g'(x) < 0 if and only if x > 0; so g is increasing for
x < 0 and decreasing for x > 0. This tells us that the critical point (0, 1) must
be a max, in fact, a global max.

So far, we know that the graph of g stays above the x-axis all the time,
increases until it reaches the point (0, 1) on the y-axis, and then decreases to the
right of the y-axis. Let’s use the second derivative to fine-tune this picture:

g”(x) = (_xe_xz/z)l = xze"‘z/z — e_"z/2 = (x2 — l)e—xl/z.
Since e™*/2 > 0, g"(x) has the same sign as (x2 — 1). In particular,
g'0)<0, and g'(x)=0ex==1 8)

The first inequality in (8) verifies that the critical point (0, 1) is indeed a local
max of g. Using the second part of (8), we note that

—o<x<-1 = g'x)>0
-1<x<+1 = g'® <0

1<x<+o = g"(x)>0;

this implies that g is concave up on (—, —1) and on (1, ) and concave down
on (—1, +1). The second order critical points occur at the points (—1, e~'/2)
and (1, e~'/2). Putting all this information together, we sketch the graph of g in
Figure 5.5.

The graph of g is the graph of the usual bell-shaped probability distribution.
Since f is simply g times (2m)~1/2 = 39, the graph of f will be similar to the
graph of g but closer to the x-axis.

We now use equation b in Example 5.5 to compute the derivative of the general
exponential function y = b*.

Theorem 5.3 For any fixed positive base b,

(")’ = (nb)(bY). )
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_x2/2

The graph of e

Proof Since b = €™, then b* = (e!"?)* = £("b¥* By equation b in Example
5.5,

®) = () = (nb) ") = (nb)p").  m
Example 5.7 (10*)’ = (In 10)(10%).
Note that (b*)’ = b* if and only if Inb = 1, that is, if and only if b = e. In
fact, the exponential functions y = ke* are the only functions which are equal to

their derivatives throughout their domains. This fact gives another justification for
e being considered the natural base for exponential functions.

EXERCISES

5.8 Compute the first and second derivatives of cach of the following functions:

% 243c-2 44 9y . Inx
a) xe*, b) & ,» ©) In(x* + 2)%, d)e" 9] Inx’ N P

5.9 Use calculus to sketch the graph of each of the following functions:
a) xe*, b) xe™*, c¢) cosh(x) = (e + ¢7)/2.
5.10 Use the equation 10Y* = x, Example 5.7, and the method of the proof of Lemma
5.3 to derive a formula for the derivative of y = Log x.

5.6 APPLICATIONS
Present Value

Many economic problems entail comparing amounts of money at different points
of time in the same computation. For example, the benefit/cost analysis of the
" construction of a dam must compare in the same equation this year’s cost of con-
struction, future years’ costs of maintaining the dam, and future years’ monetary

Figure
58
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+

benefits from the use of the dam. The simplest way to deal with such comparisons
is to use the concept of present value to bring all money figures back to the present.

If we put A dollars into an account which compounds interest continuously at
rate r, then after ¢ years there will be

B = Ae" (10)

dollars in the account, by Theorem 5.1. Conversely, in order to generate B dollars
t years from now in an account which compounds interest continuously at rate 7,
we would have to invest A = Be™ " dollars in the account now, solving (10) for A
in terms of B. We call Be™" the present value (PV) of B dollars ¢ years from now
(at interest rate r).

Present value can also be defined using annual compounding instead of con-
tinuous compounding. In an account which compounds interest annually at rate
r, a deposit of A dollars now will yield B = A(1 + r)’ dollars ¢ years from now.
Conversely, in this framework, the present value of B dollars ¢ years from now is
B/(1 +r)" = B(1 + r)~' dollars. Strictly speaking, this latter framework only
makes sense for integer ¢’s. For this reason and because the exponential map e is
usually easier to work with than (1 + r)', we will use the continuous compounding
version of present value.

Present value can also be defined for flows of payments. At interest rate r, the
present value of the flow — B, doljars ¢; years from now, B, dollars ¢, years from
now, ..., B, dollars ¢, years from now — is

PV =Bje™"™ + Bse ™ + -+ - + B,e™ ™. (11)
Annuities

An annuity is a sequence of equal payments at regular intervals over a specified:
period of time. The present value of an annuity that pays A dollars at the end
of each of the next N years, assuming a constant interest rate » compounded
continuously, is

PV=Ae "' +Ae "2+ - - +Ae"N

12)
=A(e-r +e 24+ e—r-N). ( /
Since (a + - -+ + a")(1 — a) = a — a"*!, as one can easily check,
1 _ g
gt tar= 079 (13)

1—a

Substituting a = e~" and n = N from (12) yields a present value for the annuity
of

PV=A- = : (14)
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To calculate the present value of an annuity which pays A dollars a year forever,
we let N — «in (14):

A
V= —— 15
P e -1 (15)

since ™™ — Q0 as N — o,

It is sometimes convenient to calculate the present value of an annuity using
annual compounding instead of continuous compounding. In this case, equation
(12) becomes

A A

PV=-—" 4.+ =
1+r 1+ rW

Apply equation (13) witha = 1/(1 + r)and n = N:
_ovaEnfs o WY A 1 YW
PV =4 m(l () )‘7(1 (1_+_r)) (16)

To calculate the present value of an annuity which pays A dollars a year forever at
interest rate r compounded annually, we let N — o« in (16):

PV =

‘t‘|>

17)

The intuition for (17) is straightforward; in order to generate a perpetual flow of A
dollars a year from a savings account which pays interest annually at rate r, one
must deposit A/r dollars into the account initially.

Optimal Holding Time

Suppose that you own some real estate the market value of which will be V(¢)
dollars ¢ years from now. If the interest rate remains constant at r over this period,
the corresponding time stream of present values is V(¢)e™"". Economic theory
suggests that the optimal time ¢ to sell this property is at the maximum value of
this time stream of present value. The first order conditions for this maximization
problem are

(V(t)e™) = Vi(t)e™ — rv(t)e™™ =,

V(1) . .
or m = r att = the optimal selling time ¢;. (18)

Condition (18) is a natural condition for the optimal holding time. The left-hand
side of (18) gives the rate of change of V divided by the amount of V — a quantity
called the pércent rate of change or simply the growth rate. The right-hand side
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gives the interest rate, which is the percent rate of change of money in the bank.
As long as the value of the real estate is growing more rapidly than money in the
bank, one should hold on to the real estate. As soon as money in the bank has a
higher growth rate, one would do better by selling the property and banking the
proceeds at interest rate r. The point at which this switch takes place is given by
(18), where the percent rates of change are equal.

This principle of optimal holding time holds in a variety of circumstances, for
example, when a wine dealer is trying to decide when to sell a case of wine that is
appreciating in value or when a forestry company is trying to decide how long to
let the trees grow before cutting them down for sale.

Example 5.8 You own real estate the market value of which ¢ years from now is

given by the function V(¢) = 10,000e\_/; . Assuming that the interest rate for the
foreseeable future will remain at 6 percent, the optimal selling time is given by
maximizing the present value

F(¢) = 10,000e¥"e ™% = 10,000e"'~-%",

The first order condition for this maximization problem is

0 = F/(t) = 10,000eV~-06 [ L _ .06),
0t

which holds if and only if

1\2
— =.06 or fH= (—) = 69.44.

1
2% 12

Since F'(t) is positive for 0 < ¢ < ty and negative for t > fy,-tp = 69.44 is
indeed the global max of the present value and is the optimal selling time of the
real estate.

Logarithmic Derivative

Since the logarithmic operator turns exponentiation into multiplication, multi-
plication into addition, and division into subtraction, it can often simplify the
computation of the derivative of a complex function, because, by Lemma 5.2,

(nue)) = 52
and therefore u'(x) = (Inu(x)) - u(x). (19)

If \n u(x) is easier to work with than u(x) itself, one can compute u’ more easily
using (19) than by computing it directly.
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Example 5.9 Let’s use this idea to compute the derivative of

Jx2 -1

YT e 1 (20)
The natural log of this function is
(Y221 RO B RO S 1)
x2+1 F * '

It is much simpler to compute the derivative of (21) than it is to compute the
derivative of the quotient (20):

dl(E)_ 2x 2x

1
E" 2+1 )] 4x2-1 x2+1

—3x* + 5x
2(x2 = 1)(x2+ 1)

Now, use (19) to compute y:

(\/"xz—l)’= —3x3 + 5x Jx2 —1

X2 +1 22 -2+ 1) x2+1

—3x3 + 5x
2(x2 — 1)3/4(x2 + 1)

Example 5.10 A favorite calculus problem, which can only be solved by this
method, is the computation of the derivative of g(x) = x*. Since

(Inx*) = (xInx) = Inx + 1,
the derivative of x* is (Inx + 1) - x*, by (19).

Occasionally, scientists prefer to study a given function y = f(x) by comparing
Iny and In x, that is, by graphing f on log-log graph paper. See, for example, our
discussion of constant elasticity demand functions in (7). In this case, they are
working with the change of variables

Y =Iny and X =Inx
Since X = Inx, x = ¥ and dx/dX = ¢ = x. In XY-coordinates, f becomes

Y = Inf(x) = In f(£¥) = F(X).
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Now, the slope of the graph of Y = F(X), that is, of the graph of f in log-log
coordinates, is given by

dF(X) _ dF(x(X))

(by the Chain Rule)

S &

22)

The difference approximation of the last term in (22) is

dfx)y x _Af x _ Af [Ax

—— R — . = —

dx  f(x)  Ax f(x)  fo)/ x’

the percent change of f relative to the percent change of x. This is the quotient we
have been calling the (point) elasticity of f with respect to x, especially if f is a
demand function and x represents price or income.

This discussion shows that the slope of the graph of f in log-log coordinates
is the (point) elasticity of f:

oo f0)
f@

In view of this discussion, economists sometimes write this elasticity as

_ d(inf)
‘ d(Inx)’
EXERCISES

S5.11 At 10 pereent annual interest rate, which of the following has the largest present
value:
a) $215 two years (rom now,
) $100 after each of the next two years, or

¢) $100 now and $95 two years from now?

5.12  Assuming a 1() percent interest rate compounded continuously, what is the present
valuc of an annuity that pays $500 a year a) for the next five years, b) forever?

5.13 Supposc that you own a rare book whose value at time ¢ years from now will be
B@1) = 2V dollars. Assuming a constant intercst rate of 5 percent, when is the best
time to scll the book and invest the proceeds?

5.14 A wine dealcr owns a case of fine wine that can be sold for KeY' dollars ¢ years from
now. It therc arc no storage costs and the interest rate is r, when should the dealer
scll the wine?
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5.15 The value of a‘parcel of land bought for speculation is increasing according to the
formula V = 2000’ If the interest rate is 10 percent, how long should the parcel
be held to maximize present value?

5.16 Use the logarithmic derivative method to compute the derivative of each of the
following functions: a) /(x2 + 1)/(x? + 4), b) (xz)xz.

5.17 Use the above discussion to prove that the elasticity of the product of two functions
is the sum of the elasticities.
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CHAPTETR 6

Introduction to
Linear Algebra

The analysis of many economic models reduces to the study of systems of equa-
tions. Furthermore, some of the most frequently studied economic models are
linear models. In the next few chapters, we will study the simplest possible sys-
tems of equations — linear systems.

6.1 LINEAR SYSTEMS
Typical linear equations are
Xl+2X2=3 and Zx]—3x2=8.

They are called linear because their graphs are straight lines. In general, an equation
is linear if it has the form

ayx; +ayx, + -+ apx, = b.

The letters ay, ..., a,, and b stand for fixed numbers, such as 2, —3, and 8 in the
second equation. These are called parameters. The letters x,,..., x, stand for
variables. The key feature of the general formr of a linear equation is that each
term of the equation contains at most one variable, and that variable appears only
to the first power rather than to the second, third, or some other power.

There are several reasons why it is natural to begin with systems of linear
equations. These are the most elementary equations that can arise. Linear algebra,
the study of such systems, is one of the simpler branches of mathematics. It
requires no calculus and, at least in the beginning, very little familiarity with
runctions. It builds on techniques learned in high school, such as the solution of
two lirear equations in two unknowns via substitution or elimination of variables.
It also builds on the simple geometry of the plane and the cube, which is easy to
visualize. Linear equations describe geometric objects such as lines and planes. In
fact, linear algebra is a simple way to translate the insights of planar and cubical
geometry to higher dimensions.

107
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Linear systems have the added advantage that we can often calculate exact
solutions to the equations. By contrast, solutions of nonlinear systems often cannot
be calculated explicitly, and we can only hope to discover indirectly some of the
properties of these solutions. Equally important for linear systems, the precise
relationship between the solution of the linear system and various parameters
determining the system (the a;’s and b in the equation above) can be easily
described.

Of course, linearity is a simplifying assumption. The real world is nonlinear.
Calculus exploits the manageability of linear systems to study nonlinear systems.
The fundamental idea of calculus is that we can learn much about the behavior
of a nonlinear system of equations by studying suitably chosen linear approxi-
mations to the system. For example, the best linear approximation to the graph
of a nonlinear function at any point on its graph is the tangent line to the graph
at that point. We can learn much about the behavior of a function near any point
by examining the slope of the tangent line. Whether the function is increasing
or decreasing can be determined by seeing whether the tangent line is rising
or falling. The first important exercise in the study of the calculus is to learn
how to calculate this slope — the derivative of the function. For a more prosaic
example of the importance of linear approximations, consider that few people
disagree with the proposition that the earth is roughly spherical, and yet in con-
structing homes, skyscrapers, and even cities, we assume that the earth is flat
and obtain some rather impressive results using Euclidean planar geometry. Once
again we are taking advantage of an effective linear approximation to a nonlinear
phenomenon.

Since a primary goal of multivariable calculus is to provide a mechanism for
approximating complicated nonlinear systems by simpler linear ones, it makes
sense to begin by squeezing out all the information we can about linear systems —
the task we take up in the next six chapters.

A final reason for looking at linear systems first is that some of the most
frequently studied economic models are linear. We sketch five such models here.
As we develop our theory of linear systems, we will often refer back to these
models and call attention to the insights which linear theory offers. References for
further study of these topics can be found in the notes at the end of the chapter.

6.2 EXAMPLES OF LINEAR MODELS
Example 1: Tax Benefits of Charitable Contributions

A company earns before-tax profits of $100,000. It has agreed to contribute 10
percent of its after-tax profits to the Red Cross Relief Fund. It must pay a state tax
of 5 percent of its profits (after the Red Cross donation) and a federal tax of 40
percent of its profits (after the donation and-state taxes are paid). Howmuch does
the company pay in state taxes, federal taxes, and Red Cross donation?
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Without a model to structure our analysis, this problem is rather difficult be-
cause each of the three payments must take into consideration the other payments.
However, after we write out the (linear) equations which describe the various
deductions, we can understand more clearly the relationships between these pay-
ments and then solve in a straightforward manner for the payment amounts.

Let C, S, and F represent the amounts of the charitable contribution, state
tax, and federal tax, respectively. After-tax profits are $100,000 — (S + F); so
C = 0.10 - (100,000 — (S + F)). We write this as

C +0.1§ + 0.1F = 10,000,

putting all the variables on one side. The statement that the state tax is 5 percent
of the profits net of the donation becomes the equation § = 0.05 - (100,000 — C),
or

0.05C + § = 5,000.

Federal taxes are 40 percent of the profit after deducting C and S; this relation is
expressed by the equation F = 0.40 - [100,000 — (C + S)], or

0.4C + 0.45 + F = 40,000.
We can summarize the payments to be made by the system of linear equations

C +0.15 + 0.1F = 10,000
0.05C + S = 5,000 (1)
0.4C +0.45 + F = 40,000:

There are a number of ways to solve this system. For example, you can solve the
middle equation for S in terms of C, substitute this relation into the first and third
equations in (1), and then easily solve the resulting/system of tw =quations in
two unknowns to compute

C =5,956, S =4702, and F = 35,737,

rounded to the nearest dollar. The next chapter is devoted to the solution of such
systems of linear equations. For the moment, note that the firm’s after-tax and
after-contribution profits are $53,605.

We can use this linear model to compute (Exercise 6.1) that the firm would
have had after-tax profits of $57,000, if it had not made the Red Cross donation.
So, the $5,956 donation really only cost it $3,395 (= $57,000 — $53,605). Later,
we will develop a formula for C, S, and T in terms of unspecified before-tax profits
P and even, in Chapter 26, in terms of the tax rates and contribution percentages.
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Example 2: Linear Models of Production

Linear models of production are perhaps the simplest production models to de-
scribe. Here we will describe the simplest of the linear models. We will suppose
that our economy has n + 1 goods. Each of goods 1 through 7 is produced by one
production process. There is also one commodity, labor (good 0), which is not
produced by any process and which each process uses in production. A production
process is simply a list of amounts of goods: so much of good 1, so much of good
2, and so on. These quantities are the amounts of input needed to produce one
unit of the process’s output. For example, the making of one car requires so much
steel, so much plastic, so much labor, so much electricity, and so forth. In fact,
some production processes, such as those for steel or automobiles, use some of
their own output to aid in subsequent production,

The simplicity of the linear production model is due to two facts. First, in these
models. the amounts of inputs neeQed to produce two automobiles are exactly twice
those requited for the production of one automobile. Three cars require 3 times as
much of the inputs, and so on. In the jargon of microeconomics, each production
process exhibits constant returns to scale. The production of 2, 3, or k cars
requires 2, 3, or k times the amounts of inputs required for the production of 1
car. Second, in these models there is only one way to produce a car. There is no
way to substitute electricity for labor in the production of cars. Output cannot be
increased by using more of any one factor alone; more of all the factors is needed,
and always in the same proportions. This simplifies the analysis of production
problems, because the optimal input mix for the production of, say, 1000 cars,
does not have to be computed. It is simply 1000 times the optimal input mix
required for the production of 1 car.

Before undertaking an abstract analysis, we will work out an example to
illustrate the key features of the model. Consider the economy of an organic
farm which produces two goods: corn and fertilizer. Corn is produced using corn
(to plant) and fertilizer. Fertilizer is made from old corn stalks (and perhaps by
feeding the corn to cows, who then produce useful end products). Suppose that
the production of 1 ton of corn requires as inputs 0.1 ton of corn and 0.8 ton of
fertilizer. The production of 1 ton of fertilizer requires no fertilizer and 0.5 ton of
corn. .

We can describe each of the two production processes by pairs of numbers
(a, b), where a represents the corn input and b represents the fertilizer input.
The corn production process is described by the pair of numbers (0.1, 0.8). The
fertilizer production process is described by the pair of numbers (0.5, 0).

The most important question to ask of this model is: What can be produced for
consumption? Corn is used both in the production of corn and in the production
of fertilizer. Fertilizer is used in the production of corn. Is there any way of
running both processes so as to leave some corn and some fertilizer for individual
consumption? If so, what combinations of corn and fertilizer for consumption are
feasible?
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Answers to these questions can be found by examining a particular system of
linear equations. Suppose the two production processes are run so as to produce
xc tons of corn and xr tons of fertilizer. The amount of corn actually used in the
production of corn is 0.1xc — the amount of corn needed per ton of corn output
times the number of tons to be produced. Similarly, the amount of corn used in
the production of fertilizer is 0.5xr. The amount of corn left over for consumption
will be the total amount produced minus the amounts used for production of corn
and fertilizer: xc — 0.1x¢c — 0.5xFg, or 0.9x¢c — 0.5xz tons. The amount of fertilizer
needed in production is 0.8x¢ tons. Thus the amount left over for consumption is
xr — 0.8x¢ tons.

Suppose we want our farm to produce for consumption 4 tons of corn and 2
tons of fertilizer. How much total production of corn and fertilizer will be required?
Put another way, how much corn and fertilizer will the farm have to produce in
order to have 4 tons of corn and 2 tons of fertilizer left over for consumers? We
can answer this question by solving the pair of linear equations

0.9xc — 0.5xF = 4,
_O.SXC + XF = 2.

This system is easily solved. Solve the second equation for x¢ in terms of xc¢:
xr = 0.8xc + 2. ‘ )

Substitute this expression for xr into the first equation:

0.9x¢ — 0.5(0.8xc +2) =4
and solve for xc:

0.5xc =5, so xc =10
Finally, substitute xc = 10 back into (2) to compute

xr =0.8-10+2 = 10.

In the general case, the production process for good j can be described by a set
of input-output coefficients {agj, a1, . . ., a,;}, where a;; denotes the input of good
i needed to output one unit of good j. Keep in mind that the first subscript stands
for the input good and the second stands for the output good. The production of
x; units of good j requires ag;x; units of good 0, a;;x; units of good 1, and so on.

Total output of good i must be allocated between production activities and
consumption. Denote by c¢; the consumer demand for good i. This demand is given
exogenously, which is to say that it is not solved for in the model. Let ¢y be
the consumer’s supply of labor. Since good 0 (labor) is supplied by consumers
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rather than demanded by consumers, ¢y will be a negative number. An n-tuple
(co, €1y - - -5 Cn) is said to be an admissible n-tuple of consumer demands if ¢ is
negative, while all the other ¢;’s ar€ nonnegative. We want each process to produce
an output that is sufficient to meet both consumer demand and the input require-
ments of the # industries. For our simple linear economy, this is the law of supply
and demand: output produced must be used in production or in consumption. Let
x; denote the amount of output produced by process j. If process j produces x;
units of output, it will need a;;x; units of good i. Adding these terms up over all
the industries gives the demand for good i: a;;x, + apx; + -+ - + ajx, + ¢;. The
law of supply and demand then requires

Xi = apxy + apxy + 00+ QigXy + i
It is convenient to rearrange this equation to say that consumer demand must equal

gross output less the amount of the good nesded as an input for the production
processes. For good 1, this says

(1- all)xl —apxy T T aXy = C.
The analogous equation for good i is
—apx; — = @jj- Y (1= @)X — Qi1 Xie) — 000~ ApXy = Cie
The corresponding law of supply and demand for labor says
—ag Xy — " T AopXa = Co.

This leads to the following system of n + 1 equations in n unknowns, which
summarizes the equilibrium output levels for the entire n-industry economy:

(I —a)x —apxy; = v —apx, = ¢
—aynx; + (1 —ap)o— - Xy = €

K : 3)
—a,X) —QpXa— -+ (1 - Ann)Xn = Cp
—agyX) — Qgaxy — — AonXp = Q-

This linear system is called an open Leontief system after Wassily Leontief,
who first studied this type of system in the 1930s and later won a Nobel Prize in
economics for his work. It is said to be open because the demand ¢y, ..., c, is
exogenously given, while the supply of goods is endogenously determined, that
is, is determined by the equations under study. In this system of equations, the
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a;;’s and the c¢;’s are given and we must solve for the x;’s, the gross outputs of the
industries.

There are a number of algebraic questions associated with these equations
whose answers are important for obtaining the economic insights the interindustry
model has to offer. For example, what sets of input-output coefficients yield
a nonnegative solution of system (3) for some admissible n-tuple of consumer
demands? What set of output n-tuples will achieve a specified admissible n-tuple
of consumer demands? What set of admissible n-tuples of consumer demands can
be obtained from some given set of input-output coefficients?

“We have seen how this model sets up in terms of a system of linear equations.
But many insights into the workings of the Leontief model can best be understood
by studying the geometry of the model. We will study linear systems from the
geometric point of view in Chapter 27.

Example 3: Markov Models of Employment

Aggregate unemployment rates do not tell the whole story of unemployment. In
order to target appropriate incomes policies it is necessary to see exactly who
is unemployed. For example, is most unemployn}ent due to a few people who
are unemployed for long periods of time, or is it due to many people, each of
whom is only briefly unemployed? Questions like these can be answered by data
about the duration of unemployment and the transition between employment and
unemployment. Markov models are the probability models commonly used in
these studies. .

If an individual is not employed in a given week, in the next week he or she
may either find a job or remain unemployed: With some chance, say probability p,
the individual will find a job, and therefore with probability 1 — p that individual
will remain unemployed. Similarly, if an individual is employed in a given week,
we let ¢ be the probability that he or she will remain employed and therefore 1 — ¢
the probability of becoming unemployed. The probabilities p,q, 1 — p,and 1 — g
are called transition probabilities. In order to keep this model simple, we will
assume that the chances of finding a job are independent of how many weeks the
job seeker has been unemployed and that the chances of leaving a job are also
independent of the number of weeks worked. Then the random process of leaving
jobs and finding new ones is said to be a Markov process. The two possibilities,
employed and unemployed, are the states of the process.

The transition probabilities can lead to a description of the pattern of unem-
ployment over time. For example, suppose that there are x males of working age
who are cprrently employed, and y who are currently unemployed. How will these
numbers change next week? Of the x males currently employed, on average gx
will remain employed and (1 — ¢)x will become unemployed. Of the y males
currently unemployed, on average py will-become employed while (1 — p)y will
remain unemployed. Summing up, the average number employed next week will
be gx + py, and the average number unemployed will be (1 — g)x + (1 — p)y. If
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changes in the size of the labor force are ignored, the week-by-week dynamics of
average unemployment are described by the linear equations

Xi+1 = g% + py

)
yer1 = (A= @x + (1 = p)y,
where x, and y, are the average numbers of employed and unemployed, respec-
tively, in week ¢. This system of equations is an example of a linear system of
difference equations.
Macroeconomist Robert Hall estimated the transition probabilities for various
segments of the U.S. population in 1966. For white males the corresponding
system (4) of equations is

Xi+1 & .998x, + .136y(

&)
Yl+1 = .002.)6, + .864})(-
For black males, the system is
Xi+1 — .996x; + .102y,
(6)

y(+] = .004x’ + .898})’.

In the above three systems of equations, note that for any pair of numbers x;
and y,,

Xe+1 F Yiv1 = X0+ Y

In particular, if we start out with data in percentages, so that x; and y, sum to 1,
then x, and y, will sum to 1 for all ¢. To see this, just add the two equations in (4).
Furthermore, it is easy to see that if x, and y, are nonnegative numbers, then x, 4,
and y,4+, will be also. Thus, if the initial data we plug into the equation at time O is
a distribution of the population, the data at each time ¢ will also be a distribution.

There are two questions that are typically asked of Markov processes. First,
will x, and y, ever be constant over time? That is, is there a distribution of the
population between the two states that will replicate itself in the dynamics of
equation (4)? In other words, is there a nonnegative (x, y) pair with

x =gx + py
y=Q-gx+(1-p)y (M
1=x+y.

Such a pair, if it exists, is called a stationary distn’butidn, or a steady state of
(4). Once such a distribution occurs, it will continue to recur for all time (unless
p or g changes).
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The second question is contingent on the existence of a stationary distribution.
Will the system, starting from any initial distribution of states, converge to a steady
state distribution? If so, the system is said to be globally stable. Both of these
questions can be answered using techniques of linéar algebra.

The first two equations of equation system (7) can be rewritten as

0=(q— Dx+py

(8)
0=(1-q)x—py
However, there is really only one distinct equation in (8), since the second equation
is just the negative of the first equation and therefore can be discarded. Combining
the first equation in system (8) with the remaining ¢quation in (7), we conclude
that candidates for steady states will be solutions to the system of equations

@-—Dx+py=0

€
x+y=1
(We also have the nonnegativity constraint, but this will not be a problem.) To
solve system (9), multiply the second equation through by — p and add the result
to the first equation. The resulting equation will contain no y’s and can easily be
solved for x. Then, use either of the equations in (9) to solve for the corresponding
y. The resulting solution is

1-¢

_ p _
1+p—q

=17 =g and y

Applying this formula to Hall’s data gives a steady state unemployment rate of
1.4 percent for white males and 3.77 percent for black males. The stability question
asks: when is there a tendency to move toward these rates? This analysis is harder
than anything else we have done so far, but it still involves linear techniques.

Note that we have seen two different linear systems in the Markov model:
system (4) which describes the dynamics of the population distribution, and system
(9) which describes the long-run steady state equilibrium. -

Example 4: IS-LM Analysis

IS-LM analysis is Sir John Hicks’s interpretation of the basic elements of John
Maynard Keynes’ classic work, the General Theory of Employment, Interest, and
Money. We examine a simple example of IS-LM analysis: a linear model of a
closed economy such as one can find in any undergraduate macroeconomics text.

Consider an economy with no imports, exports, or other leakages. In such
an economy, the value of total production equals total spending, which in turn
equals total national income, all of which we denote by the variable Y. From
the expenditute side, total spending Y can be decomposed into the spending C
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by consumers (consumption) plus the spending I by firms (investment) plus the
spending G by government:

Y=C+I1+6G.

On the consumer side, consumer spending C is proportional to total income Y:
C = bY, with 0 < b < 1. The parameter b is called the marginal propensity
to consume, while s = 1 — b is called the marginal propensity to save. On
the firms’ side, investment / is a decreasing function of the interest rate r. In its
simplest linear form, we write this relationship as

[ =1°—ar

The parameter a is called the marginal efficiency of capital.
Putting these relations together gives the IS schedule, the relationship between
national income and interest rates consistent with savings and investment behavior

Y =bY + (I° —ar) + G,
which we write as
sY +ar =1°+ G, (10)

wheres = 1—b, a,[°,and G are positive parameters. This IS equation is sometimes
said to describe the real side of the economy, since it summarizes consumption,
investment, and savings decisions.

On the other hand, the LM equation is determined by the money market
equilibrium condition that money supply M, equals money demand M,. The money
supply M; is determined outside the system. Money demand M, is assumed to
have two components: the transactions or precautionary demand M, and the
speculative demand M. The transactions demand derives from the fact that most
transactions are denominated in money. Thus, as national income rises, so does
the demand for funds. We write this relationship as

Mdl = mY.

The speculative demand comes from the portfolio management problem faced
by an investor in the economy. The investor must decide whether to hold bonds or
money. Money is'more liquid but returns no interest, while bonds pay at rate r. It
is usually argued that the speculative demand for money varies inversely with the
interest rate (directly with the price of bonds). The simplest such relationship is
the linear one

My = M° — hr.
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The LM curve is the relationship between national income and interest rates
given by the condition that money supply equals total money demand:

M;=mY + M° — hr,
or mY — hr = M, — M°.

The parameters m, h, and M° are all positive.

Equilibrium in this simple model will occur when both the IS equation (produc-
tion equilibrium) and the LM equation (monetary equilibrium) are simultaneously
satisfied. Equilibrium national income Y and interest rates r are solutions to the
system of equations

sY +ar=1°+G

(11)
mY — hr = M; — M°.
Algebraic questions come into play in examining how solutions (Y, r) depend
upon the policy parameters M; and G and on the behavioral parameters a, h, I1°,
m, M°, and s. The comparative statics of the model — the determination of the
relationship between parameters and solutions of the equations — is an algebraic
problem on which the tools of linear algebra shed much light.

The importance of studying the linear version of the IS-LM model in addition
to the general nonlinear version of the model cannot be underestimated. First, the
intuition of the model is most easily seen in its linear form. Second, study of the
linear model can suggest what to look for in more general models. Finally, the
comparative statics of nonlinear models — the exploration of how solutions to the
system change as the parameters describing the system change — is uncovered by
approximating the nonlinear model with a linear one, and then studying the linear
approximation. These three reasons for focusing on linear models for the study
of nonlinear phenomena will recur frequently. The simplicity of linear models
commends such models as a first step in the construction of more complex models,
and the more complex models are frequently studied by examining carefully
chosen linear approximations.

Example 5: Investment and Arbitrage

In the simple neoclassical model of consumer choice, a consumer decides how
much of each of the n well-specified goods to consume today. In order to extend this
model to the study of investment decisions, we must add two new ingredients —
time and uncertainty. Suppose that there are A investment assets, which our investor
may buy atthe beginning of an investment period and sell at th¢ end of the period.
To bring uncertainty into this discussion, assume that S different financial climates
are possible during the coming period. We call these conditions states of nature.
Exactly one of these S states will occur; of course, no one knows which one. An
asset will have different returns in different states of nature. Let v; be the current
value of one unit of asset i, and let yy; be the value of one unit of asszt i at the
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end of the investment period, including dividends paid, if state s occurs. Then, the
realized return or payoff on the ith asset in state s is

This is the amount the investor will receive per dollar invested in asset ¢ should
state s occur. (The realized return can be thought of as 1 plus the rate of return.)

Let 11; denote the number of units or shares of asset i held. The share amounts
n; can have either sign. A positive #; indicates a long position and thus entitles the
investor to receive yg;n; if state s occurs. A negative n; indicates a short position;
the investor, in effect, borrows 1; shares of asset i and promises to pay back y.n;
at the end of the period if state s occurs. In this case, the investment in asset i has
a positive rate of return only if y; < v;, that is, if it is cheaper to pay back the
borrowed shares that it was to borrow them.

If the investor has wealth wy available for investment purposes, the investor’s
budget constraint 1s

myyp + o+ gvy = wy.

If state s occurs, the return to the investor of purchasing n; shares of asset i for
i=1...,Ais

R, = Ysiy + yony + 0 yana _ i Ysilti (12)

Wo i=1 Wwo

We usually normalize by letting

represent the fraction of the investor’s wealth held in asset i. Budget constraint
(12) becomes simply

x1+x2+---+xA=1.

The A-tuple (xy, x2, ..., x3) is called a portfolio and the x;’s are called portfolio
weights. If state s occurs, the return to the investor of portfolio (xy, ..., x4) is

by the definitions of Ry; and x;.
Atthis poiht, we introduce some of the vocabulary of finance theory. A portfolio
(x1, ..., xa) is called riskless if it provides the same return in every state of nature:
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A A A
D> Riuxi =) Ryxi =+ = Rgx;
i=1 i=1 i=1

A nonzero A-tuple (x, ..., x4) is called an arbitrage portfolio if
xy+--+x4=0 (instead of 1).

In such a “portfolio,” the money received from the short sales is used in the purchase
of the long positions. Notice that, in an arbitrage portfolio, njvy + - - +n4v4 = 0,
so that the portfolio costs nothing.

A portfolio (xy,..., x4) is called duplicable if there is a different portfolio
(w1, ..., wa) with exactly the same returns in every state:

A A
ZRS,'X,' = stgW,' foreach s = 1, ceey S.
i=1 i=1

A state 5™ is called insurable if there is a portfolio (xy, ..., x4) which has a
positive return if state s* occurs and zero return if any other state occurs:

A
ZRS-,-xi >0

i=1

A
ZRS,-x; =0 foralls # s".
i=1

The name is appropriate because the given portfolio can provide insurance against
the occurrence of state s*.

It is sometimes convenient to assign a price to each of the s states of nature.
An S-tuple (py, . . ., ps) is called a state price vector if

piyn T paya + 0+ psysi = vy
PiYi2t paynt+ -+ psysa = w2

(13)
Piyia t payia + ¢ .+ psysa = va,
or equivalently,
PRy + paRoy + -+ + psRsy =1
PiR12 + paRyy + -+ + psRs; = 1
(14)

DR+ poRy + -+ + psRss = 1.
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Systems (13) and (14) state that the current price v; of asset j is equal to a weighted
sum of its returns in each state of nature, with the same weights for each j. The
weight p; for state s is a kind of price for wealth in state s and is often called a
state price. If we can price states, then the price of each asset is just the value at
the state prices of the returns in each state. This is the content of the linear system
of equations (13).

Since all the equations in this application are linear, it is not surprising that
techniques of linear algebra can answer questions about the existence and charac-
terization of riskless, duplicable, and arbitrage portfolios and of insurable states
and state prices.

Example 6.1 Suppose that there are two assets and three possible states. If state
1 occurs, asset 1 returns R;; = 1 and asset 2 returns Ry; = 3. If state 2 occurs,
R,; = 2 and Ry, = 2. If state 3 occurs, R3; = 3 and R3; = 1. If both assets
have the same current value and if the investor buys n; = 3 shares of asset 1
and n, = 1 share of asset 2, the corresponding portfolio is (%, 1) and the returns
are

Ry-3+Rp-1=3 instatel,
Ry-2+Rp-1=2 in state 2,
Ry -2 +Rap-+=3 in state 3.

Portfolio (%, %) is a riskfree portfolio since it yields a return of 2 in all three states
(check). The 3-tuple (3, %, é\) is a pricing system for this economy (check). As
we will see in Section 7.4, there are no duplicable portfolios and no insurable
states.

These five examples illustrate the important role that linear models play in
economics and indeed in all the social sciences. We conclude this chapter by men-
tioning three other instances where economists use linear algebra. First, many of
the elementary techniques of econometrics, such as (generalized) least-squares es-
timation, rely heavily on linear systems of equations. Second, linear programming,
the optimization of a linear function on a set defined by a system of linear equali-
ties and inequalities, is a fundamental economic technique. As such, a number of
textbooks are devoted entirely to it and it is the total subject matter of graduate
courses in mathematics and engineering, as well as economics. Finally, we will
rely on linear algebra techniques when we study the generalization of the second
derivative test in calculus to maximization problems which involve (nonlinear)
functions of more than one variable.

EXERCISES

6.1 Suppose that the firm in Example 1 did not make any charitable contribution. Write
out and solve the system of equations which describe its state and federal taxes. What
is the net cost of its $5956 charitable contribution?
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6.2 In Missouri, federal income taxes are deducted from state taxes. Write out and solve
the system of equations which describes the state and federal taxes and charitable
contribution of the firm in Example 1 if it were based in Missouri.

6.3 Theeconomy on the island of Bacchus produces only grapes and wine. The production
of 1 pound of grapes requires.1/2 pound of grapes, 1 laborer, and no wine. The
production of 1 liter of wine requires 1/2 pound of grapes, 1 laborer, and 1/4 liter of
wine. The island has 10 laborers who all together demand 1 pound of grapes and 3
liters of wine for their own consumption. Write out the input-output system for the
economy of this island. Can you solve it?

6.4 Suppose that the production of a pound of grapes now requires 7/8 liter of wine. If
nore of the other input-output coefficients change, write out the new systems for the
outputs.

6.5 Suppose that 10 percent of white males of working age and 20 percent of black males
of working age are unemployed in 1966. According to Hall’s model, what will the
corresponding unemployment rates be in 1967?

6.6 For the Markov employment model, Hall gives p = .106 and ¢ = .993 for black
females, and p = .151 and ¢ = .997 for white females. Write out the Markov systems
of difference equations for these two situations. Compute the stationary distributions.

6.7 Consider the IS-LM model of Example 4 with no fiscal policy (G = 0). Suppose
that M; = M°; that is, the intercept of the LM curve is 0. Suppose that /° = 1000,
s = 0.2, h = 1500, a = 2000, and m = 0.16. Write out the explicit IS-LM system of
equations. Solve them for the equilibrium GNP Y and the interest rate r.

6.8 Carry out the two checks at the end of Example 5.

NOTES

We present some references for the linear models discussed in this section. For the intellec-
tual origins of input-output models, see F. Quesnay (1694—1774), Tableau Economique, and
W. Leontief (1906— ), The Structure of the American Economy: 1919-1929 (Cambridge,
Mass.: Harvard University Press, 1941). For a good modern treatment, see Chapters 8 and
9 of D. Gale, The Theory of Linear Economic Models (New York: McGraw-Hill, 1960).
Gale’s book is also an excellent reference for the techniques and economic applications of
linear programming.

The estimates for the transition probabilities for the employment of various segments
in the United States in 1966 are fromRobert Hall, “Turnover in the labor force," Brookings
Papers on Economic Activity 3, 1972, p. 709.

Most undergraduate macroeconomic fexts treat IS-LM models. See, for example, Chap-
ter4 of R. Hall and J. Taylor’s Macroeconomics, 4thed. (New York: Norton, 1993.) Keynes’s
classic in this area is J. M. Keynes (1883—1946), The General Theory of Employment, In-
terest, and Money (New York: Harcourt, Brace, 1936). For Hicks’s interpretation of this
theory, see J. R. Hicks (1904-1989), “Mr. Keynes and the ‘Classics’: a Suggested Inter-
pretation,” Econometrica April 1937, 147-159. Among the good expositions of modemn
portfolio theory is Jonathan Ingersoll Theory of Financial Decision Making (Rowman &
Littlefield, 1987).



CHAPTER 7

Systems of Linear
Equations

As was discussed in the last chapter, systems of linear equations arise in two ways
in economic theory. Some economics models have a natural linear structure, like
the five examples in the last chapter. On the other hand, when the relationships
among the variables under consideration are described by a system of nonlinear
equations, one takes the derivative of these equations to convert them to an approx-
imating linear system. Theorems of calculus tell us that by studying the properties
of this latter linear system, we can learn a lot about the underlying nonlinear
system.

In this chapter we begin the study of systems of linear equations by describing
techniques for solving such systems. The preferred solution technique — Gaussian
elimination — answers the fundamental questions about a given linear system:
does a solution exist, and if so, how many solutions are there?

An implicit system is one in which the equations that describe the economic
relationships under study have the exogenous and endogenous variables mixed in
with each other on the same side of the equal signs. This chapter closes with a
discussion of the Linear Implicit Function Theorem, which tells how to use linear
algebra techniques to quantify the effect of a change in the exogenous variables
on the endogenous ones in a linear implicit system.

7.1 GAUSSIAN AND GAUSS-JORDAN ELIMINATION
We begin our study of linear phenomena by considering the problem of solving
linear systems of equations, such as
2x1+3x2=7 x,+x2+x3=5
or @
xl—x2=1 X2—X3—_—0.

The general linear system of m equations in #» unknowns can be written

anxy + apxy + o0+ aygx, = b1
anxy + apxy + <0+ ayxp = by

(2
amx1 + apmaxy + <+ + Appxp = bp.

122
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In this system, the a;;’s and b;’s are given real numbers; a;; is the coefficient of
the unknown x; in the ith equation. A solution of system (2) is an n-tuple of real
numbers xj, X, . . ., X, Which satisfies each of the m equations in (2). For example,
x; = 2,x3 = 1 solves the first system in (1), and x; = 5, x> = 0, x3 = 0 solves
the second.

For a linear system such as (2), we are interested in the following three
questions:

(1) Does a solution exist?
(2) How many solutions are there?
(3) Is there an efficient algorithm that computes actual solutions?

There are essentially three ways of solving such systems:

(1) substitution,
(2) elimination of variables, and
(3) matrix methods.

Substitution

Substitution is the method usually taught in beginning algebra classes. To use this
method, solve one equation of system (2) for one variable, say x,, in terms of the
other variables in that equation. Substitute this expression for x, into the other
m — 1 equations. The result is a new system of m — 1 equations in the n — 1
unknowns xj, ..., x,..;. Continue this process by solving one equation in the new
system for x,,—; and substituting this expression into the other m — 2 equations to
obtain a system of m — 2 equations in the n — 2 variables x, ..., x,_2. Proceed
until you reach a system with just a single equation, a situation which is easily
solved. Finally, use the earlier expressions of one variable in terms of the others
to find all the x;’s.

This sounds complicated but it really is straightforward. We used substitution
to solve the input-output system in Section 6.2. Let us see how it works on a
three-good input-output model.

Example 7.1 The production process for a three-good economy is summarized
by the input-output table:

0 0.4 0.3
0.2 0.12 0.14
0.5 0.2 0.05

Recall from the last chapter that the entries in the second column of Table 7.1
declare that it takes 0.4 unit of good 1, 0.12 unit of good 2, and (1.2 unit of good
3 to produce 1 unit of good 2. We ignore the labor component in this example.
Suppose that there is an exogenous demand for 130 units of good 1, 74 units of

Table
7.1
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good 2, and 95 units of good 3. How much will the economy have to produce
to meet this demand?

Let x; denote the amount of good i produced. As we described last chap-
ter, “supply equals demand” leads to the following system of equations:

X1 =0 X1 + 0.4 X2+0.3 JC3+130
x2 =0.2x; +0.12x; + 0.14x3 + 74
x3 = 0.5x; +0.2 x +0.05x3 + 95,

which can be rewritten as the system

X1 — 0.4 X2 — 0.3 X3 = 130
—0.2x; + 0.88x, — 0.14x3= 74 3)
—0.5x; — 0.2 x; + 0.95x3 = 95.

We write (3a), (3b) and (3c¢) for the three equations in system (3) in the order
given, and similarly for following systems. Solving equation (3a) for x, in terms
of x; and x5 yields

Xy = 0.4X2 + O.3X3 + 130. (4)
Substitute (4) into equations (3b) and (3c):

—0.2(0.4x; + 0.3x3 + 130) + 0.88x; — 0.14x3 = 74
~0.5(0.4x; + 0.3x3 + 130) — 0.2 x + 0.95x3 = 95,

which simplifies to

0.8x2 — 0.2x3 = 100

)
—0.4x, + 0.8x3 = 160.

Now, use substitution to solve subsystem (5) by solving the first equation (5a)
for x, in terms of x;:
x; = 125 + 0.25x;, ' (6)

and plugging this expression into the second equation (5b):

—0.4(125 + 0.25x3) + 0.8x3 = 160,
or x3 = 300.
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Substitute x3 = 300 into (6) to compute that x; = 200. (Check.) Finally,
substitute x> = 200 and x3 = 300 into (4) to compute that

x| = 0.4 - 200 + 0.3 - 300 + 130 = 300.

Therefore, this economy needs to produce 300 units of good one, 200 units of
good two, and 300 units of good three to meet the exogenous demands.

As this example shows. the substitution method is straightforward, but it can
be cumbersome. Furthermore, it does not provide much insight into the nature of
the general solution to systems like (3). It is not a method around which one can
build a general theory of linear systems. However, it is the most direct method for
solving certain systems with a special, very simple form. As such, it will play a
role in the general solution technique we now develop.

Elimination of Variable$

The method which is most conducive to theoretical analysis is elimination of
variables, another technique that should be familiar from high school algebra.
First, consider the simple system

x,—2xz=8

7
3x; + x; = 3.
We can “eliminate” the variable x; from this system by multiplying equation (7a)
by —3 to obtain —3x; + 6x; = —24 and adding this new equation to (7b). The
result is

Tx; = —21, or x; = =3

To find x;, we substitute x, = —3 back into (7b) or (7a) to compute that x; = 2.
We chose to multiply equation (7a) by —3 precisely so that when we added the
new equation to equation (7b), we would “eliminate” x; from the system.

To solve a general system of m equations by elimination of variables, use
the coefficient of x; in the first equation to eliminate the x; term from all the
equations below it. To do this, add proper multiples of the first equation to each
of the succeeding equations. Now disregard the first equation and eliminate the
next variable — usually x, — from the last m — 1 equations just as before, that
is, by adding proper multiples of the second equation to each of the succeeding
equations. If the second equation does not contain an x; but a lower equation does,
you will have to interchange the order of these two equations before proceeding.
Continue eliminating variables until you reach the last equation. The resulting
simplified system can then easily be solved by substitution. ‘
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Let us try this method on the system (3) arising from the three-good input-
output Table 7.1:

x1 — 04 x; —0.3 x3 =130
—0.2x; + 0.88x; — 0.14x; = 74 8)

—0.5%, — 0.2 x, + 0.95x; = 95
We first try to eliminate x; from the last two equations by adding to each of these
equations a proper multiple of the first equation. To eliminate the —0.2x;-term in

(8b), we multiply (8a) by 0.2 and add this new equation to (8b). The result is the
following calculation:

0.2x; — 0.08x; — 0.06x3 = 26
+ —0.2x; + 0.88x; — 0.14x; 74
+ 0.8x; — 0.2x3 = 100.

Similarly, by adding 0.5 times (8a) to (8c), we obtain a new third equation

—0.4)62 + 0.8X3 = 160.
Our system (8) has been transformed to the simpler system

lxl - 0.4x2 - 0.3X3 =130
+0.8x, — 0.2x3 = 100 9)
— 0.4x; + 0.8x3 = 160.

In transforming system (8) to system (9), we used only one operation: we
added a multiple of one equation to another. This operation is reversible. For
example, we can recover (8) from (9) by adding —0.2 times (9a) to (9b) to obtain
(8b) and then by adding —0.5 times (9a) to (9c) to obtain (8c). (We continue to
write (9a) to denote the first equation in system (9).) There are two other reversible
operations one often uses to transform a system of equations: 1) multiplying both
sides of an equation by a nonzero scalar and 2) interchanging two equations.
These three operations are called the elementary equation operations. Since
equals are always added to or subtracted from equals or multiplied by the same
scalar, the set of x;’s which solve the original system will also solve the transformed
system. In fact, since these three operations are reversible, any solution of the
transformed system will also be a solution of the original system. Consequently,
both systems will have the exact same set of solutions. We call two systems of
linear equations equivalent if any solution of one system is also a solution of
the other.
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—-Fact If one system of linear equations is derived from another by elementary
equation operations, then both systems have the same solutions; that is, the systems
are equivalent.

Let us return to our elimination procedure and continue working on system
(9). Having eliminated x; from the last two equations, we now want to eliminate
x> from the last equation. We apply the elimination process to the system of two
equations (9b) and (9c¢) in two unknowns. Multiply (9b) by 1/2 and add this new
equation to (9c) to obtain the new system:

1x; — 0.4x, — 0.3x3 = 130
+ 0.8x — 0.2x3 = 100 (10)
+ 0.7x3 = 210.

Since each equation in (10) has one fewer variable than the previous one, this
system is particularly amenable to solution by substitution. Thus, x3 = 300 from
(10c). Substituting x3 = 300 into (10b) gives x, = 200. Finally, substituting these
two values into (10a) yields x; = 300. The method used in this paragraph is
usually called back substitution.

- This method of reducing a given system of equations by adding a multiple of
one equation to another or by interchanging equations until one reaches a system
of the form (10) and then solving (10) via back substitution is called Gaussian
elimination. The important characteristic of system (10) is that each equation
contains fewer variables than the previous equation.

At each stage of the Gaussian elimination process, we want to change some
coefficient of our linear system to 0 by adding a multiple of an earlier equation
to the given one. For example, if you want to use the coefficient a3, in the third
equation to eliminate the coefficient as; in the fifth equation, we add (—as; /a3;)
times the third equation to the fifth equation, to get a new fifth equation whose
kth coefficient is 0. The coefficient as; is then called a pivot, and we say that
we “pivot on a3, to eliminate as,.” At each stage of the elimination procedure,
we use a pivot to eliminate all coefficients directly below it. For example, in
transforming system (8) to system (9), the coefficient 1 in equation (8a) is the
pivot; in transforming system (9) to system (10), the coefficient 0.8 in equation
(9b) is the pivot.

Note that 0 can never be a pivot in this process. If you want to eliminate x; from
a subsystem of equations and if the coefficient of x; is zero in the first equation of
this subsystem and nonzero in a subsequent equation, you will have to reverse the
order of these two equations before proceeding.

We did not use the operation of transforming an equation by simply multiplying
it by a nonzero scalar. There is a variant of Gaussian elimination, called Gauss-
Jordan elimination, which uses all three elementary equation operations. This
method starts like Gaussian elimination, e.g., by transforming.(8) to (10). After
reaching system (10), multiply each equation in (10) by a scalar so that the first
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nonzero coefficient is 1:

Xy — 0.4.\'2 -03 X3 = 130
Xy —0.25x3 = 125 (11)
x3 = 300.

Now, instead of using back substitution, use Gaussian elimination methods
from the bottom equation to the top to eliminate all but the first term on the left-
hand side in each equation in (11). For example, add 0.25 times equation (11c)
to equation (11b) to eliminate the coefficient of x3 in (11b) and obtain x, = 200.
Then, add 0.3 times (11c) to (11a).and 0.4 trmes (11b) to (11a) to obtain the new
system:

X \ = 300
Y, = 200 (12)
X3 = 300.

which needs no further work to see the solution. Gauss-Jordan elimination is
particularly useful in developing the theory of linear systems; Gaussian elimination
is usually more efficient in solving actual linear systems.

Earlier we mentioned a third method for solving linear systems, namely matrix
methods. We will study these methods in the next two chapters, when we discuss
matrix inversion and Cramer’s rule. For now, it suffices to note that all the intuition
behind these more advanced methods derives from Gaussian elimination. The
understanding of this technique will provide a solid base on which to build your
knowledge of linear algebra.

EXERCISES
7.1 Which of the following equations are linear?

a) 3x; —4x: + 5x; = 6; b) xix2x3 = —2; c) x> +6y =1,
d) x+yx—2) =-7 e x+3"2=4  f)x+3/?=-4

7.2 Solve the following systems by substitution, Gaussian elimination, and Gauss-Jordan
elimination:

a) x—3y+ 6z=-1 b) x1+ xo+ x3= 0
2X—5y+102= 0 12x1+2x2—3x3= 5
3X—8y+172= 1‘; 3X1+4X2+ X3=—4.
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7.3

74

7.5
7.6

7.7

7.8

Solve the following systems by Gauss-Jordan elimination. Note that the third system
requires an equation interchange.

a) 3x+3y= 4 b) 4x+2y—3z=1 ) 2x+2y— z= 2
x— y=10; 6x +3y—5z2=0 x+ y+ z=-2
x+ y+2z2=9; 2x—4y+3z= 0.

Formalize the three elementary equation operations using the abstract notation of
system (2), and for each operation, write out the operation which reverses its effect.
Solve the IS-LM system in Exercise 6.7 by substitution.

Consider th= general IS-LM model with no fiscal policy in Chapter 6. Suppose that
M, = M°; that is, the intercept of the LM-curve is 0.

a) Use substitution to solve this system for Y and r in terms of the other parameters.
b) How does the equilibrium GNP depend on the marginal propensity to save?

¢) How does the equilibrium interest rate depend on the marginal propensity to save?
Use Gaussian elimination to solve

What happens and why?
Solve the general system

anx, + apx; = b
anxy, + axpx; = b,

What assumptions do you have to make about the coefficients a; in order to find a
solution?

7.2 ELEMENTARY ROW OPERATIONS

The focus of our concern in the last section was on the coefficients a;; and b; of
the systems with which we worked. In fact, it was a little inefficient to rewrite
the x;’s, the plus signs, and the equal signs.cach time we transformed a system.
It makes sense to simplify the representation of linear system (2) by writing two
rectangular arrays of its coefficients, called matrices. The first array is
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which is called the coefficient matrix of (2). When we add on a column corre-
sponding to the right-hand side in system (2), we obtain the matrix

ay agp ... a, b
. a; axy ... ay b
A= ,
) Ap2 ... bm

which is called the augmented matrix of (2). The rows of A correspond naturally
to the equations of (2). For example,

1 -2 and 1 -2 8)
3 1 3 1 3

are the coefficient matrix and the augmented matrix of system (7). For accounting
purposes, it is often helpful to draw a vertical line just before the last column of
the augmented matrix, where the = signs would naturally appear, e.g.,

1 -2 | 8

3 1| 3)
Our thrce clementary equation operations now become elementary row opera-
tions:

(1) interchange two rows of a matrix,
(2) change a row by adding to it a multiple of another row, and
(3) muhltiply cach clement in a row by the same nonzero number.

The new augmented matrix will represent a system of linear equations which is
gquivalent to the system represented by the old augmented matrix.

To sce this cquivalence, first observe that cach clementary row operation can
be reversed. Clearly the interchanging of two rows or the multiplication of a row
by:a nonzero scalar can be reversed. Suppose we consider the row operation in
which k times the sccond row of the augmented matrix A is added to the first row
of A. The new augmented matrix is

ay +&ary ... ay, +kas, | by + kb>
as) a, | b,
B = . . | .
Ay cee Ay ' bml

However, if we start with B and add —k times the second row to the first row,
we will recover A. Thus the row operation can be reversed. Since elementary row
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operations correspond to the three operations of adding a multiple of one equation
to another equation, multiplying both sides of an equation by the same scalar,
and changing the order of the equations, any solution to the original system of
equations will be a solution to the transformed system. Since these operations
are reversible, any solution to the transformed system of equations will also be a
solution to the original system. Consequently the systems represented by matrices
A and B have identical solution sets; they are equivalent.

The goal of performing row operations is to end up with a matrix that looks
much like (10). The nice feature about the augmented matrix representing (10)

1 —04 —03 | 130
0 08 -02 | 100) (13)
0 0 07 | 210

is that each row begins with more zeros than does the previous row. Such a matrix
is said to be in row echelon form.

Definition A row of a matrix is said to have k leading zeros if the first k elements
-of the row are all zeros and the (k + 1)th element of the row is not zero. With this
terminology, a matrix is in row echelon form if each row has more leading zeros
than the row preceding it.

The first row of the augmented matrix (13) has no leading zeros. The second
row has one, and the third row has two. Since each row has more leading zeros
than the previous row, matrix (13) is in row echelon form. Let’s look at some more
concrete examples.

Example 7.2 The matrices

1 3 4 2 3
(g 3 g) amd |06
0 0

are in row echelon form. If a matrix in row echelon form has a row containing
only zeros, then all the subsequent rows must contain only zeros.

OO O
o OoOoN
SO~ W

Example 7.3 The matrices

0 7
(;gf)and (90)
0 2

are not in row echelon form.
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Example 7.4 The matrix whose diagonal elements (a;;’s) are 1s and whose off-
diagonal elements (a;;’s with i not equal to j) are all Os is in row echelon form.
This matrix arises frequently throughout linear algebra, and is called the identity
matrix when the number of rows is the same as the number of columns:

10 0
0 1 0
=1 . :
00 1

Example 7.5 The matrix each of whose elements is 0 is called the zero matrix

and is in row echelon form:
0O 0 ... 0
0 0 ... 0
o=1. . . .
0 0 ... 0

The usefulness of row echelon form can be seen by considering the system of
equations (8). The augmented matrix associated with (8) is

1 -04 -03 | 130
-0.2 088 -014 |- 74],

-0.5 -02 095 | 95

and through various row operations we reduced it to

1 =04 —03 | 130
0 08 —-02 | 100]. (14)

0 0 0.7 | 210

This last matrix is in row echelon form and the corresponding system can be easily
solved by substitution. Simply rewrite it in equation form and solve it from bottom
to top as we did for system (10).

Because of this connection with Gaussian elimination, it is natural that the first
nonzero entry in each row of a matrix in row echelon form be called a pivot.

The row echelon form is the goal in the Gaussian elimination process. In
Gauss-Jordan elimination, one wants to use row operations to reduce the matrix
even further. First, multiply each row of the row echelon form by the reciprocal of
the pivot in that row and create a new matrix all of whose pivots are 1s. Then, use
these new pivots (starting.with the 1 in the last row) to turn each nonzero entry
above it (in the same column) into a zero.
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For example, multiply the second row of (14) by 1/0.8 and the third row of
(14) by 1/0.7 to achieve the matrix

1 -04 -03 | 130
0 1 -025 | 125

0 0 1 | 300

Then, use the pivot in row 3 to turn the entries —0.25 and —0.3 above it into
zeros — first by adding 0.25 times row 3 to row 2 and then by adding 0.3 times
row 3 to row 1. The result is

1 -04 0 | 220
0 1 0 | 200
01

0 | 300

Finally, use the pivot in row 2 to eliminate the nonzero entry above it by adding
0.4 times row 2 to row 1 to get the matrix

1 0 0 | 300
01 0 | 200 (15)
00 1 | 300

Notice that this is the augmented matrix for system (12) and that one can read the
solution right off the last column of this matrix:

x; = 300, x; = 200, x3 = 300.
We say that matrix (15) is in reduced row echelon form.

Definition A row echelon matrix in which each pivot is a 1 and in which each
column containing a pivot contains no other nonzero entries is said to be in reduced
row echelon form.

The matrices in Examples 7.4 and 7.5 above are in reduced row echelon form.
Note that in transforming a matrix to row echelon form we work from top left to
bottom right. To achieve the reduced row echelon form, we continue in the same
way but in the other direction, from bottom right to top left.

EXERCISES

7.9 Describe the row operations involved in going from equations (8) to (10).
7.10 Put the matrices in Examples 7.2 and 7.3 in reduced row echelon form.
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7.11 Write the three systems in Exercise 7.3 in matrix form. Then use row operations to
find their corresponding row echelon and reduced row echelon forms and to find the
solution.

7.12 Use Gauss-Jordan elimination in matrix form to solve the system

wt+ x+ 3y—2z=0
2w + 3x + 7y—22=9
3w+ S5x+13y—9z=1

2w+ x - z=0.

7.3 SYSTEMS WITH MANY OR NO SOLUTIONS

As we will study in more detail later, the locus of all points (x;, x;) which satisfy
the linear equation a);x; + ajox; = by is a straight line in the plane. Therefore,
the solution (x), x») of the two linear equations in two unknowns

anx; +apx, = b (16)
azx, +axpx; =b;

" 1s a point which lies on both lines of (16) in the Cartesian plane. Solving system
(16) is equivalent to finding where the two lines ziven by (16) cross. In general,
two lines in the plane will be nonparallel and will cross in exactly one point.
However, the lines given by (16) can be parallel to each other. In this case, they
will either coincide or they will never cross. If they coincide, every point on either
line is a solution to (16); and (16) has infinitely many solutions. An example is the
system

X1+ZX2=3
2x1+4X2=6.

In the case where the two parallel lines do not cross, the corresponding system has
no solution, as the example

x1+2xz=3
X1+2JC2=4

illustrates. Therefore, it follows from geometric considerations that two linear
equations in two unknowns can have one solution, no solution, or infinitely many
solutions. We will see later in this chapter that this principle holds for every system
of m linear equations in n unknowns. .
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So far we have worked with examples of systems in which there are exactly
as many equations as there are unknowns. As we saw in the input-output model
and the Markov model in Chapter 6, systems in which the number of equations
differs from the number of unknowns arise naturally.

For example, let us look for a state price system for the investment model in
Example 6.1. Stbstitution of the state returns R,; from Example 6.1 into equations
(14) in Chapter 6 for the state prices leads to the system

p + 2p2 + 3p3 = 1
‘ (17)
3pp+2p+ p3=1,

whose augmented matrix is

(123|l
321 | 1)

Adding —3 times the first row to the second.yields the row echelon matrix

1 2 3| 1
0 -4 -8 | =2/

To obtain the reduced row echelon form, multiply the last equation by —1/4:

1 23| 1
01 2 | o05)

Then, add —2 times the new last row to the first row to eliminate the 2 in the first
row above the pivot. The result is

10 -1 ] O
0 1 2 | 05)
the reduced row echelon matrix, which corresponds to the system

D1 - p3= 0
P2 + 2p3 = 0.5.

If we write this system as

P = D3

, (18)
p2 = 0.5 — 2ps,
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we notice that there is no single solution to (18); for any value of p3, system (18)
determines corresponding values of p; and p;. Since system (18) has multiple
solutions, so does system (17). For any choice of p3, (18) determines values of p,
and p, which solve system (17). For example,

I i
p3 8’ pl 8' p2 4’
1 _ 1 1
p3 6’ pl 6' p2 6’
1 _1 =1
p3 5' pl 5' p2 10'

(€heck that thesethree are truly solutions of (17).)
As an example of a system whth no solutions, consider an investment model

with state returns

R, =1 R =3 Ri3 =2
R21 =3 R22 =1 R23 =3,

Once again by equation (14) in Chapter 6, the corresponding system of equations
for a state price vector (py, p2) is

1py +3p; =1
3pp+1p2 =1 (19)
2p| + 3p2 = 1.

In system (19), note that the only p,, p, pair that solves the first two equations is
X1 = 0.25, x, = 0.25. Since this pair does not satisfy the third equation, (19) has
no solution. When we reduce the augmented matrix of (19) to row echelon form,
we obtain '

The last row corresponds to the equation
Op, + 0p, = —.25. (20)

The left-hand side of this equation is always 0 and thus can never equal —0.29.
So there is no py, p, pair which solves this equation. Note that if we replace the
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ist equation in (19) by
2p1+2p2 =1,
hen the new system has the unique solution
p1 = 0.25 p2 = 0.25,

nd the row echelon form of the augmented matrix becomes

1 3] 1
0o -8 | -2,
0 0 | 0

hich contains no contradictions. (Exercise: check all these computations.)
These examples raise the following questions about systems of linear equa-
ons.

(1) When does a particular system of linear equations have a solution?

(2) How many solutions does it have? How do we compute them?

(3) What conditions on the coefficient matrix will guarantee the cxistence of
at least one solution for any choice of b;’s on the right-hand side of (2)?

(4) What conditions on the coefficient matrix will guarantee the existence of
at most one solution for any choice of b;’s?

(5) What conditions on the coefficient matrix will guarantee the existence of
a unique solution for any choice of b;’s?

The answers to these questions can be found by studying augmented matrices in
educed row echelon form. Gauss-Jordan elimination, which achieves the reduced
ow echelon form, works the same way whether or not the number of equations
quals the number of unknowns. Let us recall this procedure one more time.
Jeginning with an augmented matrix, use row operations to achicve a row echelon
natrix B in which the first nonzero entry in each row (that is, the pivot) is a 1.
“hen use these pivots (starting with the one in the last row) to turn each nonzero
ntry above it (in the same column) into zero.

For example, if the last pivot is in row /4 and column & and if aj; is a nonzere
:ntry in row j and (the same) column & with j < A, one adds —aj timcs row A 1o
ow j to achieve a new aj, equal to zero. One continues until the pivot (= 1) is
he only nonzero entry in column k. One then moves on to the pivot in row i — |
ind 'uses row operations until it too is the only nonzero entry in its column. These
operations will not change the new column k since all the entries above row A
in column & are zero. The end result of this process is a row echelon matrix in
which each pivot is a 1 and each column which contains a pivot contains no other
nonzero entries, that is, a reduced row echelon matrix.
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For another example, consider an investment model with three assets and four
states. Suppose that shares of the three assets have the following current values:

V) = 38, vV, = 98, V3 = 153.

As in Section 6.2, we write y; for the value of a share of asset i/ one year from
now if state s occurs. Suppose the y,;’s have the following values:

ym =1 y2 = 2 y3= 3
ya = 4 yn =12 y3 = 18
yn =17 yiz = 46 y33 = 69
ya = 4 yar = 10 yaz = 17.

By (13) in Chapter 6, the state prices py, p, p3, ps for this model satisfy the system

1P| + 4p2 -+ 17p1 + 4p4 = 38
2p, + 12py + 46p; + 10py = 98
3p, + 18ps + 69p3 + 17p, = 153

Its augmented matrix is
1 4 17 4 | 38
2 12 46 10 | 98],
3 18 69 17 | 153

with corresponding row echelon form
I 4 17 4 | 38\
0 4 12 2 | 22
0 0 0 2
Divide the second row by 4 and the third row by 2 to obtain
I 4 17 4 | 38
01 3 05 ] 55
0O 0 0 1| 3

Work first with the pivot in the third row to change column 4 from

S
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by adding —0.5 times row 3 to row 2 and then add —4 times row 3 to row 1:

1 .4 17 0 | 26
01 30| 4].
00 01 ] 3

Now working with the pivot in row 2 and column 2, add —4 times row 2 to row 1
to change the 4 inrow 1toa 0:

1 05 0| 10
013 0] 4]
0 00 1] 3

(Note that because the new column 4 contains only Os in the appropriate places,
it was not affected by our work on column 2.) This matrix is now in reduced row
echelon form. One can read off the final solution of the linear system from the
reduced row echelon form matrix. For example, the linear system corresponding
to the previous matrix is

D1 + 5ps =10
P2+ 3ps = 4
ps= 3,
which we can rewrite as
p1 = 10— 5p;
p2= 4-3ps
ps= 3

Observe that p, is unambiguously determined, but not the other variables. The
variable pj; is free to take on any value. Once a value for ps has been selected,
the values of variables p, and p, are determined by the above equations. This
is another system, like system (17), with infinitely many solutions, and all these
solutions can be read right off the reduced row echelon matrix.

For example, if we choose p; = 1, we obtain the price system

=5 p=1 p3=1 p,=3
If we choose p; = 0.5, we obtain the price system
=15 p, =25 "p3=05 p,=3

As a final example, consider the following schematic matrix in which the stars
(*) represent nonzero pivots and the w’s may be either zero or nonzero:
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© % T I

©X X I
* T I I

cC oo *
cocos
coco=s
oo % I
T ITEE

This matrix is in row echelon form. The corresponding reduced row echelon form
is

oo o=
coo=s
oo oI
como
o= oo
oI I I
-0 oo
T I I

The final solution will have the form

X1 = ay — axx; — azxz — AaXe,

x4 = by — baxs,
X5 = O — C2Xg,
X7 = dl.

Here x7 is the only variable which is unambiguously determined. The variables
Xy, X3, and xg are free to take on any values; once values have been selected for
these three variables, then values for x;, x4, and x5 are automatically determined.

Some more vocabulary is helpful here. If the jth column of the row echelon
matrix B contains a pivot, we call x; a basic variable. If the jth column of B does
not contain a pivot, we call x; a free or nonbasic variable. In this terminology,
Gauss-Jordan elimination determines a solution of the system in which each basic
variable is either unambiguously determined or a linear expression of the free
variables. The free variables are free to take on any value. Once one chooses
values for the free variables, values for the basic variables are determined.

As in the example above, the free variables are often placed on the right-
hand side of the equations to emphasize that their values are not determined by the
system,; rather, they act as parameters in determining values for the basic variables.

In a given problem which variables are free and which are basic may depend
on the order of the operations used in the Gaussian elimination process and on the
order in which the variables are indexed.

EXERCISES

7.13 Reduce the following matrices to row echelon and reduced row echelon forms:

1 -1

a(a ) 20G29) o2y
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7.14

7.15

7.16

7.17

7.18

7.19

. —4x + 6y +4z=4
Solve the system of equations
2Xx— y+ z=1

Use Gauss-Jordan elimination to determine for what values of the parameter & the
system

X1+ x=1
x1 — kx

il
Y—

has no solutions, one solution, and more than one solution.
Use Gauss-Jordan elimination to solve the following four systems of linear equations.
Which variables are free and which are basic in each solution?

w+x+ y—- z=1 w— x+3y— z=0

2) w— x— y+2z2=3 by w+dx— y+ z=3

- x+ y— z=1 w+Tx+ y+ z=6

2w+ 3x + 3y — 3z = 3; 3w+2x+5y— z=3;
w+2x+3y— z=1 w+ x— y+2z= 3
o -w+ x+2y+3z=2 d) w+2x—2y+4z= 6
w— x+ y+2z=2 -3w-3x+3y—6z2=-9
2w+3x— y+ z=1; —2w—2x+2y —4z= —6.

a) Use the flexibility of the free variable to find positive integers which satisfy the
system

x+ y+ z=13
x + 5y + 10z = 61.
/

b) Suppose you hand a cashier a dollar bill for a 6-cent piece of candy and receive
16 coins as your change — all pennies, nickels, and dimes. How many coins of
each type do you receive? [Hint: See part a.]

For what values of the parameter a does the following system of equations have a

solution?

6x+ y=7

3x+ y=4
—6x—2y =a.

From Chapter 6, the stationary distribution in the Markov model of unemployment
satisfies the linear system

(@-1«+py=0
Q-gx—py=0
x+ y=1
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a) If p and q lie between 0 and 1, how many solutions does this system have? Why?.
b) Ignoring the condition that p and ¢ must be between and 0 and 1, find values of
p and g so that this system has no solutions.

7.4 RANK—THE FUNDAMENTAL CRITERION

We now answer the five basic questions about existence and uniqueness of solu-
tions that were posed in Section 7.3. The main criterion involved in the answers
to these questions is the rank of a matrix. First, note that we say a row of a matrix
is nonzero if and only if it contains at least one nonzero entry.

Definition The rank of a matrix is the number of nonzero rows in its row
echelon form.

Since we can reduce any matrix to several different row echelon matrices (if
we interchange rows), we need to show that this definition of rank is independent
of which row echelon matrix we compute. We will save this for Chapter 27, where
we will also discuss the rank of a matrix from a different, more geometric point
of view.

Let A and A be the coefficient matrix and augmented matrix respectively of a
system ofdinear equations. Let B and B be their corresponding row echelon forms.
One goes through the same steps in reducing A to B as in reducing A toB no matter
what the last column of A is, because the choices of elementary row operatlons in
going from A to B never involve the last column of the augmented matrix. In other
words, B is itself an augmented matrix for B.

We first relate the rank of a coefficient matrix A to the rank of a corresponding
augmented matrix and to the number of rows and columns of A. Note that the rank
of the augmented matrix must be at least as big as the rank of the coefficient matrix
because if a row in the augmentied matrix contains only zeros, then so does the
corresponding row of the coefficient matrix. Furthermore, the definition of rank
requires that the rank is less than or equal to the number of rows of the coefficient
matrix. Since each nonzero row in the row echelon form contains exactly one
pivot, the rank is equal to the number of pivots. Since each column of A can have
at most one pivot, the rank is also less than or equal to the number of columns of
the coefficient matrix. Fact 7.1 summarizes the observations in this paragraph.

Fact 7.1. Let A be the coefficient matrix and let A be the corresponding aug-
mented matrix. Then,

(a) rankA < rankA,
(b) rankA = number of rows of A, and
(c) rankA = number of columns of A.

The following fact relates the ranks of A and of A to the existence of a solution
of the system in question and gives us our first answer to Question 1 above.
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Fact 7.2. A system of linear equations with coefficient matrix A and augmented
matrix A has a solution if and only if

rankA = rankA.

Proof The proof of this statement follows easily from a careful consideration
of the row echelon form B of A. If rank A > rank A, then there is a zero row
in the row echelon coefficient matrix B which corresponds to a nonzero row
in the corresponding row echelon augmented matrix B. This translates into the
equation

Ox; +0x>+ -+ +0x, = b (21)

with b’ nonzero. Consequently, the row echelon system has no solution and
therefore the original system has no solution.

On the other hand, if the row,echelon form of the augmented matrix contains
no row corresponding to equation (21), that is, if rank A = rank A, then there is
nothing to stop Gauss-Jordan elimination from finding a general solution to the
original system. As the discussion in the last section indicates, one can easily
read off the solution directly from the reduced row echelon form. Some basic
variables will be uniquely determined; others will be linear expressions of the
free variables. W

If a system with a solution has free variables, then these variables can take on
any value in the general solution of the system. Consequently, the original system
has infinitely many solutions. If there are no free variables, then every variable is
a basic variable. In this case, Gaussian or Gauss-Jordan elimination determines a
unique value for every variable; that is, there is only one solution to the system.
We can summarize these observations.

Fact7.3. Alinearsystem of equations must have either no solution, one solution,
or infinitely many solutions. Thus, if a system has more than one solution, it has
infinitely many.

Let us look carefully at the case where there are no free variables in the system
under study. Since every variable must be a basic variable, each column contains
exactly one pivot. Since each nonzero row contains a pivot too, there must be at
least as many rows as columns. (There may be some all-zero rows at the bottom
of the row echelon matrix.) This proves:

Fact 7.4. If a system has exactly one solution, then the coefficient matrix A has
at least as many rows as columns. In other words, a system with a unique solution
must have at least as many equations as unknowns.

Fact 7.4 can be expi'essed another way.

Fact 7.5. If a system of linear equations has more unknowns than equations, it
must have either no solution or infinitely many solutions.
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Consider a system in which all the b;’s on the right-hand side are 0:

apnXx + - AipXy = 0

ari X + .-+ A Xy = 0

a'nl.xl + L + amn.xn = O.

Such a system is called homogeneous. As we shall see later, homogeneous sys-
tems play an especially important role in the study of linear equations. Any
homogeneous system has at least one solution:

Xy =xp="=x,=0.
The following statement is an immediate consequence of Fadt 7.5.

Fact 7.6. A homogeneous system of linear equations which has more unknowns
than equations must have infinitely many distinct solutions.

We now turn to the answers of Questions 3, 4, and S of the previous section.
In many economic rhodels, the b;’s on the right-hand side of a system of linear
equations can be considered as exogenous variables which vary from problem
to problem. For each choice of b;’s on the right-hand side, one solves the linear
system to find the corresponding values of the endogenous variables x;, ... ., x,,. For
example, in the input-output example in Chapter 6, for each choice of consumption
amounts ¢y, ..., Cy, Co, ONe Wants to compute the required outputs xy, ..., x,. In
the linear IS-LM model of Chapter 6, for each choice of policy variables G and M;
and parameters I* and M*, one wants to compute the corresponding equilibrium
GNP Y and interest rate r. Thus, it becomes especially important to understand
what properties of a system will guarantee that it has at least one solution or, better
yet, exactly one solution for any right-hand side (RHS) by, b, ..., b,. Again the
answers flow directly from a careful look at reduced row echelon matrices. First
we answer Question 3.

Fact 7.7. A system of linear equations with coefficient matrix.A will have a
solution for every choice of RHS b, . .., b,, if and only if

rank A = number of rows of A.

Proof (If): If rank A equals the number of rows of A, then the row echelon matrix
B of A has no all-zero rows. Let by, . .., b, be a choice of RHS in system (2).
Let B be the row echelon form of the corresponding augmented matrix. By
the remarks at the beginning of this section, B is an augmented matrix for B,
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and hence B will have no all-zero rows either. Thus,

rankA = # rowsof A = #rows of A = rankA.

By Fact 7.2, our system has a solution.

(Only If): If rank A is less than the number of rows of A, then the last row,
row m, in the row echelon matrix B of A will contain only zeros. Since B is in
row echelon form,

*k Kk %

0 =* *
B=1. .

0 0 0

Augment B by a column of 1s to make B:

X X | 1
. 0 = * | 1
B =

R I |

00 --- 0 | 1

The system corresponding to B can have no solution because nothmg satisfies
the equation described by the last row of B: 0 = 1. Starting now with B, reverse
in turn each row operation that was applied in transforming A to B. The result
is an augmented matrix A whose coefficient matrix is our original matrix A.
The systems of equations A and B are equivalent since one was obtained from
the other by a sequence of row operations. Since the system corresponding to
B has no solution, neither does the system corresponding to A. Since A is an
augmented matrix for A, we have found a right-hand side for which the system
with coefficient matrix A has no solution under the assumption that the rank of
A is less than the number of rows of A. This finishes the proof of Fact 7.7. B

If a system of equations has fewer unknowns than equations, then the correspond-
ing coefficient matrix has fewer columns than rows. Since the rank is less than or
equal to the number of columns, which is less than the number of rows, Fact 7.7
ensures that there are RHSs for which the corresponding system has no solutions.
We summarize this observation as Fact 7.8.

Fact 7.8. If a system of linear equations has more equations than unknowns,
then there is a right-hand side such that the resulting system has no solutions.

Next we turn to Question 4 and state a condition that guarantees that our system
will have at most one solution, that is, will never have infinitely many solutions.
for any choice of RHS by, ..., b,.
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Fact 7.9. Any system of linear equations having A as its coefficient matrix will
have at most one solution for every choice of RHS by, ..., b, if and only if

rankA = number of columns of A.

Proof (If): If rank A equals the number of columns of A, then there are as many
pivots in the reduced row echelon matrix A” as there are columns in A”. Since
each column can contain at most one pivot, there is a pivot in each column. So,
every variable is a basic variable; there are no free variables. The reduced row
echelon matrix A” has the form

( 1 00 0\
010 0
A’=10 0 0 1
0 0 O
\0 0 0 --- 0/
If there is a solution for some given RHS b,,..., b, it will be unambiguously

determined by A”; that is, the solution will be unique.

(Only If): On the other hand, if the rank is less than the number of columns,
then there must be some free variables. Choose a RHS so that the system has a
solution, for example, by = - - = b, = 0. Because the free variables can take
on any value in solutions (as shown in the previous section), there are infinitely
many solutions to the system. This proves the second half of Fact 7.9.

Finally, we combine Facts 7.7 and 7.9 to characterize those coefficient matrices
which have the property that for any RHS b,,..., b,,, the corresponding system
ot linear equations has exactly one solution. Such coefficient matrices are called
nonsingular. They are the ones which will arise most frequently in our study of
linear systems and other linear phenomena.

Fact 7.10. A coefficient matrix A is nonsingular, that is, the corresponding
linear system has one and only one solution for every choice of right-hand side
by, ..., by, if and only if '

number of rows of A = number of columns of A = rank A.

Fact 7.10 is a straightforward consequence of Facts 7.7 and 7.9. It tells us that
a necessary condition for a system to have a unique solution for every RHS is that
there be exactly as many equations as unknowns. The corresponding coefficient
matrix must have the same number of rows as columns. Such a matrix is called a
square matrix.
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The problem of determining whether a square matrix has maximal rank (that
is, rank as in Fact 7.10) is a central one in linear algebra. Fortunately, there is
an, easily computed number which one can assign to any square matrix which
determines whether or not this rank condition holds. This number is called the
determinant of the matrix; it will be the subject of our discussion in Chapters 9
and 26.

Finally, Fact 7.11 summarizes our findings in this section for a system of m
equations in n unknowns — a system whose coefficient matrix has m rows and »
columns.

Fact 7.11. Consider the linear system of equations Ax = b.

(a) If the number of equations < the number of unknowns, then:
(i) Ax = 0 has infinitely many solutions,
(it) for any given b, Ax = b has 0 or infinitely many solutions, and
(iii) if rank A = number of equations, Ax = b has infinitely many solu-
tions for every RHS b.
(b) If the number of equations > the number of unknowns, then:
(i) Ax = 0 has one or infinitely many solutions,
(&t) for any given b, Ax = b has 0, 1, or infinitely many solutions, and
(iii) if rank A = number of unknowns, Ax = b has 0 or 1 solution for
every RHS b.
(c) 1f the number of equations = the number of unknowns, then:
(i) Ax = 0 has one or infinitely many solutions,
(i) for any given b, Ax = b has 0, 1, or infinitely many solutions, and
(#ii) if rank A = number of unknowns = number of equations, Ax = b
has exactly 1 solution for every RHS b.

Application to Portfolio Theory

We return to our discussion of investment in Example 5 of Section 6.2. There we
called an A-tuple (x,..., x4) such that x; + - - - + x4 = 1 a portfolio, where x;
denotes the fraction of the investor’s wealth to be spent on asset i.

Suppose that there are S states of nature and that R;; denotes the return at
the end of the investment period to a unit of asset i when the period is characterized
by state s. The return to portfolio x in state s is Ry = Z?zl R;ix;. A portfolio is
called riskless if it provides the same return in every state of nature:

. A A A
le,-x; = ZRz,-x,- == ZRs,'x,'.
i=1 i=1 i=1

A portfolio (xy,...,x4) is called duplicable if there is a different portfolio
(wy, ..., wa) with exactly the same returns’in every state:

A A
ZRS,')C,’ = ZRS,'W,' for each s = 1, N S.
i=1 i=1
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A state s is called insurable if there is a portfolio (xy, . . ., x4) which has a positive
return if state s* occurs and zero return if any other state occurs:

A
ZRS-,'X,' >0
i=1
A
Y Rax;=0  foralls #s".
i=1

For any portfolio x, the return to x in each state is given by the S—tuple (Ry, ... ., Rs),
where

Riux1+ - +Ruxa =R,
(22)
Rg1x1+ -+ + Rsaxo = Ry.
Let R be the S X A coefficient matrix of the Ry;’s:

R]] P RIA
Rsi -+ Rsa

Suppose first that the matrix R has rank S = the number of rows of R. Then, by
Fact 7.7, one can solve system (22) for any given S—tuple (Ry, . .., Rs) of returns.
In particular, if we take Ry = - - --= Rs = b for some b # 0, the solution to (22),
when properly normalized so that x, + - - - + x4 = 1, will be a riskless asset. If we
set R, = 1 and R; = O for i # k, the solution to (22), when properly normalized,
will be an insurance portfolio for state k. So, if the rank of R = S, then there is a
riskless asset and every state is insurable.

We will argue in Section 28.2 that the converse holds too. If every state is
insurable, then R must have rank S. In particular, if A < S, that is, if there are
more states of nature than assets, then R cannot have rank S and there must exist
states that are not insurable.

Finally, there are duplicable portfolios if and only if equation (22) has multiple
portfoelio solutions for some right-hand sides. This situation occurs only if system
(22) has free variables, that is, only if the rank of R is less than A.

Example 7.6 In Example 6.1, we worked with the 3 X 2 state-return matrix

1 3
R = 22),
31
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which has 2 columns and rank 2. We use Gaussian elimination to transform R
to its row echelon form:

1 3| a 1 3 ] a
2 2 | b) B 0 —4 | b—2a .
31| ¢ 0 0 | a+c—2b

Sincea+c—2b =0ifa = b = ¢ = 1, this market has a riskless asset.
Since a + ¢ — 2b # 0 if (a, b, ¢) has exactly one nonzero component, there

are no insurable states. Since R has no free variables, there are no duplicable
portfolios.

EXERCISES

7.20 Compute the rank of each of the following matrices:

a) (_f _‘2‘), b) (_f _‘2‘ f) c) (i g :Z i)

1 3 -8 4
ST e

d) , e |19 -6 4 2].
1 3 -8 4 2 1 3 -8 4 s
2 15 —-13 11 16

7.21 The following five matrices are coefficient matrices of systems of linear equations.
For each matrix, what can you say about the number of solutions of the corresponding

system: a) when the right-hand side is b, = - - - = b,, = 0, and b) for general RHS
by, ..., bn?

p (LY w (PR (f i),

0 3

1 4 3 1 4 3
vy 121 0]}, v) 121 0) .
111 07 6

7.22 Repeat Exercise 7.21 for the five matrices i Exercise 7.20.
7.23 Which coefficient matrix in Exercise 7.16 satisfies the conditions of Fact 7.10, that
is, is nonsingular?

7.24 Show that a square matrix A is nonsingular if and only if its row echelon forms have
no zeros on the diagonal.
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7.5 THE LINEAR IMPLICIT FUNCTION THEOREM

The situation described in Fact 7.10 arises frequently in mathematical models, as
we discussed last section. The b;’s on the RHS of (2) represent some externally
determined parameters, while the linear equations themselves represent some
equilibrium condition which determines the internal variables x,,..., x,. Ideally,
there should be a unique equilibrium for each choice of the parameters b,,.. ., by,.
Fact 7.10 tells us exactly when this ideal situation occurs: the number of equations
must equal the number of unknowns and the coefficient matrix must have maximal
rank. :
In this view, consider once again the IS-LM model described in Chapter 6:

sY +ar=I"+G

(23)
mY —hr = M; — M"

Choose numerical values for the parameters s,a, m, h,I*, G, and M™ in system (23).
However, think of M, the money supply, as a variable policy parameter which a
policymaker can set externally. For each choice of money supply, the economy
reaches an equilibrium in Y and r. Since we have two equations in two unknowns,
Fact 7.10 tells us that system (23) will indeed determine a unique (Y, r) pair for
each choice of M, provided the coefficient matrix

Ry a
m —h
has rank two.

In this IS-LM model the variables Y and r are called endogenous variables
because their values are determined by the system of equations under consider-
ation. On the other hand, M; is called an exogenous variable because its value
is determined outside of system (23). If we were to treat s,a,m, h,I*,G, and M*
as parameters also, then they too would be exogenous variables. Mathematicians
would call exogenous variables independent variabies and endogenous variables
dependent variables.

A general linear model will have m equations in n unknowns:

ajxy + apxy+ 0+ apx, = b
(24)
am1X| + dm2X2 + c e + amnx" = bm.

Usually there will be a natural division of the x;’s into exogenous and endogenous
variables given by the model. This division will be successful only if, after choosing
values for the exogenous variables and plugging them into system (24), one can
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then unambiguously solve the system for the rest of the variables, the endogenous
ones. Fact 7.10 in the last section tells us the two conditions that must hold in
order for this breakdown into exogenous variables and endogenous variables to
be successful. There must be exactly as many endogenous variables as there are
equations in (24), and the square matrix corresponding to the endogenous variables
must have maximal rank m. This statement is a version of the Implicit Function
Theorem for linear equations, and is summarized in the following theorem.

Theorem 7.1 Letx,..., x; and x¢4y, ..., X, be a partition of the n variables
in (24) into endogenous and exogenous variables, respectively. There is, for
each choice of values x,? Apreees xg for the exogenous variables, a unique set of

values x¥, ..., x) which solves (24) if and only if:

(a) k = m (number of endogenous variables = number of equations) and
(b) the rank of the matrix

an apnp ... Ay
a)yy Qzxp ... Qay

- . . )
Ay Qr2 ... Qe

corresponding to the endogenous variables, is k.

Under the conditions of Theorem 7.1, we can think of system (24) as implicitly
presenting each of the endogenous variables as functions of all the exogenous
variables. Later, we will strengthen this result and use it as motivation for the
Implicit Function Theorem for nonlinear systems of equations — a result which
will be the cornerstone of our treatment of nonlinear equations, especially applied
to comparative statics in economic models.

EXERCISES

7.25 For each of the following two systems, we want to separate the variables into
exogenous and endegenous ones so that each choice of values for the exogenous
variables determines unique values for the endogenous variables. For each system,
a) determine how many variables can be endogenous at any one time, b) determine
a successful separation into exogenous and endogenous variables, and c¢) find an
explicit formula for the endogenous variables in terms of thé exogenous ones:

x+2y+ z— w=1
i) 3x— y—-4z+2w=3
y+ z+ w=0.

x+2y+z— w="1
3x+6y—z—-3w=2
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7.26

7.27

7.28

7.29

.7.30

For Example 1 in Chapter 6, write out the linear system which corresponds to

equation (1) in Chapter 6 but with the $100,000 before-tax profit replaced by a

general before-tax profit P. Solve the resulting system for C, S, and F in terms of P.

For the values of the constants in Exercise 6.7, show that each choice of M, uniquely

determines an equilibrium (Y, r).

a) In IS-LM model (23), use Gaussian elimination to find a general formula in-
volving s, a, m, and h which, when satisfied, will guarantee that system (23)
determines a unique value of Y and r for each choice of I*, M*, G, and M,.

b) Inthis case, find an explicit formula for Y and r in terms of all the other variables. _

¢) Note how changes in each of the exogenous variables affect the valuesof Y and r.

Consider the system

w— x+3y— z=0
wt+dx— y+2z=3
3w+T7x+ y+ z=06.

a) Separate the variables into endogenous and exogenous ones so that each choice
of the exogenous variables uniquely determines values for the endogenous ones.

b) For your answer to a. what are the values of the endogenous variables when all
the exogenous variables are set equal to 0?7

¢) Find a separation into endogenous and exogenous variables (same number of
each as in part a) that will not work in the sense of a. Find a value of the new
exogenous variables for which there are infinitely many corresponding values of
the endogenous variables.

Consider the system

w— x+3y—z=0
wtdx— y+z=3
3w+ Tx + y-Fz=6.

Is there any successful decomposition into endogenous and exogenous variables?
Explain.




CHAPTER 8

Matrix Algebra

Matrices were introduced in the previous chapter to organize our calculations for
solving systems of linear equations. Matrices play an important role in many other
areas of economics and applied mathematics. The input-output matrix of Exam-
ple 2 in Chapter 6, and the Markov matrix of Example 3 are but two examples.
Other examples include payoff matrices from the theory of games, coefficient
matrices and correlation matrices from econometrics, Slutsky and Antonelli ma-
trices from consumer theory, and the Hessian and bordered Hessian matrices that
embody the second order conditions in multivariable optimization theory.

A matrix is simply a rectangular array of numbers. So, any table of data is a
matrix. The size of a matrix is indicated by the number of its rows and the number
of its columns. A matrix with k rows and n columns is called a & X n (“k by n”)
matrix- The number in row i and column j is called the (i, j)th entry, and is often
written a;;, as we did in Chapter 7. Two matrices are equal if they both have the
same size and if the corresponding entries in the two matrices are equal.

Matrices are in a sense generalized numbers. When the sizes are right, two
matrices can be added, subtracted, multiplied and even divided. Whenever an
economic model uses matrices, we can learn a lot about the underlying model via
these algebraic operations. In this chapter, we describe the algebra of matrices. This
chapter is a bit more abstract than previous chapters since it focuses on algebraic
operations and their properties. But we will use these operations throughout this
book. We illustrate this use in Section 8.5 where we derive the basic property of
Leontief input-output models.

8.1 MATRIX ALGEBRA
Addition

We begin with addition of matrices. One can add two matrices of the same size,
which is to say, with the same number of rows and columns. Their sum is a new
matrix of the same size as the two matrices being added. The (i, j)th entry of the
sum matrix is simply the sum of the (i, j)th entries of the two matrices being added.

153
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In symbols
a ay, bll bln
a,; + b;j
ap) Ay by by,
ap + by ay, + by
N aij + b
ax1 + bry et a, + bkn
For example,
3 4 1 -1 0 7 2 4 8
6 7 0|+ 6 5 1) = 12 12 1
-1 3 8 -1 70 -2 10 8
1 2 3 3 6
but (0 2 —2)+(1 4)

is not defined.
The matrix 0 whose entries are all zero is an additive identity since

ay ‘- ay Oy o0 O\  [fan - ay
o+ =1 : :
aijj . . O;j . . a;; . ’
Ayt G Ot Ok ke

that is, A + 0 = A for all matrices A.
Subtraction

Since —A is what one adds to A to obtain 0,

an °°° a —an. . —ap
- ajj . - . —aj
1775 U / 77 23 T

Since A — B is just shorthand for A + (—B), we subtract matrices of the same size
simply by subtracting their corresponding entries:

3} BN by -+ b
a;j . - . b,’j .
Ay Gk ba b
ap — by Tt ay — by,
- : aj — b,‘j

ap — bkn e Qg — bkn
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Scalar Multiplication

Matrices can be multiplied by ordinary numbers, which we also call scalars. This
operation is called scalar multiplication. Implicitly we have already used this
operation in defining —A, which is (—1)A. More generally, the product of the
matrix A and the number r, denoted rA, is the matrix created by multiplying each
entry of A by r.

ap -t Gy raypy, - ray,

a;j . . ra;;
agy " O ragy, - rag,

In summary, within the class of k& X n matrices, addition, subtraction, and scalar
multiplication are all defined in the obvious way and act just as one would expect.

Matrix Multiplication

Just as two numbers can be multiplied together, so can two matrices. But at this
point matrix algebra becomes a little bit more complicated than the algebra for real
numbers. There are two differences: Not all pairs of matrices can be multiplied

together, and the order in which matrices are multiplicd can matter.
We can define the matrix product AB if and only if

number of columns of A = number of rows of B.

For the matrix product to exist, A must be £ X m and B must be m X n. To obtain the
(i, ))th entry of AB, multiply the ith row of A and the jth column of B as follows:

b);
b,
(ail apz " 4m ) : . = ailblj + ai2b2j +- + aimbmj-

bm j

In other words, the (i, j)th entry of the product AB is defined to be

m
Z aihbhj~
h=1

For example,

a b A B uA + hC aB + bD
c d (C D)=(cA+dC cB-’rdD)

eA + fC eB + fD
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Note that in this case, the product taken in reverse order,

(A B ) ( ‘: Z)
C D e f
is not defined. See Exercise 8.2.

IfA is k X m and B is m X n, then the product AB will be k X n. The product
matrix AB inherits the number of its rows from A and the number of its columns
from B :

number of rows of AB = number of rows of A;

number of columns of AB = number of columns of B;

(k X m) - (m X n) = (k X n).

The 1 X n matrix

10 0
0 1 0
I=1. . K
0 0 1

with a; = 1 for all i and a;; = 0 for all i # j, has the property that for any i1 X n
matrix A,

and for any n X ! matrix B,

The matrix / is called the n X n identity matrix because it is a multiplicative
identity for matrices just as the number 1 is for real numbers.

Laws of Matrix Algebra

We <can think of matrices as generalized numbers because matrix addition, sub-
traction and multiplication obey most of the same laws that numbers do.

Associative Laws: A+B)+C=A+B+0),
(AB)C = A(BC),

“Commutative Law for Addition: A+ B =B + A,
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Distributive Laws: AB + C) =AB + AC,
(A + B)C = AC + BC.

The one important law which numbers satisfy but matrices do not, is the
commutative law for multiplication. Although ab = ba for all numbers.a and b, it
is not true that AB = BA for matrices, even when both products are defined. We
have already seen examples where only cne product is defined. But notice that
even if both products exist, they need not be the same size. For example, if A is
2X3andBis3 X 2,thenAB is 2 X 2 while BA is 3 X 3. Even if AB and BA have _
the same size, AB need not equal BA. For example,

G D6 )
while (1 _;)(? })z(; (2))

Transpose

—t

o

Finally, there is one other operation on matrices which we shall frequently use.
The transpose of a k X n matrix A is the n X k matrix obtained by interchanging
the rows and columns of A. This matrix is often written as AT. The first row of A
becomes the first column of AT. The second row of A becomes the second column
of AT, and so on. Thus, the (i, j)th entry of A becomes the (j, i)th entry of A”. For

example,
T an ay
a,; a2 a3 _
=\1an2 axn|,
azy Qaz ax

a3 * ax

(a“ )T = (an an).

azi
The following rules are fairly straightforward to verify:
(A+B) =AT +B7,
(A-B) =AT - B,
A"’ =4,
(ra)T = rAT,

where A and B are k X n and r is a scalar. The following rule is not so obvious
and takes a little work to prove:

(AB)T = BTAT.

Note the change in the order of the matrix multiplication.
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Theorem.8.1 Let A be a k X m matrix and B be an m X n matrix. Then,
(AB)T = BT AT,

Proof We will be working with six different matrices: A, B, AT, BT, (AB)?, and
BTAT. For notation’s sake, if C is any of these matrices, we will write C;; for
the (i, j)th element of C. For example, ((AB)T)U will denote the (i, j)th element
of the matrix (AB). Now,

((AB)T)U = (AB);; (definition of transpose)

= ZA jh * Bhi (definition of matrix multiplication)
A

= > (AT (BMa  (definition of transpose, twice)
h

= Z(BT),-;, : (AT)hj (a- b = b aforscalars)
h

= (BTAT); (definition of matrix multiplication.)

Therefore, (AB)” = BTAT m

Systems of Equations in Matrix Form

The algebra that we have developed so far is already very powerful. Consider the
systems of linear equations from the previous chapter. The typical system looked
like

apxXi + --- + QipnXn = b]
aj xy + .- + Ay Xy = bz
anx, + -+ +agx, = by.

This system can be expressed much more compactly using the notation suggested
by matrix algebra. As before, let A denote the coefficient matrix of the system:

{au Tt Ay
A= D@y

\akl “°*  Ggn
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Also, let
X1 bl

Xn bk

Both x and b are matrices, called column matrices. The n X 1 matrix X contains
variables, and the £ X 1 matrix b contains the parameters from the right-hand side
of the system. Then, the system of equations can be written as

ap o an X b,
ajj : ) . = . ’
apy  ° Qgn Xn bk
or simply as Ax = b,

where Ax refers to the matrix product of the £ X n matrix A with the n X 1 matrix
x. This product is a k X 1 matrix, which must be made equal to the k X 1 matrix b.
Check that carrying out the matrix multiplication in Ax = b and applying the
definition of equality of matrices gives back exactly the original system of linear
equations. The matrix notation is much more compact than writing out arrays of
coefficients, and, as we shall see, it suggests how to find the solution to the system
by analogy with the one-variable case.

EXERCISES

8.1 Let
(2 31 (0 1 -1 (1 2
A“(o -1 2)’ B'—(4 -1 2)’ C'(s —1)’

(21 (1
D—(1 1), and E—(_l).

a) Compute each of the following matrices if it is defined:

A+B  A-D, 3B, DC, BT, ATcT,
C+D, B-A AB, CE, -D, (CE)T,
B+C, D-C, CA, EC, (CA)Y, E'C.

b) Verify that (DA)T = ATD”.
c) Verify that CD # DC.
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8.2 Check that

2314_‘?3 5 11
(0—121 o 11=12 3)
5 060 - 10 21

Note that the reverse product is not defined.

8.3 Show that if AB is defined, then BTAT is defined but A”BT need not be defined.

8.4 If you choose four numbers at random for the entries of a 2 X 2 matrix A, and four
others for another 2 X 2 matrix B, AB will probably not equal BA. Carry out this
_procedure a few times.

8.5 It sometimes happens that AB = BA.

a) Check this forA = (f ;) and B = (_i —g .
b) Show that if B is a scalar multiple of the 2 X 2 identity matrix, then AB = BA for
all 2 X 2 matrices A.

8.2 SPECIAL KINDS OF MATRICES

Special problems use special kinds of matrices. In this section we describe some
of the important classes of k¥ X n matrices which arise in economic analysis.

Square Matrix. k = n, that is, equal number of rows and columns.
Column Matrix. n = 1, that is, one column. For example,
a
0
b and ( 1 )
c
Row Matrix. = 1, that is, one row. For example,

(2 1 0) and (2 3).

Diagonal Matrix. k = nand a;;j = 0 for i # j, that is, a square
matrix in which all nondiagonal entries are 0.. For
example,

1 00

(gg)and 0 2 0
0 0 3
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Upper-Triangular Matrix.

Lower-Triangular Matrix.

Symmetric Matrix.

Idempotent Matrix.

Permutation Matrix.

Nonsingular Matrix.

a;; = 01if i > j, that is, a matrix (usually square)
in which all entries below the diagonal are 0. For
example,

1 2 3

(8 Z) and (o 4 5).
0 0 6

a;j = 0if i < j, that is, a matrix (usually square)
in which all entries above the diagonal are 0. For
example,

o 100
(ad)and 2 3 0
¢ 4 5 6

AT = A, thatis, a;; = aj; for all i, j. These matrices
are necessarily square. For example,

b 1 2 3
(z d) and 2 4 5.
3 ‘5 6

A square matrix B for which B - B = B, such as

B =1Ior
S =5
4 -4

A square matrix of Os and 1s in which each row and
each column contains exactly one 1. For example,

010
1 0 03.
0 01

A square matrix whose rank equals the number of
its rows (or columns). When such a matrix arises as
a coefficient matrix in a system of linear equations,
the system has one and only one solution.

EXERCISES

8.6 Give an example with more than two rows or more than two columns of each of the

above types of matrices.
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-1 2 3 6 .
8.7 Show that (_1 2) and ( _1 _2) are idempotent.

8.8 Let D, U, L, and S denote, respectively, the sets of all diagonal, upper-triangular,
lower-triangular, and symmetric matrices.
a) Show that D, U and L are each closed under matrix addition and multiplication,
that is, that the sum or product of two matrices in one of the above sets is also a
matrix in that set.
b) Showthat DNU =D, SNU =D,andD CS.
¢) Show that all matrices in D commute with each other. Is this true for matrices in
UorS, too?
d) Show that S is closed under addition but not under multiplicaticn.
8.9 How many n X n permutation matrices are there?
8.10 Is the set of n X n permutation matrices closed under addition or under matrix
muitiplication?

8.3 ELEMENTARY MATRICES

Another important class of matrices is the class of elementary matrices. Recall
that the three elementary row operations that are used to bring a matrix to row
echelon form are:

(1) interchanging rows,
(2) adding a multiple of one row to another, and
(3) multiplying a row by a nonzero scalar.

These operations can be performed on a matrix A by premultiplying A by certain
special matrices called elementary matrices. For example, the following theorem
illustrates how to interchange rows i and j of a given matrix A.

Theorem 8.2 Form the permutation matrix E;; by interchanging the ith and
jth rows of the identity matrix /. Left-multiplication of a given matrix A by E;;
has the effect of interchanging the ith and jth rows of A.

Proof To see this, let ;¢ denote a generic element of Ej;:

e = e; =1,
e; = e;; =0,

1
em = 1 ifh#ij, W)

e =0 otherwise.
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The element in row & and column n of Ej;A is

a,-,. k= i,
Zekmamn = Ain k= j,
m Akn k # i)j,

using (1). Therefore, E;;A is simply A with rows i and j interchanged. B

To carry out Row Operation 3, the multiplication of row i by the scalar r # 0,
construct the matrix E;(r) by multiplying the ith row of the identity matrix / by
the scalar r. The effect of premultiplication of A by E;(r) is to multiply each entry
of the ith row of A by r. For example, in the case of the general 3 X 3 matrix A,

1 00 a)  ap  apg ay @ ap
E2(5) ‘A= 0 50 az, 4z Q3 = 5021 5a22 5a23 .
0 0 1 as; as; ass a3y asxp a3

Finally, to perform Row Operation 2, the addition of r times the ith row of
A to the jth row of A, form the matrix E;;(r) by adding r times row i to row j in
the identity matrix /. In other words, replace the zero in column i and row j of /
with r. Premultiplication of A by E;;(r) will add r times row i to row j in matrix
A while leaving the entries in all other rows of A unchanged. For example, in the

3 X 3 case
(1 0 0\ fan app ap
Ex(S)-A=10 1 0] an axn ax

\0 5 1 az az ass

[ an aiz a3
/
= az) az a3 .

\Sa;; + a3 Sap +asp, Saxp+ as

Definition The matrices E;;, E;j(r) and E;(r), which are obtained by perform-
ing an elementary row operation on the identity matrix, are called elementary
matrices.

We summarize this discussion in the following theorem, whose proof is left as
an exercise.

Theorem 8.3 Let E be an elementary n X n matrix obtained by performing
a particular row operation on the n X n identity matrix. For any n X m matrix
A, EA is the matrix obtained by performing that same row operation on A.

In Chapter 7, we showed that elementary row operations can be used to reduce
any matrix to row echelon form. The matrix version of that fact is stated in the
next theorem, whose proof is also left as an exercise.
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Theorem 8.4 For any k X n matrix A there exist elementary matrices
E,, E,, ..., E, such that the matrix product E,, - E,,—; -+ Ey - A = U where U
is in (reduced) row echelon form.

One can represent an elementary equation operation on the linear system
Ax = b by multiplying both sides of the equation by the corresponding elementary
matrix E to obtain the new system EAx = EDb. This fact illustrates the convenience
of matrix notation for representing systems of equations.

Example 8.1 Consider the matrix

1 1 1
A=(12 2 —3).
3 4 1

To bring A to row echelon form, we first add —12 times row 1 to row 2. This
operation corresponds to the elementary matrix

100
En(-12)=|-12 1 0}.
00 1

We then add —3 times row 1 to row 3 and finally 1/10 times row 2 to row 3.
These operations correspond to the elementary matrices

100
Ex(-3)=| 0 1 0
-3 0 1

1 00
and CEx@l=[0 1 0],
0.1 1

respectively. Check that the row echelon form of A is

11 1
(0 ~10 —15) = Ep(0.1) - Ey3(=3) - E;p(—12) - A

0 0 -35
1 00 11 1
=1 -12 1 0}|-{12 2 -=-3].
-42 1 1 3 4 1
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EXERCISES

8.11 Carry out the matrix multiplication in Example 8.1.

8.12 Prove Theorem 8.3.

8.13 Prove Theorem 8.4.

8.14 a) Prove the following statement. If P is an m X m permutation matrix and A is
m X n, then PA is the matrix A with its rows permuted according to P. If p;; = 1,
then the ith row of PA will be the jth row of A.

b) State and prove a similar statement about the permutation of columns by the

multiplication AP. ’

8.4 ALGEBRA OF SQUARE MATRICES

Within the class M, of n X\ (square) matrices, all the arithmetic operations
defined so far can be used. The sum, difference and product of two 1 X n matrices
is n X n. Even transposes of matrices in My, are n X n. The n X n identity matrix
I is a true multiplicative identity in My, in that Al = JA = A for all A in M,,. The
matrix / plays the role in M, that the number 1 plays among the real numbers
(M,). Recall, however, that if A and B are in M,,, AB usually will not equal BA.

Since we can add, subtract, and multiply square matrices, it is reasonable to
ask if we can divide square matrices too. For numbers, dividing by a is the same
as multiplying by 1/a = a™!, and a~! makes sense as long as @ # 0. To carry out
this program for matrices (if we can), we need to make sense of A~! for matrices
in M,,. The number a~! is defined to be that number b such that ab = ba =1L
The number b is called the inverse of the number a. We do the same for matrices
in M,,.

Definition Let A be a matrix in M. The matrix B in My, is an inverse for A if
AB = BA = 1.

If the matrix B exists, we say that A is invertible. Our definition has left
open the possibility that a matrix A can have several inverses. This is not true for
numbers, and neither is it true for matrices.

Theorem 8.5 An n X n matrix A can have at most one inverse.

Proof Suppose that B and C are both inverses of A. Then
C=CI=C@AB)=(CAB=IB=B. |

If an n X n matrix A is invertible, we write A~! for its unique inverse matrix.
Note that if A is 1 X 1, then A1 = 1/A. So, multiplying by A~ is the analog of
dividing by the matrix A.
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The only 1 X 1 matrix which is not invertible is 0. A main goal of this section
is to identify exactly which n X n matrices are not invertible. We will see that
a matrix is invertible if and only if it is nonsingular. In fact, the two properties
reinforce each other. Recall that a square matrix A is called nonsingular if and only,
if the system Ax = b has a unique solution x for every right-hand side b. Theorem
8.6 below states that if a square matrix has an inverse, then it is nonsingular. The
proof of this theorem shows how to use the inverse of A to solve a general system
Ax = b. Theorem 8.7 below is the converse statement: if a matrix is nonsingular,
then it is invertible. Its proof shows how to use the fact that A is nonsingular
to compute the inverse of A. Before proving these theorems, we need two more
definitions and a lemma.

Definition LetA be ah k X n matrix. The n X k matrix B is a right inverse for
A if AB = I. The n X k matrix C is a left inverse for A if CA = [.

0 1

Example8.2 The matrix ( 0 -1 ) is aright inverse for the matrix (; ‘;’ (1) ),
1 2

but not a left inverse. On the other hand, the matrix ((1) _(1) 2) is a left inverse

1 2
for (3 1 ), but not a right inverse.
1 0

Lemma 8.1 If A has a right inverse B and a left inverse C, then A is invertible,
"andB=C=A"L

Proof Exactly the same as the proof of Theorem 8.5. B

Theorem 8.6 If an n X n matrix A is invertible, then it is nonsingular, and
the unique solution to the system of linear equations Ax = b is x = A~ 'b.

Proof We want to show that if A is invertible, we can solve any system of

equations Ax = b. Multiply each side of this system by A~! to solve for x, as
follows:
Ax=Db
A7T'(Ax) = A7'b,
(A7'A)x = A7 b,
Ix =A"'b,
x =A"b.
Make sure you can justify all the steps in this calculation. B
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Theorem 8.7 If an n X n matrix A is nonsingular, then it is invertible.

Proof Suppose -that A is nonsingular. We shall prove that it has an inverse by
showing how to compute this inverse. Let e; denote the ith column of /. For
example, when n = 3,

1 0 0
e = 0 , € = 1), and €3 = 0
0 0 1

Write I with a focus on its columns as [e,, e;, e;]. Since A is nonsingular, the
equation Ax = e; has a unique solution x = ¢;. (Of course, ¢; is an n X 1 matrix.)
Let C be the matrix whose n columns are the respective solutions ¢y, €3, ..., C,.
Since one multiplies each row of A by the jth column of C to obtain the jth
column of AC, we can write

AC =Alcy,..., ¢l

= [Acy,...,Ac,]
= [e,,...,e,,] (2)
=1

So C is a right inverse of A.

To see that A has a left inverse too, use Theorem 8.4 to write EA = U where
E is a product of elementary matrices and U is the reduced row echelon form of
A. Since A is nonsingular, U has no zero rows and each column contains exactly
one 1. In other words, U is the identity matrix. Therefore, E is a left inverse of
A. Since A has a right inverse and a ieft inverse, it is invertible. B

Take time to study the calculation labeled (2) in the proof of Theorem 8.7,
since we shall use it often. Once again, it follows from the fact that, to obtain the
jth column of AC, one multiplies the rows of A by the jth column of C. No other
column of C enters this calculation. In other words, if ¢; is the jth column of C,
then Ac; is the jth column of AC.

The proof of Theorem 8.7 actually shows how to compute the inverse of a
nonsingular matrix. To find the ith column ¢; of A™!, we solve the system

Ax = ¢

to find the solution x = ¢;. Gauss-Jordan elimination can be used to solve this
system for each i. In this case the augmented'matrix is [A | e;]. The row operations
which will reduce this depend only on the first n columns of the augmented
matrix, in other words, only on the matrix A. One never uses the last column
of an augmented matrix to determine which row operation to use on a system.
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Therefore, the same row operations that reduce-[A | ;] to [/ | ¢;] will also reduce
[A | ej] to [/ | ¢;]. We can be more efficient and pool all these data into a gigantic
augmented matrix [A | e, - - - e,] = [A | I] and perform Gauss-Jordan elimination
only once rather than n times. In this process, the augmented matrix [A | ] reduces
to[I|A7Y).

Example 8.3 We can apply this method to find the inverse of matrix A in Exam-

ple 8.1:
11 1\
A=112 2 -3}. 3)
3 4 1
First, augment A with the identity matrix:
1 1 1] 100
AlNl=112 2 -3 | 0 1 0.
3 4 1 ] 001
Then, perform the row operations on [A | /] which reduce A to row echelon

form. The first three such operations are described in Example 8.1 and result in
the matrix

1 1 1 | 1 00
0 -10 -15 | -12 1 0]

0 0 -35 | —-42 01 1

Next reduce this matrix to reduced row echelon form using the operations
described in Section 7.2:

’ 3
1 00| 04 2 -1
23
0101 -06 -% 3
001 | 12 —-% -1

As implied by the proof of Theorem 8.7, the right half of this augmented matrix,

3 _1

04 & -!

06 -x 7| “
1 -2

L2 =5 =3

is the inverse of A,
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Example 8.4 We next apply this method to compute the inverse of an arbitrary
2 X 2 matrix

_f(a b
a=(e ). ®
Begin by writing the augmented matrix

[A|1]=(‘: ’ ll : (1’)

If a and c are both 0, A will clearly be singular. Let us assume, then, that @ # 0.
First, add —c/a times row 1 to row 2, to obtain the row echelon form

a b | 1 0
_ ; (6)
0 ad — bc | - c 1 )

a a

This short calculation tells us that when a # 0, A is nonsingular (and therefore
invertible) if and only if ad — bc # 0. Now we continue with Gauss-Jordan
elimination to transform (6) to reduced row echelon form. Multiply the first row
of (6) by 1/a and the second row.of (6) by a/(ad — bc) to obtain the matrix

0

ST

< a
ad — bc ad — bc

— QC

whose leading entries are both 1s. To complete the reduction, add —b/a times
row 2 to row 1. The final product is

d B b
ad — bc ad — bc
c a

—ad—bc ad — bc

1 0 |

01 |
Reading off the last half of the augmented matrix, we see that

_ 1 d —-b
1 —
A ad—bc(--c a)' )

Note that if ad — bc # 0, a and ¢ cannot both be 0. Thus, by Example 8.3 and
Exercise 8.17, we have proven the following theorem on 2 X 2 matrices.
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Theorem 8.8 The general 2 X 2 matrix given by (5) is nonsingular (and
therefore invertible) if and only if ad — bc # 0. Its inverse is matrix (7).

The goal of the next chapter will be to generalize this convenient criterion to
the case of arbitrary n X n matrices.

Putting together the facts about nonsingularity from Chapter 7 with what we
have done here, we arrive at the followirig equivalencies.

Theorem 8.9 For any square matrix A, the following statements are equiva-
lent:

(a) A is invertible.

(b) A has a right inverse.

(¢) A has a left inverse.

(d) Every system Ax = b has at least one solution for every b.
(e) Every system Ax = b has at most one solution for every b.
(f) A is nonsingular.

(8) A has maximal rank ».

Proof We saw the equivalence of statements d) through g) in Section 7.4.
The statements and proofs of Theorems 8.6 and 8.7 indicate that statements
a) through d) are equivalent. W

The following facts about the behavior of the inverse are easy to prove, and are
left as an exercise.

Theorem 8.10 Let A and B be square invertible matrices. Then,

(a) (A™H7! = 4,
(b) AN~ =@,
(c) AB is invertible, and (AB)~! = B~!1A™L,

The inverse for matrices works very much like the inverse for numbers. If A and
B are invertible, A + B need not be invertible, and even when it is, (A + B)~! is
generally not A™! + B~1, Even for 1 X 1 matrices or scalars,

BG+27'=2 but 371+271=

N =
Nl '

If A is a square matrix, we can take integral powers of A. The matrix A™ is
defined as the product A -+ A - - - A (m times). For example, if



[8.4] ALGEBRA OF SQUARE MATRICES 171
(2 1
a=(1 1)
2_ (2 1Y (2 1\_ (S 3
then A "(1 1) (1 1) (3 2)'

If A is invertible, we can define negative powers of A as well:

A™m = (A—l)'" =A"1.a71...471} (m times).

Taking powers of matrices follows most of the same basic rules as taking
powers of scalars. This is summarized in the following theorem.

Theorem 8.11 If A is invertible:

(@) A™ is invertible for any integer m and (A™)! = (A™!)" = A™"™,
(b) for any integers r and s, A”A* = A"**, and
(c) for any scalar » # 0, rA is invertible and (rA)~! = (1/r)A™".

Proof These easy computations are left as an exercise. B

There are some differences between exponentiation of matrices and expo-
nentiation of numbers, all due to the fact that matrix multiplication need not be
commutative — that AB need not equal BA. These differences are explored in
Exercise 8.27.

Example 8.5 Since each of the elementary row operations is reversible, each
of the elementary matrices is invertible and has an elementary matrix for its
inverse. For example, the inverse of the permutation matrix Ej; is Ej; (= Ej),
the inverse of E;(r) is E;(1/r), and the inverse of Ei(r)is Ej(—r).

Since each elementary matrix is invertible, any product of elementary matrices
is also invertible by Theorem 8.10c. By inverting the elementary matrices in the
statement of Theorem 8.4, we can write any matrix A as a product of elementary
matrices time$ a reduced row echélon matrix U:

A:El_l‘Ez_l"'E;,’ - U.
Furthermore, if A is nonsingular, its reduced row echelon form is the identity
matrix, as we saw in the proof of Theorem 8.7.
The foregoing discussion gives us a decomposition theorem for matrices which
we will use in Chapter 26.
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Theorem 8.12 Any matrix A can be written as a product
A=F - Fn-U

where the F;’s are elementary matrices and U is in reduced row echelon form.
When A is nonsingular, U = Iand A = F; * -+ Fp,.

EXERCISES
8.15 Check that

-1 _ 1 1 0\ 50 -5
(21" =( 7)) e (0 1 1) ( s 0 .5).
-110 -5 1 =5

8.16 Verify that matrix (4) is the inverse of matrix (3) by direct matrix multiplication.

8.17 Suppose that a = 0 but ¢ # 0 in (5). Show that one obtains the same inverse (7)
for A.

8.18 Show by simple matrix multiplication that, if ad — bc # 0,

1 ( d —b)
ad — bc \ —¢ a

is both a left and a right inverse of A.
8.19 -Use the technique of Example 8.3 to either invert each of the following matrices or
prove that it is singular:

DG (D e (3 )

2 40 2 10
| 4 63|, ol 6 2 6],
-6 —10 0 -4 -39

2 6 0 5
6 21 8 17
Dlea 12 -4 13
0 -3 -12 2

8.20 Invert the coefficient matrix to solve the following systems of equations:

2x; + = 4
le +x, = 5 ! 2 _
a) + =3 b) 6x1 + hz + 613 =20
HTx ’ —4x, — 3x; + 9x;

Il
»
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8.21
8.22

8.23

8.24

8.25

8.26
8.27

8.28

8.29
8.30

8.31
8.32

8.33

2x) + 4x, = 2
) 4dx;+ 6x; +3x3=
—6x, — 10x, = —6.

Show that if A is n X n and AB = BA, then B is also n X n.
ForA = (f i ), compute A%, A*, and A72.

Verify the statements about the inverses of elementary matrices in the last sentence

of Example 8.5.

a) Use Theorem 8.8 to prove that a 2 X 2 lower- or upper-triangular matrix is
invertible if and only if each diagonal entry is nonzero.

b) Show that the inverse of a 2 X 2 lower triangular matrix is lower triangular.

¢) Show that the inverse of a 2 X 2 upper triangular matrix is upper triangular.

a) Prove Theorem 8.10.

b) Generalize part ¢ to the case of the product of k¥ nonsingular matrices.

¢) Show by example that if A and B are invertible, A + B need not be invertible.

d) Show that, when it exists, (A + B) ™! is generally not A~' + B!,

Prove Theorem 8.11.

a) Prove that (AB)* = A¥B* if AB = BA.

b) Show that (AB)* # A*B* in general.

c) Conclude that (A + B)? does not equal A2 + 2AB + B? unless AB = BA.

What is the inverse of the n X n diagonal matrix

dq 0 0 --- 0

0 4 0 -+ 0
D=1 . .

0o 0 0 - d,

Show that the inverse of a 2 X 2 symmetric matrix S is symmetric.

Show that the inverse of an n X n upper-triangular matrix U is upper-triangular. Can
you find an easy argument to extend this result to lower-triangular matrices?

[Hint: There are a number of ways to do the first part. You can use the inversion
method described in the proof of Theorem 8.7, keeping track of the status of the Os
below the diagonal. Or, you can show by direct calculation that BU = I implies that
B has only Os below the diagonal.]

Show that for any permutation matrix P, P~! = PT,

Use Gauss-Jordan -elimination to derive a criterion for the invertibility of 3 X 3
matrices similar to the ad — bc criterion for the 2 X 2 case. For simplicity, assume
that no row interchanges are needed in the elimination process.

The definitions of left inverse and right inverse apply to nonsquare matrices. Use the
ideas in the proof of Theorem 8.7 to prove the following statements for an m X n
matrix A, where m # n.

a) A nonsquare matrix cannot have both a left and a right inverse.

b) If A has one left (right) inverse, it has infinitely many.

c) If m < n, A has aright inverse if and only if rankA = m.

d) If m > n, A has a left inverse if and only if rank A = n.
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8.5 INPUT-OUTPUT MATRICES

The last section showed that solving a system Ax = b of n equations in 7 unknowns
is closely related to inverting the matrix A since

x =A"b. (8)

For a single fixed b, it is usually quicker to solve Ax = b by Gaussian elimjnation
(and back substitution). However, if one is going to work with many different
right-hand sides b and the same A, it may be easier to invert A and use (8).

For example, consider the input-output example of Chapter 6. This is a model
of an economy with n industries. Each industry produces a single output, using as
inputs the products produced by the other industries. Write x; for the gross output
of product i, and let a;; denote the amount of good i needed to produce one unit
of good j. Let ¢; denote consumer demand for product i. In Chapter 6, we saw
that the market equilibrium condition that supply equal demand is-given by the n
equations

Xi = apxy T apxy t 0+ ainxs + ¢,
fori = 1,..., n. In matrix notation this system of equations becomes
X =Ax + ¢,

which is more conveniently written as
I—-Ax=c €))

(To keep all n-tuples nonnegative, we will ignore the labor sector described in
Chapter 6.)

The matrix A of intermediate factor demands is sometimes called the technol-
ogy matrix. We might expect this to remain relatively constant over long periods
of time. The right-hand side of (9), ¢, can be expected to vary more frequently.
Thus it is convenient to study solutions to (9) by working with the inverse:

x=>U-A)"e

Notice that in addition to requiring that I — A be invertible, we also require that
the solution to (9) be nonnegative whenever c¢ is nonnegative. This corresponds to
the requirement that any solution to our economic system produces nonnegative
amounts of each commodity. For this to happen, all entries of the matrix (I —A) ™!
must be nonnegative. Furthermore, the study of this system is complicated by the
fact that all the economic data in the model are contained in the matrix A. It is
not enough simply to assume that / — A has a nonnegative inverse. We must find
assumptions on A which will imply the desired behavior of I — A.
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Since the factors of production have different natural units, it is convenient
to express them all in monetary terms, say in millions of dollars, in an input-
output analysis. In this case, the (i, j)th entry a;; of technology matrix A indicates
how many millions of dollars of good i are needed to produce 1 million dollars
of good j. The sum of the entries in each column of A gives the total cost of
producing 1 million dollars of the product that column represents. Since we
expect each industry to make a positive accounting profit, the sum of the entries
in each column should be less than 1. This turns out to be one of the conditions on
a technology matrix A which will guarantee that / — A has a nonnegative inverse.

Theorem 8.13 Let A be an n X n matrix with the properties that each entry
is nonnegative and the sum of the entries in eachi column is less than 1. Then,
(I — A)™! exists and contains only nonnegative entries.

\

We will prove Theorem 8.13 at the end of this section. First, to make the
preceding discussion concrete, consider a simple three-industry economy, with

input-output matrix
0.15 0.5 0.25
A=1 03 01 04].
0.15 03 0.2

Suppose that consumer demand fluctuates between

20 10
c=1]20 and ¢'=1|20].
10 20

What will be the corresponding industry outputs?
First, compute I — A:

0.85 —-0.5 -025
I1-A= -0.3 09 -04].
—-0.15 -03 0.8

To invert I — A, write the augmented matrix
08 -05 —-025 | 1 0 O
-0.3 09 -04 [ 01 0
-0.15 -0.3 0.8 | 0 0 1

and use Gauss-Jordan elimination to reduce the first three columns to the identity
matrix. The result, rounded to three decimal places, is

1 0 0 | 1975 1564 1.399
0 1 0 | 098 2115 1.366 |.
0 01

| 0.741 1.086 2.025



Table
8.1

Table
8.2
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/

The last three columns are (/ — A)~!. Note that, as Theorem 8.13 predicts, all
entries are positive.

20
When consumer demand is ¢ = (20 ) , the total output should be

10

1.975 1.564 1.399 20 84.77
x=(—-A)"'¢=]0988 2115 1.366 201 =1|7572].

0.741 1.086 2.025 10 56.79
10
When consumer demand is ¢ = | 20 |, the total output should be
20

1.975 1.564 1.399\ /10 75.01
x=(01-A)""'¢= (0.988 2.115 1.366) (20) = (79.51).
0.741 1.086 2.025/ \20 69.63

Leontiet used input-output analysis to study the 1958 U.S. economy. He
divided the economy into 81 sectors and aggregated these sectors into six groups
of related sectors. We will treat each of the six families as a separate industry in
order to simplify our presentation. These six industries are listed in Table 8.1, and
their intermediate factor demands are listed in Table 8.2. The units are millions
of dollars. So the .173 in row 3 column 2 means that the production of $1 million
worth of final metal products requiresthe expenditure of $173,000 on basic metal

Sector Examples
FN, Final nonmetal Leather goods, furniture, foods
FM, Final metal Construction mach’ry, household appliances
BM, Basic metal Mining, machine shop products
BN, Basic nonmetal Glass, wood, textile, and livestock products
E, Energy Coal, petroleum, electricity, gas
S, Services Govt. services, transportation, real estate

The Six Sectors

FN FM BM BN E S

FN 0.170 0.004 0.000 0.029 0.000 0.008
FM 0.003 0.295 0.018 0.002 0.004 0.016
BM 0.025 0.173 0.460 0.007 0.011 0.007
BN 0.348 0.037 0.021 0.403 0.011 0.048
E 0.007 0.001 0.039 0.025 0.358 0.025
S 0.120 0.074 0.104 0.123 0.173 0.234

Internal demands for 1958 U.S. Economy
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goods. Table 8.3 lists Leontief’s estimates of final demands in the 1958 U.S.
economy. The problem is to determine how many units had to be produced in each

EN
M
BM
BN
E
S

$ 99,640
75,548

14,444

33,501
23,527
263,985

External Demands for 1958 U.S. Economy (in millions of dollars)

of the six sectors in order to run the U.S. economy in 1958.

To solve the problem, we turn Table 8.2 into the technology matrix A and
Table 8.3 into the final demand column matrix c¢. As before, the goal is to solve

(I — A)x = c for the output column matrix x:

x=0I-4)"c

First, we need to compute the net input-output matrix / — A.

I-A

OCOoOOCO-=O
O OO = OO0

( 0.830
-0.003
-0.025
-0.348
-0.007
\ —0.120

The inverse of this net input-output matrix can be computed by the methods of

oo~ O OO
Lol == R == R e R )

0

—0.004

0.705
-0.173
—0.037
—0.001
—-0.074

- 000 0O

0.170 0.004 0 0.029

0.003 0.295 0.018 0.002

_ 10025 0.173 0.460 0.007

0.348 0.037 0.021 0.403

0.007 0.001 0.039 0.025

0.120 0.074 0.104 0.123
0 -0.029 0 -0.008
-0.018 -0.002 -0.004 -0.016
0.540 -0.007 -0.011 -0.007
—0.021 0.597 —-0.011 -0.048
-0.039 -0.025 0.642 —0.025
-0.104 -0.123 -0.173 0.766

0
0.004
0.011
0.011
0.358
0.173

Section 8.4 and then used to compute the gross output column matrix. -

x=(-A)"

1.234
0.017
0.071
0.751
0.060
0.339

0.014
1.436
0.465
0.134
0.045
0.236

0.006
0.057
1.877
0.100
0.130
0.307

0.064
0.012
0.019
1.740
0.082
0.312

0.007
0.020
0.045
0.066
1.578
0.376

0.018
0.032
0.031
0.124
0.059
1.349

99,640
75,548
14,444
33,501
23,527
263,985

0.008
0.016
0.007
0.048
0.025
0.234

Table
83
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131,161
120,324
79,194
178,936
66,703
426,542

We conclude, forexample, that it requires $131,161 million worth of final nonmetal
products to meet both intermediate and final demands in the 1958 U.S. economy.

Proof of Theorem 8.13

We conclude this section by proving Theorem 8.13. Let A be a technology matrix
that satisfies the hypotheses of Theorem 8.13: nonnegative entries and column
sums less than 1. Then, —A has all its entries and its column sums between 0 and
—1and I — A satisfies the following three nroperties:

(a) each off-diagonal entry is = 0,
(b) each diagonal entry is positive, and
(c) the sum of the entries in each column is positive.

Matrices which satisfy these three conditions are a special case of the class of
dominant diagonal matrices. A more general definition of a dominant diagonal
matrix requires that in each column the absolute value of the diagonal entry is at
least as large as the sum of the absolute values of the other entries in that column.
To prove Theorem 8.13, we need only prove the following result.

Theorem 8.14 LetBbea square matrix which satisfies conditions a, b, and
c above. Then, all entries of B~! are nonnegative.

Proof To keep better track of the signs and sizes of the entries of the matrix B,
we write it as

by —bip -+ —bi
—bn  byp - —bp
B = . . . . ,
~bpy —bpp - bnn
where eachb; =0 and 0= by <b (10)
h#j

for all j. Let c be a vector with all positive entries and consider the system Bx =
c. To solve this system, we perform Gaussian elimination on the augmented
matrix [B | c]. Add bj; /by, times row 1to row j forall j > 1. The result is the new
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augmented matrix

( bu —by; e —b1u | c \
bz] b21 b21
0 by — —b —-by, — —b ¢+ —c¢
22 b“ 12 2 b]] in | 2 b“ 1
; |
bnl bnl nl
b - —b b" —b n + -
\ 0 n2 bi; 12 n by 1n I C b”CI)

E(1J11"‘|Cl)
0 B | &)

The(n— 1) X (n— 1) matrix B is still dominant diagonal, since its off-diagonal
entriés are still nonpositive and the sum of the entries in its (j — 1)th column is

bj, by
() 5 (o 20)

h#1,j
by + -+ + by
= b” - (h;-bhj) - bl} b” n
J
>bj— > by~ by
h#1,j
> 0, (by (10) twice).

The new RHS ¢ has all entries positive. Continue applying Gaussian elimination;
at each stage, the resulting submatrix still satisfies a, b, and c. We conclude that
the row echelon form of [B | ¢] has the sign pattern

+ — — — | +
(0 + = 0 = +\
o 0o + --- — | +
I . Z.I :
0 0 0 -+ — "] +
\o 0 0 - + | +/

Back substitution from such a matrix yields a positive solution x to the system
Bx = c. If the nonzero right-hand side ¢ had some zero entries and if A had
some zero off-diagonal terms, the same argument yields a nonnegative solution
of Bx = c. Since the columns of B™' are the solution vectors of Bx = e,
(Theorem 8.7), the entries of B~! are all nonnegative numbers. W
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EXERCISES
"

. ) Find the gross output

7
]
1 .6

8.34 Let the technology matrix be given by A = (

— o9

vectots when final demand is:

(1) o) o)

8.35 Let the general 2 X 2 technology matrix be given by

A= (2 )

Prove Theorem 8.13 directly for such a-matrix using Theorem 8.8.

N —

8.6 PARTITIONED MATRICES (optional)

Let A be an m X n matrix. A submatrix of A is a matrix formed by discarding
some entire rows and/or columns of A. A partitioned matrix is a matrix which
has been partitioned into submatrices by horizontal and/or vertical lines which
extend along entire rows or columns of A. For example,

ay ap | a3 | ais 415 Mg
A= ay ax | a3 | az as ax |’ (11)
ay axp | ass | a4 Qa3s azg

which we can write as
( A | A | An )
A= — — — 1.
An | Axn | Az
Each submatrix A;; is called a block of A. Augmented matrices are an example of

partitioned matrices. They have been partitioned vertically into two blocks.
If A is a square matrix which has been partitioned as

A 0 “ee 0
O A e e 0
LR (12)

0 0 - Ag
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where each A;; is square and A;; = 0 for i # j, then A is called a block diagonal
matrix.

Suppose that A and B are two m X n matrices which are partitioned the same
way; that is,

Ay A Al3) _ (311 B2 313)
A= and B =
(A21 Ay Axp B;; By, By

where A;; and B;; have the same dimensions, A;; and B, have the same
dimensions, and so on. Then A and B can be added as if the blocks are scalar
entries:

A+B = (Au +By Ap+Bp An +313)
Az + By Ay + By A+ By

Similarly, two partitioned matrices A and C can be multiplied, treating the
blocks as scalars, if the blocks are all of a size such that the matrix multiplication
of blocks can be done. For example, if

_ (An Alz) (Cu Cr2 Cl3)
A= nd C= , 13
(Azl Al a Can Cpn Cxp (13)

then

AC = (Aucn +A1Cyn AnCi +ApRCn AnCi +A12C23)

AnCi +A»Cy ACi +A3Cy A Cis +AnCh

so long as the various matrix products A;Cjx can be formed. For example, Ay;
must have as many columns as C;; has rows, and so on.

We used the block multiplication of partitioned matrices in Section 8.4 when
we wrote the matrix product AA™! = I as

A(C] e C,,)=(81 “ e en):

where ¢; is the ith column of A~! and e; is the jth column of the identity matrix.
In this case, the jth block product yielded the equation Ac; = e; in (2).

One reason for partitioning matrices is that frequently inverses can be com-
puted (or found not to exist) much more easily using the blocks than they can
by direct computation. For example, the following result on partitions is use-
ful for deriving propositions about how demand functions depend on the price
level.
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Theorem 8.15 Let A be a square matrix partitioned as
An An )
A = r’
( Ay An
where A and Aj; are square submatrices. If both A;; and the matrix

D = Ay — ApAR' Ay

are nonsingular, then A is nonsingular and

( D! —D7'ApAF) )

_l —
A —ALAD™Y AL + Ay DT1ALALY

(14)

The proof of this theorem is left as an exercise.

EXERCISES

8.36 What must be true about the sizes of the various blocks A, A 2, Cy,, and so on, in
(13) in order for the block multiplications to make sense?
8.37 Suppose that A is given by (11) and the matrix C is given by

(Cn | ¢ a3 | 014\
cu | 2 a3 | ca

c-|or e e | e =(€;: s ‘c’;i).
ca | ca o cas | ocas Gy Cn Gy
csi | 2 ocsy | 054)
K061 | c2 ce3 | coa

a) Check that block multiplication can be carried out for the matrix product AC.
b) Compute the six block products 2A4;,Cj fori = 1,2and k = 1,2,3.
¢) Check that you reach the same answer for the matrix product whether you
compute it with the block products or directly.
8.38 Show that the block diagonal matrix A in (12) is invertible if and only if each A;; is
invertible. Find A~'.
8.3%- Prove Theorem 8.15. First show that the matrix D exists. Then verify by block
multiplication that matrix (14) is the inverse of A.
8.40 Replace the hypotheses on the matrix A of Theorem 8.15 by the hypothesis that both
Ay and Ay; — Ay A ' Ay, are invertible. Prove that A is invertible and find its inverse.
8.41 Rewrite the invertibility conditions of Theorem 8.15 for the following cases.
a) Ay =0;
b) Ay is 1 X 1 (ascalar);
c) Ay, is the scalar 0, and Ay, = AT, = p where p is a column vector.
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8.7 DECOMPOSING MATRICES (optional)

This section demonstrates how most matrices can be written as a product of a lower-
triangular matrix L and an upper-triangular matrix U. This LU decomposition
leads to an efficient approach to solving systems of equations (Exercise 8.51
below). It is also the central technique in proving some important theorems about
matrices (especially in Chapter 26). This decomposition is a direct consequence of
Theorem 8.12 and the following lemma about the product of elementary matrices.

Lemma 8.2 Let L and M be two n X n lower-triangular matrices. Then, the
matrix product LM is lower triangular. If L and M have only 1s on their diagonals,
so does LM.

Proof The (i, j)th entry of the product LM is the product of the ith row of L and
the jth column of M. Using the hypothesis that [, = 0 for k > i and m,; = 0
for h < j, we write this product as:

xR
0

M)y =l -+ Lijj=y i O -+ 0)-| my (15)
mjiy;

)

If i < j, each of the i nonzero entries at the beginning of the ith row of L will
be multiplied by the i zero entries beginning the jth column of M. The result is
a zero entry in LM. Therefore, LM is lower triangular.

It follows from (15) that the (i, i)th diagonal entry of LM is [m;;. If [; =
m;; = 1,then;m; = 1. B

Now we can use our knowledge of elementary matrices to decompose matrices.

Theorem 8.16 Let A be a general £ X n matrix, and suppose that no row
interchanges are needed to reduce A to its row echelon form. Then A can be
written as a product LU where L is an k X k lower-triangular matrix with only
1’s on the diagonal, and U is an upper-triangular & X n matrix.

The U in Theorem 8.16 is the row echelon form of A. Although it is not
necessarily a‘square matrix, we will call it upper triangular because its (i, j)th
entries are all zero whenever i > j.

Proof Theorem 8.16 is a consequence of Theorems 8.4 and 8.12, which sum-
| marize the elementary matrix approach to Gaussian elimination. If no row
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interchanges are needed to reduce A to its row echelon form U, the only row
operation required is the addition of a multiple of one row to a row which is
farther down in the matrix. This operation is described by the elementary matrix
E,j(r)y where i < j. These elementary matrices are lower-triangular with 1s on
the diagonal. Theorems 8.4 and 8.12 tell us that

A=Ey-En-U (16)

where E| is the inverse of the first elementary matrix used in the row reduction
of A, E, is the inverse of the second elementary matrix used in the row reduction
of A, and so on. In Example 8.5, we noted that the inverse of Ej;(r ) is E;;(—r). So
the matrices Ey, . . ., E,, are all lower triangular with only 1’s on their diagonals.
Applying Lemma 8.2, we see that the product E; - E; is lower triangular and-
has only 1’s on the diagonal. Since the matrices E3 and E, - E; satisfy the
hypotheses of the Lemma, E, - E; - E5 is lower triangular and has 1s on the
diagonal. Repeating this argument as many times as is necessary, we can see that
the product L = E, - - - E,, is lower triangular and has only 1s on the diagonal.
Consequently (16) can be rewritten as A = LU where L is lower triangular with
only 1s on the diagonal. B

Example 8.6 To illustrate Theorem 8.16, let us return to Example 8.1, where we
wrote the row echelon form U of

11 1
A=1|12 2 -3
3 4 1
1 1 1
0 -10 —15) = E23(.1) * E13(-3) : Elz(—IZ) ‘A

0 0 —-35
1 00 1 1 1
=l -12 1 0}-{12 2 -=-3].
-42 1 1 3 4 1

Multiply the right-hand side by the inverses of the elementary matrices:

as

A=Ep(—12)"" - E3(=3)"1 - En()7H-U
= E;2(12) - E;3(3) - Ex3(—.1)- U

1 00 1 1 1
=112 1 0 0 -10 -15
3 -1 1 0 0 -35

=LU.
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Notice that the negatives of the below-diagonal entries of L reflect the elementary
row operations used to reduce 4 to U.

Mathematical Induction

The proof of Theorem 8.16 is not completely rigorous, because the statement
“repeating this argument as many times as is necessary” is a bit vague. How do we
know that we can really do this? How many times are necessary? There is a formal
technique for making this argument, which is called the principle of mathematical
induction. The principle of mathematical induction is described fully in the first
Appendix of this book. Here we will only show how we would apply it in the
proof of Theorem 8.16.

In the proof of Theorem 8.16 we want to show that, for all &, the matrix product
of k lower-triangular matrices L; - L, - * - L, is lower triangular. This statement is
clearly true when k¥ = 1. Lemma 8.2 tells us that the statement is true for & = 2.
For k = 3, we write Ly - L, - L3 as (L; - L,) - L. Since the statement is true for
k = 2, (L, - L) is lower triangular. Lemma 8.2 then assures us that the product
Ly - Ly - Ly is lower triangular, and so on.

To formalize this argument, we divide it into two steps:

(1) the product of two lower-triangular matrices is lower triangular, and /
(2) if the product of k lower-triangular matrices is lower triangular, then the
product of £ + 1 lower-triangular matrices is lower triangular.

Statemerits 1 and 2 are true by Lemma 8.2. Taken together, statements 1 and 2
allow us to conclude that the product of an arbitrary number & of lower triangular
matrices is lower triangular. First, let k = 2 in 2, then 1 and 2 imply that the
statement is true for k¥ = 3. Next, let ¥ = 3 in 2 to conclude that the statement is
true for k = 4, and so on. Statement 2 is called the inductive hypothesis. This
proof by induction is a bootstrap method that is often used to prove propositions
of the form: siatement P(k) is true for every positive integer k.

Including Row Interchanges

In the hypothesis of Theorem 8.16 we assumed that no row interchanges were
needed to reduce A to its row echelon form. Of course this is not always the case,
and so we would like to know what happens to the conclusions of Theorem 8.16
when row interchanges are required. First consider the case of nonsingular A.
The answer is very simple (although the proof is sufficiently tricky that we will
only sketch it here). Row interchanges are required only because, at some stage
in the reduction process, there arises a pivot whose value is 0. So, reduce A to
its row echelon form, keeping track of the row interchanges that are required.
Suppose now that these row interchanges were to be made before we began the
reduction. Then all the pivots would be in the right places, and no 0 pivots would
be encountered in the row reduction process. How do we swap the rows of A?
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The row interchanges can be accomplished by premultiplying A by permutation
matrices — £ matrices. The product of permutation matrices is a permutation
matrix (Exercise 8.10), and so, to eliminate the need for row interchanges during
the reduction process, we can just premultiply A by the appropriate permutation
matrix />. Thus there exists a permutation matrix P, an upper-triangular matrix U,
and a lower-triangular matrix L such that PA = LU.

When A is singular, the story is not much different. Here, when a O pivot
is encountered, it may not be possible to replace it with a nonzero pivot using
a row interchange. Everything below the pivot may also be 0. This presents no
problem; just go on to the next column. Of course some 0 pivots may have nonzero
clements below them, so row interchanges may still be required. Nonetheless, our
conclusions are not altered. We summarize them in the following theorem:

Theorem 8.17 Let A be a general k X n matrix. Then one can write PA = LU
where P is a k X k permutation matrix, L is a k X k lower-triangular matrix
with only 1s on the diagonal, and U is a k X n upper-triangular matrix.

EXERCISES

8.42 For cach ofvhe following matrices A, write down the string of elementary matrices
which are needed to transform A to its row echelon form.

2 1 0
a) (_é —li)' b) ( 6 2 6),
-4 -3 9
2 40 s 21 8 17
) 4 6 3 31, d)
4 12 -4 13

8.43 Writc down the LU decomposition of each matrix in Exercise 8.42.

8.44 Show that the LU decomposition of A is unique if A is square, invertible, and satisfies
the hypotheses of Theorem 8.16.
[Hint: Write A = L\U, = L,U,, where the L; are invertible and lower triangular,
with 1s on the diagonal. Show that the U; are invertible and write L; 'L, = U,U;".
Conclude that both sides are diagonal and that the left side is in fact the identity
matrix.] _

8.45 Show that the LU decomposition of the k X n matrix A satisfying the hypothesis of
Theorem 8.16 is unique if A has maximal rank.
[Hint: As in the previous exercise, write Ly'L U, = U,. Check that U, and U, have
no 0 rows and then show that the equation L3'L U, = U, implies that L7 'L, is the
identity matrix.]

8.46 Show by example that if A does not have maximal rank, then the LU decomposition
of A need not be unique.



[8.7] DECOMPOSING MATRICES (optional) 187

8.47

8.48
8.49

8.50

8.51

Prove the following proposition: If A is a square, nonsingular matrix and if row
reduction of A requires no row interchanges, then A can be written uniquely as
A = LDU where L and U are lower- and upper-triangular matrices, respectively,
with only 1s on their diagonals and D is a diagonal matrix. The diagonal entries of
D are precisely the pivots of A.

[Hint: Start with the LU decomposition of A and decompose U into the product of
two matrices, each with the desired properties.]

Find the LDU decomposition for the matrices in Exercise 8.42a, b, d.

The following two matrices require row interchanges to achieve their row echelon
forms. For each matrix A:

a) Compute the row-echelon form.

b) Construct the permutation matrix P which corresponds to these row interchanges.
¢) Compute the row echelon form of PA and compare your answer to that of part a.
d) Find the LU decomposition of PA.

0 1 1 4

. > 20 y 1 1 2 2
) 64l W 6 _s 11 -12

-3 4 2 3 -2 3

a) What must be true about the entries of the general 2 X 2 matrix if row interchanges
are required for reduction to row-echelon form?

b) What about the general 3 X 3 case?

The LU decomposition provides an efficient way to solve a system of linear equations

Ax = b for different values of b. It requires many fewer arithmetic steps than matrix

inversion, and it works when A is not square. Use the LU decomposition to rewrite

the system of equations as LUx = b. Now the system can be solved by first letting

Ux = z, solving the system of equations Lz = b for z, and then solving Ux = z for

x. Since both of these systems are triangular, only back substitution is required to

solve them.

a) Verify that the solutions obtained this way are precisely the solutions to Ax = b.

b) Solve the following systems using this technique:

/2 4 0\ [x 2 2 4 0\ /x 2
\-6 —-10 0/ \x; -6 -6 —10 0/ \x -4
(

i

5 31 X1 7 5 31 Xy 2
\-10 -9 5/ \x -24 -10 -9 5/ \x3; -14

NOTES

For-an excellent summary of Leontief’s study, see W. Leontief, “The structure of the
U.S. economy,” Scientific American 212 (April 1965). Our discussion of Leontie{’s 1958
model is adapted from the presentation in Stanley Grossman, Applied Mathematics for the
Management, Life, and Social Sciences (Belmont, Calif.: Wadsworth, 1983). Our proof ot
Theorem 8.14 is adapted from Carl Simon, “Some Fine-Tuning for Dominant Diagonal
Matrices,” Economic Letters 30 (1989), 21 7-221.



CHAPTER 9

Determinants:
An Overview

The most important matrices in economic models are square matrices, in which
the number of unknowns equals the number of equations. For example, all the
matrices for economic analysis listed in the first paragraph of Chapter 8 are square
matrices. The most important square matrices are the nonsingular ones. These
are precisely the coefficient matrices A such that the system of n equations in n
unknowns

a Xy + apx; + - 4 AinXn = b1
ax; taxpx; + - ‘tayux, = b,

(1)
anixy + apxy + 0+ Quuxy = by

or in matrix notation Ax = b, has one and only one solution for each right-
hand side b. As we saw in the last chapter, these are also the matrices. which
are invertible. Since not all square matrices are nonsingular, we will describe in
this chapter a straightforward test to determine whether or not a given matrix is
nonsingular. In particular, for any square matrix we will define a number called the
determinant, with the property that the square matrix is nonsingular if and only if
its determinant is not zero. Later we will use the determinant for other tasks, for
example, for developing an explicit formula for the solution of (1) in terms of the
ajj’s and b,’s, for deriving a formula for the inverse of a matrix, and for classifying
the behavior of quadratic functions.

Many mathematical models in economics center around constrained maxi-
mization or minimization problems. Determinants play a role here too, because
the second order condition for such problems requires that one check the signs of
determinants of certain matrices of second derivatives.

The determinant canbe a fairly complex expression. For a general n X n matrix
there are n! terms, each the product of n different entries of the matrix. Some of the
proofs of its properties are also fairly complex. Consequently, this chapter presents
a comprehensive overview of the determinant: how to compute it and how to use
it, with relatively little motivation and no complex proofs. Chapter 26 contains a
complete analysis of the determinant, including proofs of its important properties

188
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and major uses. Depending on the amount of detail with which one wants to cover
determinants, one can: 1) read this chapter and skip Chapter 26, at least for.the
time being; 2) read Chapter 26 now and skip this chapter; or 3) read this chapter
as an overview on determinants, follow it with a careful reading of Chapter 26,
and then return to Chapter 10.

9.1 THE DETERMINANT OF A MATRIX
Defining the Determinant

The determinant of a matrix is defined inductively. There is a natural definition
for 1 X 1 matrices. Then, we use this definition to define the determinant of 2 X 2
matrices. Once we have defined the determinant for 2 X 2 matrices, we use this
definition to define the determinant for 3 X 3 matrices, and so on.

A 1 X 1 matrix is just a scalar (a). Since the inverse of a, 1/a, exists if and
only if a is nonzero, it is natural to define the determinant of such a matrix to be
just that scalar a:

det(a) = a.

For a 2 X 2 matrix

a
A= (011 12),
az ax
Theorem 8.8 states that A is nonsingular if and only if ay{ax = aj2a # 0.
Therefore, we define the determinant of a 2 X 2 matrix A:

an apy _
det( ) = ajjaz; — ap2d7. (2)
an an

Notice that (2) is just the product of the two diagonal entries minus the product
of the two off-diagonal entries. In order to motivate the general definition of a
determinant; we write (2) as follows:

df:t(all alZ) = ay) det(ap) — ajx det(az;). 3)
az .

The first term on the right-hand side of (3) is the (1, 1)th entry of A times the
determinant of the submatrix obtained by deleting from A the row and column
which contain that entry; the second term s the (1, 2)th entry times the determinant
of the submatrix obtained by deleting from A the row and column which contain

that entry. The terms alternate in sign; the term containing a,, receives a plus sign
and the term containing a;, receives a minus sign.
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The following definitions will simplify the task of defining the determinant of
an n X n matrix.

Definition LetA be an n X n matrix. Let A;; be the (n — 1) X (n — 1) submatrix
obtained by deleting row i and column j from A. Then, the scalar

M;; = detAj;
is called the (i, j)th minor of A and the scalar
Cij = (1) My
is called the (i, j)th cofactor of A. A cofactor is a signed minor. Note that M;; = C;;

if (i + j) is even and M;; = —Cj; if (i + j) is odd.
Formula (3) can be written as

detA = a; My, — appMy; = a1Cy + a12Cha.

We use this expression as motivation for the definition of the determinant of a
3 X 3 matrix.

Definition The determinant of a 3 X 3 matrix is given by

ajp a2 4ap
det| az;1 axn ay | =a)Cyy +aC 2 +a13Ci3
as asxp ax

=ay My —a oMz +a;3My;

a a a a
“ada(T )y (P 22)
asz ass asz) ass

a a
+a13'det( 21 22).
asy as

The jth term on the right-hand side of the definition is a,; times the determinant
of the submatrix obtained by deleting row 1 and column j from A. The term is
preceeded by a plus sign if 1 + j is even and by a minus sign if 1 + j is odd.

Definition The determinant of an n X n matrix A is given by
detA = auCu + (212C12 + -+ al,,Cl,,
@)

= auMy — apMyp + -+ + (=1)" ayMy,.

Notation In referring to the determinant of a n X n matriz A, one sometimes
writes
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ay a2 "t ann ay apz °°° ap
for det| : : ]

an Qp2 ' Qpp ay, Qp2 "' A

and |A| for detA.

Computing the Determinant

Our definition of the determinant of a matrix involves expanding along its first row.
There is nothing special about the first row. It turns out that one can use any row
or column to compute the determinant of a matrix. For example, if one uses, say,
the second column to compute the determinant of a 3 X 3 matrix, one computes

a a a a a ai
detA = —alz‘det( 2 23)+a22-det( ' 13)—az:'det( ' 1‘).
asy ass asy as; ary an

or equivalently,
detA = a|,Cyz + a2Ca + a3 Can. %)

The jth term on the right-hand side of (5) is a;, times the determinant of the
submatrix obtained by deleting the row and column of A which contains a,>; it is
preceeded by a plus sign if (j + 2) is even and by a minus sign if (j + 2) is odd.

In general, the determinant of an n X n matrix involves n! terms, each a product
of n entries. This can be a time-consuming computation. There are certain classes
of matrices whose determinants are easy to compute, as the following theorem
illustrates.

Theorem 9.1 The determinant of a lower-triangular, upper-triangular, or
diagonal matrix is simply the product of its diagonal entries.

Example 9.1 For a lower- or upper-triangular 2 X 2 matrix A, a;; = Qora>; = 0.
Therefore, by (2)

detA = aparn — 0= apaon.
For a lewer-triangular 3 X 3 matrix, use the definition to compute
ap) 0 0

det| a; ax 0 =a”C”+O'C,3+O-C,3
asy 4az; ass

aszy a4

a 0
= ay det( 2 ) = ay1aas;.
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Theorem 9.1 along with the following theorem often leads to simpler calculations
of detA.

Theorem 9.2 Let A be an n X n matrix and let R be its row echelon form.
Then

detA = * detR.

If no row interchanges are used to compute R from A, then detA = detR.

One can frequently combine the previous two theorems to compute det A more
efficiently. First, convert A to its row echelon form R. Since R is an upper-triangular
matrix, its determinant is simply the product of its diagonal entries.

Remark There is an easy-to-remember mnemonic device for computing the
determinant of a 3 X 3 matrix A, that works only for 3 X 3 matrices. Form the
partitioned matrix A by recopying the first and second rows of A right below A, as
in Figure 9.1. Starting from a,; at the top left corner of A, add together the three
products along the three “diagonals” indicated by the solid lines in Figure 9.1:

ayjaxasz; + azasa;z + aza;az. (6)

Then, starting from a,; at the bottom left corner of A, subtract from (6) the
three products along the three “counterdiagonals” indicated by the dotted lines in
Figure 9.1:

—a31a;2a33 — 4)1a32a23 — A3)4224)3. @)

The result (6) + (7) is the determinant of A.

Example 9.2 Using this method, it is easy to see that

01 2
det{3 4 5|=0-4-8+3-7-2+6-1-5
678 ~3-1-8-0-7-5-6-4-2
= 0+42+30 — 24 — 48
= 0.

Main Property of the Determinant

Finally, we put the above facts about determinants together to derive the main
property of the determinant — th¢ determinant determines whether or not a square
matrix is nonsingular.
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diy  di2 3
an. an .4
N ',‘\_. /<\
A= a5, 2a
an __&Ha. Ay
as’  an  ax

Computing the determinant of a 3 X 3 matrix.

Theorem 9.3 A square matrix is nonsingular if and only if its determinant is
nonzero.

Proof Sketch  Recall that a square matrix A is nonsingular if and only if its row
echelon form R has no all-zero rows. Since each row of the square matrix R has
more leading zeros than the previous row, R has no all-zero rows if and only if
the jth row of R has exactly (j — 1) leading zeros. This occurs if and only if R
has no zeros on its diagonal. Since det R is the product of its diagonal entries,
A is nonsingular if and only if detR is nonzero. Since detR = *detA, A is
nonsingular if and only if detA is nonzero. B

Theorem 9.3 is obvious for 1 X 1 matrices, because the equation ax = b
has a unique solution, x = b/a, for every b if and only if a # 0. Theorem 8.8
demonstrates Theorem 9.3 for 2 X 2 matrices.

EXERCISES

9.1 Write out the complete expression for the determinant of & 3 X 3 matrix — six terms,
each a product of three entries.

9.2 Write out the definition of the determinant of a 4 X 4 matrix in terms of the determi-
nants of certain of its 3 X 3 submatrices. How many terms are there in the complete
expansion of the determinant of a 4 X 4 matrix?

9.3 Compute out the express"‘ion on the right-hand side of (5). Show that it equals the
expression calculated in Exercise 9.1.

9.4 Show that one obtains the same formula for the determinant of a 2 X 2 matrix, no
matter which row or column one uses for the expansion.

9.5 Use a formula for the determinant to verify Theorem 9.1 for upper-triangular 3 X 3
matrices.

9.6 Verify the conclusion of Theorem 9.2 for 2 X 2 matrices by showing that the de-
terminant of a general 2 X 2 matrix is not changed if one adds r times row 1 to
row 2.

9.7 For each of the following matrices, compute the row echelon form and verify the
conclusion of Theorem 9.2:

- 2 40 01 2
a) (2 1), b | 4 6 3), ¢) (3 4 5).
-6 —-10 0 07 8

Figure
9.1
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9.8 Use the observatio. following Theorem 9.2 to carry out a quick calculation of the
determinant of each of the following matrices:

1 1-1 11 1
a) (1 42), b) (045).
1 4 3 19 6

9.9 Use Theorem 9.3 to determine which of the matrices in Exercises 9.7 and 9.8 are
nomsingular.

9.2 USES OF THE DETERMINANT

Since the determinant tells whether or not A~ ! exists and whether or not Ax = b
has a unique solution, it is not surprising that one can use the determinant to derive
a formula for A™! and a formula for the solution x of Ax = b. First, we define the
adjoint matrix of A as the transpose of the matrix of cofactors of A.

Definition For any n X n matrix A, let C;; denote the (i, j)th cofactor of A, that
is, (—1)**/ times the determinant of the submatrix obtained by deleting row i and
column j from A. The n X n matrix whose (i, j)th entry is Cj;, the (j, {)th cofactor
of A (note the switch in indices), is called the adjoint of A and is written adj A.

Theorem 9.4 Let A be a nonsingular matrix. Then,

(b) (Cramer’s rule) the unique solution x = (x;,**-,x,) of the n X n
system Ax = b is

_ det B,

X = ——, fori=1,...,n,
" detA ’

where B; is the matrix A with the right-hand side b replacing the ith
column of A.

For 3 X 3 systems,

anxy + apx; +apx; = by
aznx; + apx; + apx; = by

a1 x; + apx; + assxs = bs.
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Cramer’s rule states that
by a; a; a;; by ap; app ap b
b, ax ax ax by as; a; ap b
X, = by a3y as xy = 1931 by a3 xy = 1931 A% bs
a ap daps a; 4ap alf? a 4a;2 a;
a ax ax; a») ax» A azy az a4z
as 4aszx 4asz azy ax as; as asy ass
Example 9.3 Use Theorem 9.4 to invert the matrix
2 4 5
aA=[0.3 0 (8)
1 0 1
30 0 0 3
Cll - 0 1 ‘;’ Cl: - - 1 1 = 0’ CL‘ = + 1 0 = _3)
4 5 205 _ |2 4)_
C'.’l - 0 1 —4v Cll = + 1 l - 37 C:J - 1 0 4} .
_ 4 5 _ 2 5| _ _ 2 4|
C3| - 3 O 15' C31 - 0 - O) C33 = + 0 3 - 6}
detA = —9,
Ch Cy (5 3 —4 —15)
ade = Cly_ Cp_z C33 = 0 -3 0
Ciz G GCi3 -3 4 6/
1 3 -4 -—15)
So, ATl = —§ 0 -3 0]. )
-3 4 6/

Example 9.4 We can use Cramer’s rule to calculate x3 for the system in Exam-

ple 7.1, which we write in matrix form as

1 1 1 X1
12 2 =3||x]|-=
3 4 1 X3

The determinant of the coefficient matrix A is 35. The determinant of

1 1 0
By=112 2 5
3 4 —4

is also 35. Thus, x3 = |Bs|/|A| = 1.

()

4
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Finally, we note three algebraic properties of the determinant function which
we will find important in our use of determinants.

Theorem 9.5 Let A be a square matrix. Then,

(a) detAT = detA,
(b) det(A - B) = (detA)(detB), and
(c) det(A + B) # detA + detB, in general.

Gaussian elimination is a much more efficient method of solving a system
of n equations in n unknowns than is Cramer’s rule. Cramer’s rule requires the
evaluation of (n + 1) determinants. Each determinant is a sum of n! terms and each
term is a product of » entries. So, Cramer’s rule requires (n + 1)! operations. On the
other hand, the number of arithmetic operations required by Gaussian elimination
for such a system is on the order of n. If n = 6 as in the Leontief model in Section
8.5, then (n + 1)! is 5040, while #° is only 216; the difference grows exponentially
as n increases. :

Nevertheless, Cramer’s rule is particularly useful for small linear systems in
which the coefficients a;; are parameters and for which one wants to obtain a
general formula for the endogenous variables (the x;’s) in terms of the parameters
and the exogenous variables (the b;’s). One can then see more clearly how changes
in the parameters affect the values of the endogenous variables.

EXERCISES

9.10 Verify directly that matrix (9) really is the inverse of matrix (8) in Example 9.3.
9.11 Use Theorem 9.4 to invert the following matrices:

i oY o6

9.12 Use Cramer’s rule to compute x; and x; in Example 9.4.
9.13 Use Cramer’s rule to solve the following systems of equations:

20— 3 =2

SX| + X2 = 3 ! *2 _
a) 2, — = 4 b) 4x1— 6X2 + X3 =17
TR x; + 10x; =1

9.14 Verify the conclusions of Theorem 9.5 for the following pairs of matrices:

(4 5 . (3 4
“)"‘(1 1)’ B‘(l 1)’



[9.3] 1S-LM ANALYSIS VIA CRAMER'S RULE 197

1 2 3 1 00
b)A=(O 4 51, B=(2 3 0);
0 0 6 4 5 6

sas(t ) a( )

9.3 IS-LM ANALYSIS VIA CRAMER’S RULE

As an illustrative example, consider the linear IS-LM national income model
described in Chapler 6:

sY+ar=I°+G

(10)
mY — hr = M, — M°

where Y = net national product
= interest rate
= marginal propensity to save,

= marginal efficiency of capital,

investment (= I° — ar),

money balances needed per dollar of transactions,

QS\QM*:
Il

government spending,

M; = money supply.

All the parameters are positive. Because the coefficients in this system are param-
eters instead of numbers, it is easiest to solve (10) using Cramer’s rule:

°+G a
y = M;—-M° —h| _ (I° + G)h + a(M; — M°)

s a sh + am
m —h

s I°+G

m M;—M° _(I°+Gym — s(M; — M°)
s a sh + am '
m —h

One can now use these expressions to see that, in this model, an increase in
1°, G, or M or a decrease in M° or m will lead to an increase in the equilibrium
net product Y. An increase in /° or M° or a decrease in M;, h, or m will lead to an
increase in equilibrium interest rate r.
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EXERCISES
9.15 Verify the assertions in the last two sentences before these exercises.

9.16

9.17

9.18

9.19
9.20

If you are familiar with partial derivatives. compute

a —rh
da  (sh+am)

So an increase in the marginal efficiency of capital a will bring down the equilibrium
Y and r. How will the equilibrium Y change if /1 increases? How will the equilibrium
r change if m or s increases?

If we introduce tax rate ¢ and .let the consumption function depend on after-tax
income, C = b(Y — rY). then system (10) becomes

(L—1)%Y +ar=1°+G
mY —hr =M, — M°.

Use Cramer’s rule to see how the equilibrium Y and r are affected by the tax rate 1.
Consider the following more elaborate linear IS-LM.

a) Y =C+1+G by C=cy+tc;(Y = T)—cor
AOT =n+1Y d)y1 =1°+a)yY —ar
ey M, =mY + M" — .

Substitute ¢ into b to obtain b’; then substitute b’ and d into a to get the new IS-curve.
Combine this with ¢ and use Cramer’s rule to solve this system for Y and r in terms
of the exogenous variables. Show that an increase in G o~ a reduction of ¢ or #; will
increase Y': in macroeconomic terms, Keynesian fiscal policy “works” in this model.
Show that these changes also increase r. Regarding monetary policy, show that an
increase in M, increases Y and lowers r.

What is the effect of an increase in /¢, ¢q, or m?

For Example 1 in Chapter 6, write out the linear system which corresponds to equa-
tion (1) in Chapter 6, but with a general before-tax profit P, a general contribution
percentage c, and general state and federal tax rates r and f. Use Cramer’s rule to
compute C, S, and F interms of P, ¢, s, and f.




CHAPTER 10

Euclidean Spaces

As we discussed at the end of Chapter 1, one of the main uses of mathematical anal-
ysis in economic theory is to help construct the appropriate geometric and analytic
generalizations of the two-dimensional geometric models that are the mainstay of
undergraduate economics courses. In this chapter, we begin these constructions by
studying how to generalize notions of points, lines, planes, distances, and angles to
n-dimensional Euclidean spaces. Later, our analyses of n-commodity economies
will make heavy use of these concepts.

The first three sections of this chapter present the basic geometry of coor-
dinates, points and displacements in n-space. If this materialis familiar to most
students, it can be left as a background reading assignment.

10.1 POINTS AND VECTORS IN EUCLIDEAN SPACE

The Rea) Line

The simplest geometric object is the number line — the geometric realization of
the set of all real numbers. The number line was defined carefully at the beginning
of Chapter 2. Every real number is represented by exactly one point on the line,
and each point on the line represents one and only one number. Figure 10.1 shows
part of a number line.

4 i i Il L ] ] 1
] 1 T T

-6 -5 4 -3 -2 - 0 1 2

— —_— 'l

4 5 6

The Real Line.

The Plane

In some of our economic examples, we have used pairs of numbers to repre-
sent economic objects, for example, consumption bundles in Chapter 1. Pairs
of numbers also have a geometric representation, called the Cartesian plane or
Euclidean 2-space, and written as R2. To depict R?, first draw two perpendicular
number lines: one horizontal to represent the first component x; of the pair
(x1, x2) and the other vertical to represent the second component x; of (x;, x;). The
unit length is usually the same along each line (although it need not be). These two

199
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ldentifying a point in the plane with an ordered pair.

number lines are called coordinate axes. They intersect at their origins. Figure
10.2 shows how each point in the plane is identified with a unique pair of numbers.
We have used the Cartesian plane in Chapter 2 to draw graphs of functions of one
variable.

A point p in the Cartesian plane represents a pair of numbers (a, b) as follows:
draw a vertical line £, and a horizontal line €, through the point p. The vertical
line crosses the xj-axis at a, and the horizontal line crosses the x,-axis at b. We
assqciate the pair (a, b) with the point p. To go the other way — to find the point
p which represents the pair (g, b)—find a on the x,-axis, and through it draw
the vertical line £,. Find b on the x,-axis, and through it draw the horizontal line
£,. The intersection of the two lines £, and £, is the point p, which we will
sometimes write as p(a, b). The number a is called the x;-coordinate of p, and b
is called the x,-coordinate of p. In Figure 10.3 we show a number of points and
their coordinates.

| l
L :
______ 22 (2 B2
: :
| h |
| |
i i { L -4 L : -t
4 3 ‘2 Jo1 2 I3 4
“““ (75T e T
T :
| |
| |
I +-3 I
| |

Coordinates of points in R2.
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The point of intersection of the horizontal and vertical number lines is our
reference point for measuring the location of p. It is called the origin, and we
denote it by the symbol 0, since it is represented by the pair (0, 0).

Three Dimensions and More

Similarly, one can visualize 3-dimensional Euclidean space R? by drawing three
mutually perpendicular number lines. As before, each one of these number lines
is called a coordinate axis: the x;-axis, the x,-axis, and the x3-axis, respectively.
One usually draws the x;-axis as the horizontal axis and the x3-axis as the vertical
axis on the plane of the page and then pictures the x;-axis as coming out of the
page toward one, as in Figure 10.4.

The process of identifying a point with a particular triple of numbers uses
the techniques that we used in R2. The process is illustrated in Figure 10.5. To

X3
-
7/
I 7
/
//
L
7/
//
—t—t—t — X2
X~| 1
Figure
The coordinate axes in R3. 104
X3
t X2
e
(a,0,0) j
|
|
i
|
X1 ‘ {
Figure

The point p with coordinates (a, b, c). 10.5
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find the point represented by the triple (g, b, ), forget about a for a moment, and
locate the point representing (b, c) in the x,x3-plane — the plane of the page. This
is a 2-space exercise that we already know how to do. From the point (b, ¢) in
the plane of the page, move a units in the direction parallel to the x;-axis. March
out of the page if a is positive, and march behind the page if a is negative. If a
is 0, remain where you are. The point p at which you finish represents (a, b, c)
and is sometimes denoted by p(a, b, c). We could have just as easily started in the
x1x3-plane and then moved b units to the right (for positive b), cr in the x; x,-plane
and then moved c units up (for positive c). Check to see that you end up at the
same point no matter which method you use.

Finding the coordinates that describe a particular point p is just as easy.
Starting from p, move parallel to the x;-axis until you reach x,x3-plane. The
distance moved is a; it is positive if the move was into the page and negative if
the move was out toward you. The coordinates b and ¢ are now found using the
2-space technique. Again, the answer is independent of which plane you head for
first. This description and the accompanying diagram (Figure 10.5) is an example
of a situation where a picture is worth a thousand words.

Of course, we cannot draw geometric pictures of higher-dimensional Euclidean
spaces. but we can use our pictures of R?, R?, and R® to guide our intuition. We
will see that the formulas describing geometric objects and their properties in
R? and R? generalize readily to higher dimensions. The real line R! consists of
single numbers. The plane R? consists of ordered pairs of numbers. We say
ordered pairs because the order of the numbers matters; (1, 0) is not the same as
(0, 1). Euclidean n-space consists of ordered n-tuples of numbers — ordered lists
of n numbers. For example, Euclidean 3-space contains ordered triples (g, b, ¢) of
numbers. Euclidean 5-space contains ordered S-tuples (a, b, c, d, €). Euclidean n-
space is usually referred to as R™. The number # in R" refers to how manry numbers
are needed to describe each location. It is called the dimension of R". Thus RS
has 5 dimensions, while R? has only two dimensions. Each space will have its
origin, the point with respect to which we make our codrdinate measurements. As
we did in R?, we will always refer to the origin by the symbol 0.

10.2 VECTORS

Euclidean spaces are useful for modeling a wide variety of economic phenomena
because n-tuples of numbers have many useful interpretations. Thus far we have
emphasized their interpretation as locations, or points in n-space. For example, the
point (3, 2) represents a particular location in the plane, found by going 3 units to
the right and 2 units up from the origin. This is just the way we use coordinates on
a map of a country to find the location of a particular city. We use coordinates to
describe locations in exactly the same way in higher dimensions. Many economic
applications require us to think of n-tuples of numbers as locations. For example,
we think of consumption bundles as locations in commodity space.

We can also interpret n-tuples as displacements. This is a useful way of
thinking about vectors for doing calculus.”We picture these displacements as
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arrows in R™. The displacement (3, 2) means: move 3 units to the right and 2 units
up from your current location. The tail of the arrow marks the initial location; the
head marks the location after the displacement is made. In Figure 10.6, each arrow
represents the displacement (3, 2), but in each case the displacement is applied to
5 -lifferent initial location.

The displacement (3, 2).

For example, the tail of the displacement labeled v in Figure 10.6 is at the

location (3, 1), and the head is at (6, 3). We will sometimes write iz’é for the
displacement whose tail is at the point P and head at the point Q. Two arrows
represent the same displacement if they are parallel and have the same length and
direction. For our purposes, two such arrows are equivalent; regardless of their
different initial and terminal locations, they both represent the same displacement.
The essential ingredients of a displacement are its magnitude and direction.

How do we assign an n-tuple to a particular arrow? We measure how far we
have to move in each direction to get from the tail to the head of the arrow. For
example, consider the arrow v in Figure 10.6. To get from the tail to the head
we have to move 3 units in the x;-direction and 2 units in the x,-direction. Thus
v must represent the displacement (3, 2). More formally, if a displacement goes
from the initial location (g, b) to the terminal location (¢, d), then the move in the
x)-direction is ¢ — a, since a + (¢ — a) = c; and the move in the x,-direction is
-d — b, since b + (d — b) = d. Thus the displacement is (c — @, d — b). This method
of subtracting corresponding coordinates applies to higher dimensions as well.
The displacement from the point p(ay, ay, .. ., a,) to the point q(by, b, ..., b,) in
R" is written

ﬁzi = (bl _al;bZ —ay,..., by — ay,).
Figure 10.6 illustrates that there are many (3, 2) displacements. In any given

discussion, all the displacements will usually have the same initial location (tail).
Often, this initial location will naturally be 0, the origin. From this initial location,

Figure
10.6
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(1,3)

(4,0)
>

(—4/-2)

Some displacements in the plane.

the displacement (3,2) takes us to the location (3,2). With this “canonical repre-
sentation” of displacements, we can think of locations as displacements from the
origin. Several different displacements are shown in Figure 10.7. ’

We have just seen that the very different concepts of location and displace-
ment have a common mathematical representation as n-tuples of numbers. These
concepts act alike mathematically, and so we give them a common name: vectors.

Some books distinguish between locations and displacements by writing a
g). This
approach is unwieldy and unnecessary. From now on we will use the word “vector”
to refer to both locations and displacements. It will either be explicitly mentioned,
or clear from the context, whether locations or displacements are meant in any
particular discussion.

location as a row vector (a, b) and a displacement as a column vector (

EXERCISES

10.1 Draw a number line and locate (approximately) the points 1, 3/2, —2, ﬁ, 7, and
—m/2.

10.2 Draw a Cartesian plane and locate on it the following points: (1, 1), (—1/2,3/2),
(0,0), (0, =4), (m, =2

10.3 Draw a plane, and show the path you would traverse were you to start at (—1, 3),
displace yourself first by the vector (1, —3), and then by the vector (—1, —3).

10.4 For the points P and Q listed below, draw the corresponding displacement vector

Fé and compute the corresponding n-tuple for P_Q’:

a) P(0,0) and Q(2,-1), b) P(3,2) and Q(1,1),
c) P(3,2) and Q(5,3), d) P(0,1) and Q@3,1),
e) P(0,0,0) and Q(1,2,4), f) P(0,1,0) and Q(2,-1,3).
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10.3 THE ALGEBRA OF VECTORS

There are four basic algebraic operations for the real numbers, R!: addition,
subtraction, multiplication and division. This section introduces the three basic
algebraic operations on higher-dimensional Euclidean spaces: vector addition and
subtraction and scalar multiplication.

Addition and Subtraction

We add two vectors just as we add two numbers. We simply add separately the
corresponding coordinates of the two vectors. Thus

3,2)+ 4 1)=(73),
and

(x1, X2, X3) + (Y1, ¥2, y3) = (x1 + 31, X2+ y2, X3 + 33).

Notice that we can only add together two vectors from the same vector space.
The sum (2, 1) + (3, 4, 1) is not defined, since the first vector lives in R* while
the second vector lives in R3. Furthermore, the sum of two vectors from R" is a
vector, and it lives in R". When we add (3, 5, 1, 0) + (0, 0, 0, 1) from R4, we get
the vector (3, 5, 1, 1) which is also in R?.

To develop a geometric intuition for vector addition, it is most natural to think
of vectors as displacement arrows. If u = (a,b) and v = (¢, d) in R2, then we
want u + v to represent a displacement of a + ¢ units to the right and b + d
units up. Intuitively, we can think of this displacement as follows: Start at some
initial location. Apply displacement u. Now apply displacement v to the terminal
location of the displacement u. In other words, move v until its tail is at the head
of u. Then, u + v is the displacement from the tail of u to the head of v, as in
Figure 10.8. Verify that u + v, as drawn, has coordinates (a +.¢, b + d).

|
®

[T
+
9]

The sum of two vectors in the plane.

o :
10.8
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utv=v+u

Figure 10.9 shows that it makes no difference whether we think of u + v as
displacing first by u and then by v or first by v and then by u. Since the two arrows
representing u in Figure 10.9 are parallel and have the same length and similarly
for the two representations of v, the quadrilateral in Figure 10.9 is a parallelogram.
Its diagonal represents both u + v and v + u. Formally, Figure 10.9 shows that
u + v = v + u; vector addition, like addition of real numbers, is commutative.

One can use the parallelogram in Figure 10.9 to draw u + v while keeping the
tails of u and v at the same point. First, draw the complete parallelogram which
has u and v as adjacent sides, as in Figure 10.9. Then, take u + v as the diagonal
of this parallelogram with its tail at the common tail of u and v. Physicists use
displacements vectors to represent forces acting at a given point. If vectors u and
v represent two forces at point P, then the vector u + v represents the force which
results when both forces are applied at P at the same time.

Vector addition obeys the other rules which the addition of real numbers obeys.
These are: the associative rule, the existence of a zero (an additive identity), and
the existence of an additive inverse. The zero vector is the vector which represents
no displacement at all. Analytically we write

0=(0,0,...,0).

Geometrically, it is a displacement PP having the same terminal point as initial
point. Check both algebraically and geometrically thatu + 0 = u.

Ifu = (ay, ay, ..., a,), then the negative of u, written —u and called “minus u”,
is the vector (—a,, —ay, ..., —a,). Geometrically, one interchanges the head and
tail of u to obtain the head and tail of —u. Symbolically, —I?é = =Q!I-’. Check that
the algebraic and geometric points of view are consistent and that u + (—u) = 0.

In the real numbers, subtraction is defined by the equationa — b = a + (—b).
We can use the same rul to define subtraction for vectors. Thus

435-13,2=435)+(—1,-3 -2
=@-13-35-2)
= (3,0,3).
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More generally, for vectors in R",
(al) ay..., all) - (bl’ bZ; ceey bn) = (al - bl, a — b2:-- «yQn — bn)

Geometrically we think of subtraction as completing the triangle in Figure 10.8.
Given u and u + v, find v to make the diagram work. Put another way, x — y is
that vector which, when added to y, gives x. Subtraction finds the missing leg of
the triangle in Figure 10.10.

Figure
Geometric representation of x —y. 10.10

Scalar Multiplication

It is generally not possible to multiply two vectors in a nice way so as to generalize
the multiplication of real numbers. For example. coordinatewise multiplication
does not satisfy the basic properties that the multiplication of real numbers satisfies.
For one thing, the coordinatewise product of two nonzero vectors, such as (1, 0) and
(0, 1), could be the zero vector. When this happens, division, the inverse operation
to multiplication, cannot be-defined. However, there is a vector space operation
which corresponds to statements like, “go twice as far” or “you are halfway
there.” This operation is called scalar multiplication. In it we multiply a vector,
coordinatewise, by a real number, or scalar. If r is a scalar and x = (x),..., x,)is
a vector, then their product is

r-x = (rxy..., rx,).

For example, 2 - (1, 1) = (2, 2), and é (—4,2)=(—-21).

Geometrically, scalar multiplication of a displacement vector x by a non-
negative scalar r corresponds to stretching or shrinking x by the factor r without
changing its direction, as in Figure 10.11. Scalar multiplication by a negative
scalar causes not only a change in the length of a vector but also a reverse in
direction.

In the algebra of the real numbers, addition and multiplication are linked by
the distributive laws:

a-(b+c)y=ab+ac and (a+ b)-c=ac+bc
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-2x

Scalar multiplication in the plane.

There are distributive laws in Euclidean spaces as well. It is easy to see that
vector addition distributes over scalar multiplication and that scalar multiplication
distributes over vector addition:

(@) (r + s)u = ru + su for all scalars r, s and vectors u.
(b) r(u+v) = ru+ rv forall scalars r and vectors u, v.

Any set of objects with a vector addition and scalar multiplication which
satisfies the rules we have outlined in this section is called a vector space. The
elements of the set are called vectors. (The operations of vector addition and scalar
multiplication are the operations of matrix addition and scalar multiplication of
matrices, respectively, applied to 1 X n or n X 1 matrices, as defined in Section
1 of Chapter 8. The scalar product of the next section will also correspond to a
matrix operation.)

EXERCISES

105 Letu = (1,2),v=(01),w=(,-3),x=(1,20),andz = (O, 1, 1). Compute
the following vectors, whenever they are defined: u + v, —4w, u + z, 3z, 2v, u + 2v,
u—v,3x +z, —2x, w + 2x.

10.6 . Carry out all of the possible operations in Exercise 10.5 geometrically.

10.7 Show that —u = (—1)u.

10.8 Prove the distributive laws for vectors in R™.

10.9 Use Figure 10.12 to give a geometric proof of the associative law for vector addition:
ut(v+w)=@u+v)+w
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u+v

u+v)+w

u+(v+w)

ut+t(vtw)=(u+v)+w

10.4 LENGTH AND INNER PRODUCT IN R"

Among the key geometric concepts that guide our analysis of two-dimensional
economic models are length, distance and angle. In this section, we describe the
n-dimensional analogues of these concepts which we will use for more complex,
higher dimensional economic models.

When we build mathematical models of economic phenomena in Euclidean
spaces, we will often be interested in the geometric properties of these spaces,
for example, the distance between two points or the angle between two vectors.
In this section we develop the analytical tools needed to study these properties.
In fact, all the geometrical results of planar (that is, two-dimensional) Euclidean
geometry can be.derived using purely analytical techniques. Furthermore, these
analytic techniques are all we have for generalizing the results of plane geometry
to higher-dimensional Euclidean spaces.

Length and Distance

The most basic geometric property is distance or length. If P and Q are two points

ih R®, we write PQ for the line segment joining P to Q and PO for the vector from
Pto Q.

Notation The length of line segment PQ is denoted by the symbol |[PQ|l. The
vertical lines draw attention to the analogy of length in the plane with absolute
value in the line.

We now develop a formula for ||PQ]|, or equivalently, for the distance between
points P and Q. First, consider the case where P and Q lie in the plane R? and have
the same x,-coordinate. We have pictured this situation in Figure 10.13, where
P has coordinates’(ay, b) and Q has coordinates (a5, b). The iength of this line is
clearly the length of the line segment connecting a; and g; on the x;-axis. Since
length is always a positive number, the length of this segment on the x;-axis is
simply |a, — a;|. We conclude that ||PQ|| = |a, — ayl, as in Figure 10.13.

Figure
10.12



Figure
10.13

Figure
10.14

Figure
10.15
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Pa,,b) Qay,b)
bt ® —
2 2
||P_Q|| = |az - al"
b, T ? Aa,by)
b, T ® Pa,b,)
a
IPOIl = |b; — byl
b F Q
r
by [ P R
1 1
ay 32
Computing ||PQ|| in the plane.
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Next, consider the case where P and Q have the same x;-component. Say P is
(a, b)) and Q is (a, by), as in Figure 10.14. Here, the distance is naturally |b, — b, .
Finally, we consider the general case, as pictured in Figure 10.15. To compute
the length of line € joining points P(a,, by) and Q(a,, b>), mark the intermediate
point R(ay, by). Let m be the (horizontal) line segment from #(a;, by) to R(ay, by)
and let n be the (vertical) line segment from Q(z,, b>) to R(az, b,). The corre-
sponding triangle PRQ is a right triangle whose hypotcnusc is the line segment £.
Apply the Pythagorean Theorem to deduce the lengun of £:

(length £)? = (length m)* + (length n)?

= la, — a|* + |by = byJ%

Taking the square root of both sides of this equation gives

IPQIl = length € = /(a; — a2) + (by = by)2. (1)

We can apply this argument to higher dimensions, as pictured in Figure 10.16.
To find the distance from P(a,, by, ¢;) to Q(ay, by, c3) in R?, we use the point
R(ay, by, cy), which has the same x3-coordinate as P and the same x;- and x,-
coordinates as Q. Since P and R have the same x3-coordinate, the segment PR lies
on the x3 = ¢ plane, which is parallel to the x)x;-plane (x3 = 0). Since Q and R
have the same x;- and x,-coordinates, segment QR is parallel to the x3-axis and
therefore perpendicular to the segment PR. Therefore, APRQ is a right triangle
with hypotenuse PQ. By the Pythagorean Theorem,

IPQI* = PRI + IRQII’. (2
Q
P/ T
afs R.
a4 by b,
)

Computing the length of line PQ in R3.

Figure
10.16
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Since RQ is parallel to the x;-axis, its length is simply |c, — ¢;[. To find the length
of PR, we work in the two-dimensional plane through PR parallel to the x;x,-
plane. Note that if S = (a3, by, ¢;), PS is parallel to the x;-axis and therefore has
length |a, — a,|, and SR is parallel to the x,-axis with length |b, — b|. Applying
the Pythagorean Theorem to right /lriangle PSR yields:

\PRII> = ||PSII*> + lISRII?

= laz — a,* + |b2 — &I
Substituting this into Equation (2) yields:
IPQI? = laz — a1* + |b; — by |* + |2 — 1%

Therefore, the distance from P to Q is

IPOIl = V(az — a1)? + (b2 = b1)? + (c2 = 1) 3

Formulas (1) and (3) generalize readily to points in higher dimensional Eu-
clidean spaces. If (x1, x2, ..., x,) and (4, y2, . . ., yn) are the coordinates of x and
y, respectively, in Euclidean n-space, then the distance between x and y is

Vor =3P + (2 = paf o+ (o = P

We will use this same formula whether we think of x and y as points or as
displacement vectors. Recall that x — y is the vector joining points x and y and its
length {|x — yl| is the same as the distance between these two points. Thus, it is
natural to write

|Ix —y|| = \/(xl _)’1)2 + (x2 _)’2)2 + 0t (o "yn)z

In particular, if we take y to be 0, then the distance from the pointx = (xy,..., x,)
to the origin or the length of the vector x is

lIxll = y/x2 + -+ + x2

We can now make more precise the effect of scalar multiplication on the length
of a vector v. If r is a positive scalar, the length of rv is r times the length of v.
If r is a negative scalar, the length of rv is |r| times the length of v. This can be:
summarized as follows.

Theorem 10.1 ||rv|| = |7| - ||v|| for all r in R! and v in R".
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Proof

"r(Vb ey vn)” = ”(I'Vl, ..., I'V,,)"

= V()2 + -+ (rva)?

=\/r2(v%+...+vﬁ)

= |rlyvi + - +12, since Vr2=|r|. (]

Given a non-zero displacement vector v, we will occasionally need to find a
vector w which points in the same direction as v, but has length 1. Such a vector w
is called the unit vector in the direction of v, or sometimes simply the direction
of v. To achieve such a vector w, simply premultiply v by the scalar r = "%",
because

1
lIvll

1 .

lIvll = 1.
vl

vl =

ﬁ.v”=

Example 10.1 For example, the length of (1, —2,3) in R% is

I, =2, 3)l = V12 + (=2 + 32 = V14,

It follows that

1 (1 -2 3
Niree “"(mm' m)

is a vector which points in the same direction as (1, —2, 3) but has length 1.

The Inner Product

We have learned how to add and subtract two vectors and how to compute the
distance between them. In this section we introduce another operation on pairs of
vectors, the Euclidean inner product. This operation assigns a number to each pair
of vectors. We will see that it is connected to the notion of “angle between two
vectors,” and therefore is useful for discussing geometric problems.

Definition Letu = (u;,...,u,)andv = (v;,..., v,) be two vectors in R". The
Euclidean inner product of u and v, written as u - v, is the number

u-v=wv +uvy+ -+ u,vp
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Because of the dot in the notation, the Euclidean inner product is often called
the dot product. To emphasize that the result of the operation is a scalar, the
Euclidean inner product is also called the scalar product. In the exefcises to this
section, we introduce the outer product or cross product as a way of multiplying
two vectors in R? to obtain another vector in R®.

Example 10.2 1fu = (4, —1,2)and v = (6, 3, —4), then

u-v=4-6+(-1)-3+2-(-4) =13

The following theorem summarizes the basic analytical properties of the inner
product — properties that we will use often in this text. Its proof is straightforward
and is left as an exercise. Work out the relationships in this theorem to build up a
working knowledge of inner product. i

Theorem 10.2 Let u, v, w be arbitrary vectors in R" and let r be an arbitrary
scalar. Then,

@u-v=v-u,
G)yuv-(v+w)y=u-v+u-w,
(c)u-(rv)y=r(u-v)=(ru)- v,

(d) u-u=0,

(¢) u-u=0impliesu =0, and
NY(+v)y-u+v)=u-u+2u-v)+v-v.

The Euclidean inner product is closely connected to the Euclidean length of a
vector. Since

u-u=ul+u+- - +u and ||u||=V/uf+u§+---+ui,

n
lla)l = Vu-u

Conscquently, the distance between two vectors u and v can be written in terms
of the inncer product as

llu—vil = V@ -v): (u-v).

Any two vectors u and v in R® determine a plane, as illustrated in Figure 10.17.
In that plane we can measure the anglc 6 between u and v. The inner product yields
an important conncction between the lengths of u and v and the angle 6 between
uand v.
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;%\/

The angle between two vectors in R".

Theorem 10.3 Let u and v be two vectors in R". Let 6 be the angle between
them. Then,

u-v = |ull |lvl| cos 6.

Remark Recall that to measure the cosine of an angle 6 = £ZBAC as in Figure
10.18, draw the perpendicular from B to a point D on the line containing A and C.
Then, in the right triangle BAD, the cosine of 0 is the length of adjacent side AD
divided by the length of hypotenuse AB. See the Appendix of this book for more
details. If 8 is an obtuse angle (between 90 degrees and 270 degrees), then Fig-
ure 10.19 is the relevant diagram and the cosine of @ is the negative of ||AD|| /||AB|I.

B
0} b
A D C
cos 8 = ||AD||/1IABI|.
B
|
. 0
D A C

Computing the cosine of an ohtuse angle: cos 6 = —||AD||/||AB||.

Figure
10.17

Figure
10.18

Figurc
10.19
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In either case, cosine 6 lies between —1 and +1 since a leg of a right triangle can -
never be longer than the hypotenuse. For us, the important properties of cos 0 are:

cos6>0 if 0 is acute,
cosf <0 if 6 is obtuse,

cosf =0 if 0 is a right angle.

Proof of Theorem 10.3 The following proof is a bit more complex than the other
proofs we have seen. It uses the Pythagorean Theorem again. Without loss of
generality, we can work with u and v as vectors with tails at the origin 0; say
u = OP and v = OQ. Let £ be the line through the vector v, that is, the line
through the points 0 and Q. Draw the perpendicular line segment m from the
point P (the head of u) to the line £, as in Figure 10.20. Let R be the point

where m meets £. Since R lies on £, OR is a scalar multiple of v = @ Write

OR = tv. Since u, /v, and the segment m are the three sides of the right triangle
OPR, we can write m as the vector u — tv. Since u is the hypotenuse of this
right triangle,

_ levll _ vl

0sf = —— = ——. 4
all ~ Thall @

On the other hand, by the Pythagorean Theorem and Theorem 10.2, the
square of the length of the hypotenuse is:

lall? = llevll? + llu — ev]l?

= 2|[v]®> + (u — tv) - (u — tv)

AlvI? +u-u—2u-(v) + (2v) - (2v)

2lIvI? + Nla)l? = 2t¢u - v) + 2lIvlI?,

or
2t(u - v) = 2¢3||vlI2.
It follows that

t= ——. ®))

Plugging equation (5) into equation (4) yields

u-v

— . u
llull vl

cos 0 =
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P m
\ / Q
\u-tv

u ‘o v

R
6
tv
0
Figure
Choose t so that v and u — tv are perpendicular. 10.20
The following example illustrates how one can use the inner product to compute

angles explicitly.

Example 10.3 We will use the inner product to compute the angle between the
diagonal of a cube and one of its sides. Consider a cube in R? with each side of
length c. Position this cube in R3 in the most natural manner, i.e., with vertices
at 0(0,0,0), Py(c,0,0), P5(0, c,0), and P3(0,0, c), as in Figure 10.21. Write u;
for the vector OP; for i = 1,2, 3. Then, the diagonal d is u; + u; + u3, which
is the vector (c, ¢, ¢).

The angle 0 between u; and d satisfies
u -d (,0,0) - (¢, ¢,0)
cos = =
lull lldll - ¢. /2 + 2+ ¢2
1
32 3
Using a trig table or calculator, one finds that cos 8 = 1/ \/5 implies that
6 = 54°44’,
(0,0,0
A
u;
d (c,c,0
(0,0,0) u; > (0,¢,0)
U //‘
(C,Oy
Figure

Cube of side c. . 10.21
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Rarely do we care to know that the angle between two vectors is 71° or 37/7
radians. More often, we are interested in whether the angle is acute, obtuse, or a
right angle. Since cos 6 is positive when 6 is acute, negative when 0 is obtuse, and
zero when 6 is a right angle, the dot product tells us the information we want by
Theorem 10.3.

Theorem 10.4 The angle between vectors u and v in R" is

(a) acute,ifu-v >0,
(b) obtuse, ifu-v <0,
(c) right,ifu-v =0.

When this angle is a right angle, we say that u and v are orthogonal. So,-
vectors u and v are orthogonal if and only ifu-v = uyvy +--- +u,v, =0, 2
simple check indeed.

We have taken some liberties with the case where one of the vectors is zero.
When this occurs, 0 is not defined. However, we will run into no difficulties with
the concept of orthogonality if we simply watch for zero vectors.

Finally, we use Theorem 10.3 to derive a basic property of length or norm —
the triangle inequality. This rule states that any side of a triangle is shorter than
the sum of the lengths of the other two sides. Intuitively, it follows from the fact
that the straight line segment gives the shortest path between any two points in
R". In vector notation, we want to prove that

[lu + v|| = |[u|| + [|v]| forallu, vin R™

Figure 10.22 illustrates the equivalence of this analytic formulation with the above
statement about triangles.

u+yv

Figure
10.22 u, v, and u + v are three sides of a triangle.
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Theorem 10.5 For any two vectors u, v in R",

llu + vil = [lull + [Iv]l (6)

Proof Recall that

u-'v

——— =cosf =1
llull - vl

by Theorem 10.3. Therefore,

u-v =< |ull-Ilvll,
llull® + 2¢u - v) + |IvII® =< [lull* + 2lulllivll + (IvIl,
u-u+u-v+v'u+v-v5(||ll||+||V||')2‘
(u+v)- (u+v) =< (lhull +lIvI):

lu + v|I” < (llall + [IvID)?,

lu+ vl <lluff+]vl. =

We will use the triangle inequality (6) over and over again in our study of
Euclidean spaces. Just about every mathematical statement involving an inequality
requires the triangle inequality in its proot. The next theorem presents a variant of
the triangle inequality which we will also use frequently in our analysis, especially
when we want to derive a lower bound for some expression. To understand this
result more fully, you should test it on pairs of real numbers, especially pairs with
opposite signs. '

Theorem 10.6 For any two vectors x and y in R",

HIxll =yl ] = llx = yll.

Proof Apply Theorem 10.5 withu = x — y and v = y in (6), to obtain the
inequality [ix|l = lIx — yll + [lyll, or

Il = llyll = llx -yl (7

Now apply Theorem 10.5 withu = y — x and v = x in (6) to obtain the
inequality [lyll = Ily — x|| + |Ix]|, or

liyll = 1ixll = lly = xll = lx = yl. (8)
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| Inequalities (7) and (8) imply that

|

|

| Hxll =yl < lx —yll. =

The three basic properties of Euclidean length are:

(1) |[u]l = 0 and ||u]| = 0 only whenu = 0.
(2) llrull = Irllull
(3) llu+ vl < [lull + [|vl].

Any assignment of a real number to a vector that satisfies these three prop-
erties is called a norm. Exercise 10.16 lists other norms that arise naturally in
applications. We will say more about norms in the last section of Chapter 29.

EXERCISES
10.10 Find the length of the following vectors. Draw the vectors for a through g:

§) (3, 4), b) 0,-3), o) (1,1,1) dy (3,3), e) (=1, -1),
N (.23, @0, k234, i) (30000

10.11  Find the distance from P to.Q, drawing the picture wherever possible:

a) P(0,0), 0@, —4); by P(1,-1), Q@7 7)
c) P(5,2), o(1, 2); d) P(1,1,-1), 0(2+-1,5);
e) P(1,2,3,4), 0(1,0,—1,0). .

10.12  For each of the following pairs of vectors, first determine whether the angle between
them is acute, obtuse, or right and then calculate this angle:

@)y u = (1,0) v=(22); bh) u = (4,1), v=(2—-8)
¢) u=(110) v=(1,21) dyu=(1,-1,0), v=(1,21)
e)u=(1,0000), v=(,1111).

10.13  For each of the following vectors, find a vector of length 1 which points in the same
direction. a) (3,4), b) (6,0),¢) (1, 1, 1),d) (—1,2, =3).
10.14 -For each of the vectors in the last exercise, find a vector of length five which points
in the opposite direction.
10.15 Prove that [lu — v|i* = [[u]* = 2u - v + [IvI]?
10.16 «) In view of the Jast paragraph in this section, prove that each of the following is
anorm in R%:

I ey, w)lll = fug! + ual,

(a1, w2l = max{lu;l, lual}.

b) What are the analogous norms in R"?
10.17 Provide a complete and careful proof of Theorem 10.2. /
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10.18 Fill in all the details in the proof of Theorem 10.3.

10.19 For a rectangular 2’ X 3’ X 4’ box, find the angle that the longest diagonal makes
with the 4'-side.

10.20 Use vector notation to prove that the diagonals of a rhombus are orthogonal to each
other. See Figure 10.23.

u+yv

Figure
If ||l = |Ivll, this quadrilateral is a rhombus. 10.23

10.21 Prove the following identities.
a) llu+ vI* + llu = vi* = 2|lu|l® + 2lIvI)%,
by u-v=1lu+ vl - tllu— vll%
10.22 Prove that if u and v are orthogonal vectors, then ||u + vl = Jlall® + lIvI*. Explain
why this statement is called the general version of the Pythagorean Theorem.
10.23 The cross product is a commonly-used multiplication of vectors in R?, for which
the product of two vectors in R? is another vector in R3. It is defined as follows,
using the determinant notation introduced in Chapter 9:

(11, Uz, ug) X (Vi, vz, v3) = (Uavs — U3V, UzVy — UyV3, UgV2 — u2VI)

Prove the following properties of the cross-product:
a) uXv=-vXu,

U uy
V2 V3

u, U
Vi V3

uy u
Vi V2

y ’

b) u X v is perpendicular to u,

c) u X v is perpendicular to v,

d) (ru) Xv=r(uXv)=uX(rv),

e) (u; +uy) Xv=(uy Xv)+ (u; Xv),
£ vl = JullPIvi? = (- v)?,

g) lluX v|l = |lu]ll|v|| sin 6 (use item f and Theorem 10.3),
h)y uXu=0,

U, Uz us
i)ll‘(VXW)= Vi V2 W

Wi w2 W3

10.24 Show that the cross-product can be represented symbolically as

€ € e
U Uy U
Vi V2 V3

uXxXy=

’




Figure
10.24
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where ¢, = (1,0,0), e; = (0, 1,0), and e3 = (0, 0, 1). Treat the e;’s as points or
symbols in the expansion of the determinant.
10.25 Use the cross product to find a vector perpendicular to both u and v:

a)u=(101 v=(,11),
p)u=(1,-1,2) v=(05 ~-3).

10.26 Consider the parallelogram determined by the vectors u and v in.R?, as in Figure
10.24. -
a) Show that the area of this parallelogram is |lu X v||. [Hint: Express height 4 in
terms of u, v, and 6.]
b) Find the area of the triangle in 13’ whose vertices are (1, —1, 2), (0, 1, 3), and

2,1,0)

The parallelogram spanned by u and v.

10.5 LINES

The fundamental objects of Euclidean geometry are points, lines, and planes.
These next two sections show how to describe lines and planes and their higher-
dimensional analogues.

First, we will work with lines in R2. In high school algebra, we learn that
straight lines have an equation of the form

X2 = mxy + b (9)

The coefficient m is the slope of the line and the coefficient b is the y-intercept. This
algebraic representation of the line is convenient for solving equations. However,
it is not the most useful equation for representing geometric objects. What is the
equation of line v in Figure 10.25? We cannot solve for x; in terms of x» More
important than the awkwardness of this special case is the need for an algebraic
representation which clearly expresses the geometry of the line. We will often find
a parametric representation of the line more useful.
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(5,3)

(4,2)

1,-1)

Figure
Lines in R2. 10.25

A parametric representation of a point on a line uses a parameter ¢ in the
coordinate expression of the point; more formally, a parametric representation
is an expression (x;(¢), x5(¢)) with parameter ¢ in R!. The point x = (xi, x,) is
on the line if and only if x = (x;(¢"), x2(¢*)) for some value ¢* of the parameter
t. To make matters concrete, you might think of ¢ as’ represénting time, and
the parameterization as describing the transversal of a path. The coordinates
(x1(2), x2(t)) describe the particular location which is reached at time .

A line is completely determined by two things: a point Xo on the line and a
direction v in which to move from xg. Geometrically, to describe motion in the
direction v from the point xo, we simply add scalar multiples of v to xg as in Figure
10.26. The result is the parametric representation '

x(t) = xo + tv. (10)

Xg + tv

Xo

Figure
Parametric line in R2. 10.26
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Example 10.4 For example, line a in Figure 10.25 is the line which goes through
the point (4, 2) and moves directly to the northeast — in the direction (1, 1). It
is described by the parameterization

X(r) = (xi(£), x2(1))
=(4,2)+1(1,1)
=@4+t-1,2+1¢-1),
or xy=4+1¢-1 (11)
X =2+t 1 (12)
Figure 10.25 shows that (5, 3) and (1, —1) are on line a. The first point is reached
when ¢t = 1, and the second when r = —3.

Note that the same line can be described by different parametric equations.
For example, we can also view line a in Figure 10.25 as the line through the

point (1, —1) in the direction (2, 2). This yields the parameterization

@)y x20)=(,-D+1t2,2)=(1+2t, =1+ 21).

With this parameterization, the line passes through (4,2) when r = 1.5 and -
through (5, 3) when ¢t = 2.

Of course, the parameterization (10) works in all dimensions. For example,
the line in R? through the point xo = (2, 1, 3) in the direction v = (4, —2, 5) has
the parameterization

X(2) = (x1(2), x2(1), xa(1))
=(21,3)+14,-25)
=2+4, 1 -2t 3+ 50)

Another way to determine a line is to identify two points on the line. Suppose
that x and y lie on a line €. Then, £ can be viewed as the line which goes through
x and points in the direction y — x. Thus, a parametérization for the line is

x(t) =x+t(y — x)
=x+ty—1x (13)
=(1—1t)x +ty.
When ¢t = 0, we are at point x; and when ¢ = 1, we are at point y. When ¢ lies

between 0 and 1, we are at points between x and y. Consequently, we parameterize
the line segment joining x to y as

Lxy)={1-0x+ty:0=r=1}
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Given two points-x = (a,b) and y = (c, d) on a line £ in the plane, one can
write the parameterized equation of £ -as (13) or the nonparameterized equation
of £ as

d—b

x2—b= C_a(xl—a).

One can use these two expressions to pass from the parameterized equation of a
line in the plane to the nonparameterized equation, and vice versa, by first finding
two points on the line from the given equation and using these points to find the
new equation. One can also pass directly from form (10) to form (9) by solving
the equations in (10) for ¢ and then setting the new equations equal to each other.
For example, in equations (11. 12)

So. - = , or Xy =X, — 2

To go the other way. just note that equation (9) is the equation of the line through
the point (0. b) in the direction (1, m).

EXERCISES

10.27 Show that the midpoint of £€(x, y) occurs where t = 12 In other words, if z =
ix + 1y, show that |Ix — z|l = |ly — zli.

10.28 For each of the following pairs of points p;, pa, write the parametric equation of
the line through p, and p», find the midpoint of £(p;, p,), and sketch the line.

a) pi = (3,0), P2 = (5 0);
b) pr =(1,0), p2 = (0, 1);
p=(01), p2=(210).
‘ 11 1 5
14 2 6
. b 9
10.29 s the point 17| on the line 3 + ¢ 7 |
18 4 8
10.30 Transform each of the following parameterized equations into the form (9):
X =4-2 b X =3+t ¢ x =3+t
x2 =3+ 6¢; x=5-1 X3 = 5.

1031 Transform each of the following nonparameterized equations into the form (10):

a) 2x; = 3x, + 5; b) x, = —x +7,; c) x; =6




Figure
10.27
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10.6 PLANES
Parametric Equations

A line is one-dimensional. Intuitively, the dimension of the line is reflected in the
fact that it can be described using only one parameter. Planes are two-dimensional,
and so it stands to reason that they are described by expressions with two param-
eters.

To be more concrete, let 2 be a plane in R3 through the origin. Let v and w be
two vectors in P, as shown in Figure 10.27. Choose v and w so that they point in
different directions, in other words, so that neither is a scalar multiple of the other.
In this case, we say that v and w are linearly independent, a topic to be discussed
in more detail in the next chapter. For any scalars s and ¢, the vector sv + tw is
called a linear combination of v and w. By our geometric interpretation of scalar
multiplication and vector addition, it should be clear that all linear combinations
of v and w lie on the plane P. In fact, if we take every linear combination of v and
w, we recover the entire plane P. The equation

X =sv+iIw
or X; = sv; + 1wy
X2 = Sva + tws

X3 = sv3 + tws,

provides a parameterization of the plane P.

X3

X2

A plane P through the origin.

If the plane does not pass through the origin but through the point p # 0
and if v and w are linearly independent direction vectors from p which still lie
in the plane, then as indicated in Figure 10.28, we can use the above method to
parameterize the plane as

x=p+sv+rw, s tinRL (14)
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X3

X2

A plane not through the origin.

Just as two points determine a line, three (non-collinear) points determine a
plane. To find the parametric equation of the plane containing the points p, q, and
r, note that we can picture q — p and r — p as displacement vectors from p which
lie on the plane. So, one parameterization of the plane is

x(s,t) =p ts(q—p) +t(r—p)

(15)
=(1—-s—1tp+sq+rr.
Compare (15) with the corresponding parameterized equation (13) of a line. From
equation (15), we see that a plane is the set of those linear combinations of three
fixed vectors whose coefficients sum to 1:

X =4Hp + hq + 4r, Lt t+tt=1. (16)

If we further restrict the scalars ¢ in (16) so that they are nonnegative, we obtain
the (filled-in) triangle in R* whose vertices are p, q, and r — the darkened region
in Figure 10.29. The numbers (#), ¢,, t3) are called the barycentric coordinates
of a point in this triangle. For example, the barycentric coordinates of the vertex
p are (1,0,0) since t; = 1,¢ = 0, and £3 = 0 in expression (16) yield the point
p. Similarly, the barycentric coordinates of the vertices q and r are (0, 1, 0) and
(0, O, 1), respectively. The center of mass or centroid of this triangle is the point

x:l +l +lr
3P T 34730

whose barycentric coordinates are (1/3, 1/3, 1/3).
Equations such as (14) and (15) give a parameterization of a two-dimensional
plane in any Euclidean space, not just R3. For example, the two-dimensional plane

Figure
10.28



Figure
10.29
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X3

X3

Triangle with vertices p, q, and r.

through the points (1, 2, 3, 4), (5,6, 7,8), and (9,0, 1, 2) in R* has the parametric
equations

xp=1r +55+ 9

X» =2r + 6s + 0t

x3=3r+7s+ 1t
X4 =4r + 8+ 21, wherer +s+t = 1.

Nonparametric Equations

We turn now to the nonparametric equations of a plane in R3. Just as with a line
in R2, a plane in R3 is completely described by giving its inclination and a point
on it. We usually express its inclination by specifying a vector n, called a normal
vector, which is perpendicular to the plane. Suppose we want to write the equation
for the plane through the point p = (xo, Yo, Zo) and having the normal yector n =
(a, b, ¢). If x = (x, y, z) is an arbitrary point on the plane, then x — p will be a vector
in the plane and consequently will be perpendicular to n, as in Figure 10.30.

Recalling that two vectors are perpendicular if and only if their dot product is
zero, we write

O=n-(x—p)=(@bc) (x—x0,y— yoz— 2p),
or a(x — x9) + b(y — yo) + ¢(z — z9) = 0. (17)

Form (17) is called the point-normal equation of the plane. It is sometimes
written as

ax + by +cz =d, (18)
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X2

Plane through p with normal n.

where, in this case, d = ax + byg + czp. Conversely, one can see that equation (18)
is the equation of the plane which has normal vector (g, b, c) and which contains
each of the points (0, 0, d/c), (0, d/b, 0), and (d/a, 0, 0).

Example 10.5 The equation of the plane through the point (1, 2, 3) with normal
| vector (4,5, 6) is

4x—1D)+S5S(y—-2)+6(z—3)=0
or 4x + Sy + 6z = 32.

Example 10.6 The equation 3x — y + 4z = 12 is a nonparametric equation of
the plane through the point (4, 9, 0) (or (0, 0, 3) or (0, —12,0) or (5, 7, 1)) with
normal vector n = (3, — 1, 4).

To go from a nonparametric equation (18) of a plane to a parametric one, just
use (18) to find three points on the plane and then use equation (15). It is more
difficult to go from a parametric representation to a nonparametric one, because
we need to find a normal n to the plane given vectors.v and w parallel to the plane.
There are two ways to compute such an n. First, one may use the exercises in the
last section and take n to be the cross product v X w. Alternatively, given v and
w, one can solve the system of equations n - v = 0 and n - w = 0 explicitly forn

Example 10.7 - To find the point-normal equation of the plane P which contains
i the points

| P=(211), q=(,0-3), and r=(017),

Figure
10.30
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note that vectors
v=q-p=(—1,-1,-4) and u=sr—-p=(-2006)
both lie on P. To find a normal n=(n,, n», n3) to P, solve the system

n‘v= —n— n—4n3; =0

n-u=—2n +0n +6n =0,

say by Gaussian elimination, to compute that n is any multiple of (3, —7, 1).
Finally, use n and p to write out the point-normal form

3(x—-2)—-7y-DH+1z—-1)=0
or 3x—T7y+z=0.

Hyperplanes

A line in R? and a plane in R? are examples of sets described by a single linear
equation in R™. Such spaces are often called hyperplanes. A line in R? can be
written as

apx; +ax>=d,
and a plane in R® can be written in point-normal form as
ayx; + a:x> + ayxy = d.
Similarly, a hyperplane in R" can be written in point-normal form as
ayx, + axx> + - +a,x, =d. (19)
The hyperplane described by equation (19) can be thought of as the set of all vectors

with tail at (0, .. ., 0, d/a,) which are perpendicular to the vectorn = (aj, ..., a,).
We continue to call n a normal vector to the hyperplane.

EXERCISES

4 1 1 0
10.32 Does the point (3) lie on the plane (2) + ¢ (1) + s (1)?
2 3 0 1

10.33 Derive parametric and nonparamélric equations for the lines which pass through
each of the following pairs of paints in R?:

a) (1,2)and (3,6);  b) (1,1)and(4,10);  ¢) (3,0)and (0, 4).
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10.34

10.35

10.36

10.37

10.38

10.39

10.40

10.41

Write the parametric equations for each of the following lines and planes:

a) x =3x1 -7, b) 3x; + 4x, = 12
€) x; +x2 +x3 =3 d) x; — 2x; +3x3 = 6.

Write nonparametric equations for each of the following lines and planes:

a) x=3-41, y=1+2

by x=2t, y=1+¢

)x=1+s+t y=2+3s+4t, z=s5-1

d)x=2-3s+1, y=4, z=1+s+1t

Derive parametric and nonparametric equations for the planes through each of the
following triplets of points in R*:

a) (6,0,0), (0, —6,0), (0,0, 3);

b) (0,3,2), (3,3,1), (2,50).

Nonparametric equations of a line in R? are equations of the form

XX _Y " Y _Z" 2
a b c

(20)

These are called symmetric equations of the line. They can be derived from the

paramefric equations by eliminating ¢, just as one does in the plane.

a) What are the parametric equations which correspond to the symmetric equations
(20)?

b) In form (20), one can view the line as the intersection of which two planes?

¢) Find the symmetric equations of the following two lines in R?:

Dx =2-—1 i x,=1+4
X, =3+ 4t A’3=2+51
x3 =1+ 51 ,\'3=3-f/-61.

d) For each line in part ¢, find the equations of two planes whose intersection is
that line.
Determine whether the following pairs of planes intersect;

a) x+2y—3z=6 and x+3y—2z= 6;
b) x+2y—3z=6 and —2x —4y+ 6z = 10.

Find a ncnparametric equation of the plane:

a) through the point (1, 2, 3) and normal to the vector (1, —1, 0),

b) through the point (1,1, —1) and perpendicular to the line (x), x2,x3) =
(4 —342+ 146+ 51),

¢) whose intercepts are (a, 0, 0), (0, b, 0), and (0, 0, ¢) with a, b, and c all nonzero.

Find the intersection of the planex+y+z = landthelinex =3 +¢y=1-17,

z=3-31

Use Gausgian elimination to find the equation of the line which is the intersection

of theplanesx + y —z=4andx + 2y + z = 3,




Figure
10.31
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10.7 ECONOMIC APPLICATIONS
Budget Sets in Commodity Space

An important application of Euclidean spaces in economic theory is the notion of
a commodity space. In an economy with n commodities, let x; denote the amount
of commodity i{. Assume that each commodity is completely divisible so that x;
can be any nonnegative number. The vector

X = (X1, X2, -y Xn)

which assigns a nonnegative quantity to each of the n commodities is called a
commodity bundle. Since we are dealing only with nonnegative quantities, the
set of all commodity bundles is the positive orthant of R"

{(xtyeesxn) X1 =0,...,x, =0}

and is called a commeodity space.
Let p; > 0 denote the price of commodity i. Then, the cost of purchasing
commodity bundle x = (xy,...,x,) is

pixy tpaxpt+ st pxy, =prx

A consumer with income / can purchase.only bundles x such that p - x = I. This
subset of commodity space is called the consumer’s budget set. It is bounded
above by the hyperplane p - x = I, whose normal vector is just the price vector
p. We have drawn the usual two-dimensional picture for this situation in Figure
10.31.

X2

P=(py p2)

Pixi+ pyxp =1

A consumer’s budget set, p * X < I, in commodity space.
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Input Space

A similar situation exists for a production process which uses » inputs. If x; denotes
an amount of input i, then x = (x},..., x,) is an input vector in input space,
which is also the positive orthant in R". If w; denotes the cost per unit of input
i and w = (wy, ..., wy,), then the cost of purchasing input bundle x is w - x. The
set of all input bundles which have a total cost C, an isocost set, is that part of
the hyperplane w - x = C which lies in the positive orthant. The price vector w is
normal to this hyperplane. If we fix w and let C vary, we obtain isocost hyperplanes
wich are parallel to each other.

Depending on the situation under study, we sometimes write inputs as negative
numbers. In this case, input space would be the negative orthant in R".

Probability Simplex

A hyperplane that arises frequently in applications is the space of probability
vectors

‘Pn={(P1;---,Pn)1p,'203ndp1+p2+~-+p"=1},

which we call a probability simplex. In these applications there are » mutually
exclusive states of the world and p; is the probability that state i occurs. Since one
of these n states must occur, the p;’s sum to 1. The probability simplex P, is part
of a hyperplane in R® whose normal vectoris 1 = (1, 1,..., 1); P is pictured in
Figure 10.32.

One can also consider P, as the set of barycentric coordinates with respect to
the points

e =(40,...,0),...,e, =(0,0,...,0,1).

(1,0,0)

The probability simplex for n = 3.

*

Figure
10.32
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The Investment Model

The portfolio analysis introduced in Example 5 of Chapter 6 fits naturally into the
geometric framework of this chapter.

Suppose that an investor is choosing the fraction x; of his or her wealth to
invest in asset i. If there are A different investment opportunities, a portfolio is
an A-tuple x = (xy, ..., x4). Since the x;’s represent fractions of total wealth, they
must sum to 1. Therefore the budget constraint is

x1+x2+~~+xA=1.

However, since we allow short positions, x; may be negative. In this case, the
budget set is the entire hyperplane

normal to the vector 1 = (1, 1,..., 1). Figure 10.32 shows the intersection of this
hyperplane with the positive orthant of R" (for n = 3).

Suppose that there are S possible financial climates or “states of nature” in
the coming investment period. Let r,; denote the return on asset i if state s occurs.
Form the state s return vector

ry = (rsl) rsZ:“')r.\'A)'

Then, the return to the investor of portfolio X = (x), ..., x4) is ry - x. A portfolio
x is riskless if it returns the same return in every state of nature:

rh*"X=rn-x=+-+"=rsX

IS-LM Analysis

We have discussed a linear Keynesian macroeconomic model and Hicks’ IS-LM
interpretation of it in Chapter 6 and again in Chapter 9. In Exercise 9.18, we
examined a more or less complete version of this model in five linear equations
which could be combined into two equations as

[1 - C](l - 11)'— a()]Y + (a + C2)r = ¢y —Cilp t+ I" + G
mY —hr = M; — M".
The first equation represents the production equilibrium and is called the IS
(investment-savings) equation. The second represents the money market equi-
librium and is called the LM (liquidity-money) equation. In intermediate macro-

economics courses, one studies this system graphically by drawing the IS-line and
the LM-line in the plane, as in Figure 10.33. The normal vector to the IS-line is

(1 =11~ 1) —ag a+c)
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LM

/ v \ '

IS

Figure
The graphs of the IS- and LM-lines. 10.33

Figure
The effect of an increase in G or I"*. 10.34
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The parameters c, t,, and ag are naturally between 0 and 1. It is usually assumed
that 0 < c;(1 — 1) + ag < 1, so that the normal vector points northeast and the
IS-line has negative slope

_ a+c
1—c(1—1)—ap

The normal vector to the LM-line is (m, —h) which points southeast, and so the
LM:-line has a positive slope #/m.

Using these diagrams, one can use geometry to study the effects of changes in
parameters or in exogenous variables, just as we did analytically in the exercises
in Section 9.3. For example, if G or I* increases or if #, decreases, then the right
hand side of the IS-equation increases and the IS-line shifts outward as in Figure
10.34. The result is an increase in the equilibrium Y and r, just as we found in
Exercise 9.15. Note that this result would hold even if the slope of the IS-line were
positive, as long as it was less than the slope of the LM-line.

EXERCISES

10.42 Use the diagram in Figure 10.33 to find the effect on Y and r of an increase in each
of tHe variables I*, M,, m, h, ag, a, c¢, and ¢,.




CHAPTER 11

Linear
Independence

‘Many economic problems deal with number or size. How many equilibria does
a model of an economy or a game have? How large is the production possibility
set? Since these sets are often described as solutions of a system of equations,
questions of size often reduce to questions about the size of the set of solutions
to a particular system of equations. If'there are finitely many solutions, the exact
number of solutions gives a satisfactory answer. But if there are infinitely many
solutions. the size of the solution set is best captured by its dimension. We have
a good intuition about the difference between a one-dimensional line and a two-
dimensional plane. In this chapter, we will give a precise definition of “dimension”
for linear spaces. The key underlying concept is that of linear independence.

The most direct relevant mathematical question is the size, that is, the dimen-
sion, of the set of solutions of a system of linear equations Ax = b. Chapter 27
presents a sharp answer to this question via the Fundamental Theorem of Linear
Algebra: the dimension of the solution set of Ax = b is the number of variables
minus the rank of A. Chapter 27 also investigates the size of the set of right-hand
sides b for which a given system Ax = b has a solution; and we present an in-
depth description of the dimension of an abstract vector space. Chapter 28 presents
applications of these concepts to portfolio analysis, voting paradoxes, and activity
analysis. Those who have the time are encouraged to read Chapters 27 and 28
between Chapters 11 and 12.

Linear independence is defined and characterized in Section 11.1. The com-
plementary notion of span is the focus of Section 11.2. The concept of a basis for
Euclidean space is introduced in Section 11.3.

11.1 LINEAR INDEPENDENCE

In Section 10.5, we noted that the set of all scalar multiples of a nonzero vector v
is a straight line through the origin. In this chapter, we denote this set by L[v]:

Llvl]={rv:r €R]},

and call it the line generated or spanned by v. See Figure 11.1. For example, if
v =(1,0,...,0), therr L[v] is the x;-axis in R™. If v = (1, 1) in R?, then L[] is
the diagonal line pictured in Figure 11.1.

237
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X2

Llv]

X

The line L]v] spanned by vector v.
Definition

If we start with two nonzero vectors v, and v, (considered as vectors with their
tails at the origin), we can take all possible linear combinations of v, and v, to
obtain the set spanned by v, and v;:

Lvy, v]={rivi +r,v2:r ERandr, €R}.

If v, is a multiple of v, then L[v,, v,] = L[v,] is simply the line spanned by v, as
in Figure 11.2. However, if v, is not a multiple of v,, then together they generate
a two-dimensional plane L[v,, v,], which contains the lines £L[v,] and L]v,], as in
Figure 11.3.

If v, is a multiple of v,, or vice versa, we say that v, and v, are linearly
dependent. Otherwise, we say that v, and v, are linearly independent. We now
develop a precise way of expressing these two concepts. If v; is a multiple of v,

X2
Llvy, vy

vi

V2

X

X3

If v, is a multiple of vy, L[vy, v2] = L[v;], a line.
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Llvq, vy)

X3

d

X

If v, is not a multiple of v,, then the set L]vy, v,] is a plane.

we write

Vi =71rVy Or Vi — vy = 0 (1)
for some scalar r;. If v, is a-multiple of v;, we write

Vo, =rvy Oof rvy;—vy; =20 2)

for some scalar r,. We can combine statements (1) and (2) by defining v; and v,
to be linearly dependent if there exist scalars ¢; and c,, not both zero, so that

vy + cpvy = 0, C1 Or ¢, nonzero. 3

In Exercise 11.1 below, you are asked to show that (3) is an equivalent definition
to (1) and (2).

From this point of view, we say that v, and v, are linearly independent if
there are no scalars ¢; and c;, at least one nonzero, so that (3) holds. A working
version of this definition is the following:

vectors v; and v, are linearly independent if

(4)

avi+cvy=0 = c¢=c=0.

This process extends to larger collections of vectors. The set of all linear
combinations of three vectors vy, v, and vs,

L[vy, v, V3] = {r1vy + rzv2 + r3v3 1 1y, rp r3 € R},

Figure
113



Figure
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yields a three-dimensional space, provided that no one of v|, v,, and v; is a linear
combination of the other two. If, say, v; is a linear combination of v, and v,, that
is, v3 = ryv, + ryv,, while v; and v, are linearly independent, then L[v,, v;] is a
plane and v lies on this plane; so all combinations of vy, va, and v3, £[v, vy, v3],
yield just the plane L[v), v2], as pictured in Figure 11.4. As béfore, we say that
vy, V2, and v; are linearly dependent if one of them can be written as a linear
combination of the other two. The working version of this definition is that some
nonzero combination of vy, v,, and v; yields the 0-vector:

V), V2, v3 are linearly dependent if and only if there exist scalars

)
¢y, €1, €3, not all zero, such that ¢,v; + cav> + c3v3 = 0.
Conversely, we say:
V), Vi, V3 are linearly independent if and only if
(6)

civy + Vs +c3vy =0 = cp=cx=c¢c3=0.

L[v,, vy, v3] is a plane if v3 is a linear combination of v, and v,.

It is straightforward now to generalize the concepts of linear dependence and
linear independence to arbitrary finite collections of vectors in R" by extending
definitions (5) and (6) in the natural way.

Definition Vectors vy, v, ..., v, in R® are linearly dependent if and only if
there exist scalars ¢y, ¢y, . . ., ¢k, not all zero, such that

vy v+ -+ v = 0.

Vectors vy, vy, ..., V4 in R" are linearly independent if and only if c;v; + - - - +
cxvy = 0 forscalars ¢y, ..., ¢, implies thatc; = -+ = ¢, = 0.
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Example 11.1 The vectors

| 1 0
0 0
e = N EEERR e, =
0 1
in R" are linearly independent. because if ¢, .. ., ¢, are scalars such that ¢ e; +
c.ext -ty = 0.
| 0 0 ) 0
| 0 (o] 0
Cl . + C: . + tte + C” . = . =
0 0 1 cy 0
The last vector equation implies that¢; = ¢ = -+ =¢, = 0.

Example 11.2 The vectors

1 4 7
w,=(2), w3=(5 , and w3=(8
3 6 9

are linearly dependent in R?, since

()= ) 6)-0)

as can easily be verified.

Checking Linear Independence

How would one decide whether or not w;, w,, and wy in Example 11.2 are linearly
independent starting from scratch? To use definition (5), start with the equation

1 4 7 0
C1 2|+ C2 S|+ C3 8 = 0 ’ (7)
3 6 9 0
and solve this system for all possible values of ¢y, ¢;, and c3. Multiplying system
(7) out yields
1(,‘1 + 462 + 7C3 =0

2C1 + 5C2 + 8C3 =0 (8)
3C1 + 6(,‘2 + 9C3 = 0,
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a system of linear equations in the variables ¢y, ¢3, and c3. The matrix formulation
of system (8) is

1 4 7 c1 0
25 8|lca|=1]0 )
3 6 9 C3 0

Note that the coefficient matrix in (9) is simply the matrix whose columns are the
original three vectors w;, w, and ws. So, the question of the linear independence
of w,;, w,, and w; reduces to a consideration of the coefficient matrix whose
columns are w,, w,, and w3. In that case, we reduce the coefficient matrix to its
row echelon form:

1 4 7 1 4 7
2 5 8|={0 -3 -6,
369 0 0 o0

and conclude that, because its row echelon form has a row of zeros, the coefficient
matrix in (9) is-singular and therefore that system (9) has a nonzero solution (in
fact, infinitely many). One such solution is easily seen to be

c=1 ¢=-2 and c3=1,

the coefficients we used in Example 11.2. We conclude that wy, w,, and w; are
linearly dependent.

The analysis with w;, w,, and w3 in the previous example can easily be
generalized to prove the following theorem by substituting general vy,..., v; in
steps (7) to (9) for w;, w,, and w5 in Example 11.2.

Theorem 11.1  Vectors vy, ..., v, in R™ are linearly dependent if and only if
the linear system

Ck
has a nonzero solution (cy, . . ., ¢x), where A is the n X k matrix whose columns

are the vectors vy, ..., v; under study:

A=(v1 vy =+ W)

The following is a restatement of Theorem 11.1 for the case ¥ = n, using the
fact that a square matrix is nonsingular if and only if its determinant is not zero.
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Theorem 11.2 A set of n vectors vy,..., v, in R" is linearly independent if
and only if

det(viy vy -+ v,)#0.

For example, the matrix whose columns are the vectors ey,...,e, in R® in
Example 11.1 is the identity matrix, whose determinant is one. We conclude from
Theorem 11.2 that ey, ..., e, form a linearly independent set of n-vectors.

We can use Theorem 11.1 to derive a basic result about linear independence.
It generalizes the fact that any two vectors on a line are linearly dependent and
any three vectors in a plane are linearly dependent.

Theorem 11.3 If k > n, any set of k vectors in R" is linearly dependent.

Proof Letv,,..., v, bek vectors in R" with k > n. By Theorem 11.1, the v;’s
are linearly dependent if and only if the system

€1
Ac=(vy v2 - v)|l i |=0
Ck

has a nonzero solution ¢. But by Fact 7.6 in Section 7.4, any matrix A with more
columns than rows will have a free variable and therefore Ac = 0 will have
infinitely many solutions, all but one of which are nonzero. B

EXERCISES

11.1 Show that if (1) or (2) holds, then (3) holds and, if (3) holds, then (1) or (2) holds.
11.2 Which of the following pairs or triplets of vectors are linearly independent?

a) (31) (1,2) b) (2 1), (—4,-2);
¢) (1,1,0) (0,1,1);  d) (1,1,0), (0,11) (1,0,1).

11.3 Determine whether or not each of the following collections of vectors in R4 are
linearly independent:

1IN /1\ /0 1 I\ /1
ol [o] [o 0 o] {o
Diilblol 1P 21l =110
o/ \1/ \u 0 o/ \o

11.4 Prove that if (4) holds, then v; is not a multiple of v, and v is not a multiple of v,.
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11.5 a) Show thct if vy, va, and v; do not satisfy (5), they satisfy (6), and vice versa.
b) Show that (5) is equivalent to the statement that one of v, va, and vy is a linear
combination of the other two.
11.6 Prove that any collection of vectors that includes the zero-vector cannot be linearly
independent.
11.7 Prove Theorem 11.1.
11.8 Prove Theorem 11.2.

11.2 SPANNING SETS

Let vy, ..., v be a fixed set of k vectors in R". In the last section, we spoke of the
set of all linear combinationsof vy, ..., v,

Lvy,...,%]={cvi+ - +cgv:c,...,cx ER},
and called it the set generated or spanned by vy, . .., V.
Suppose that we are given a subset V of R". It is reasonable to ask whether

or not there exists vy, ..., v, in R" such that every vector in V can be written as a
linear combination of vy,..., v4:

V= L]vy,..., %] (10)
When (10) occurs, we say that vy, ..., v, span V.

Example 11.3 Every line through the origin is the span of a nonzero vector on the
line. For example, the x;-axis is the span of ; = (1,0, ..., 0), and the diagonal
line

A ={(aa,...,a) ER":a ER}

is the span of the vector (1, 1,..., 1).

Example 11.4 Tke xyx;-plane in R? is the span of the unit vectors e; = (1, 0, 0)
and e; = (0, 1, 0), because any vector (g, b, 0) in this plane can be written as

BROR)

Example11.5 The n-dimensional Euclidean space itself is spanned by.the vectors
| ey, ..., e, of Example 11.1. For, if (a;, . .., a,) is an arbitrary vector in R®, then
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We can write
a 1 0 0
a 0 1 0
. = a : + ar . + -+ an .
a, 0 0 1

Example 11.6 Different sets of vectors can span the same space. For example,

each of the following sets of vectors spans R2:
NONG!
0 () ()
0B O 0
) () )
) (2 () 6

Theorem 11.1 presented a matrix criterion for checking whether a given set of
vectors is linearly independent. The following theorem carries out the analogous
task for checking whether a set of vectors spans.

Theorem 11.4 Let vy,..., v, be a set of k vectors in R". Form the n X k
matrix whose columns are these v;’s:

A=(vy v2 - W) (11)

Let b be a vector in R". Then, b lies in the space L[v;, ..., v;] spanned by
V4, ..., Vi if and only if the system Ac = b has a solution c.

Proof Write vy,..., v4 in coordinates as

Vi1 Vi1
\ N

Vin Vin
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Then, b is in L[vy,..., v;] if and only if we can find ¢y, . .., ¢4 such that

vy + -+ vy = b,

Vi Vi1 b,
or al |+ tal 1= ]
Vin Vin bn

or v+ v = by

CVin t -+ Gy = bm

Vit o Vki C b

(12)

or .
Vin " Vin Ck bn

So,b € L]vy,..., vi] if and only if system (12) has a solutionc. H

The following corollary of Theorem 11.4 provides a simple criterion for whether
or noi a given set of vectors spans all of R". Its proof is left as a simple exercise.

Theorem 11.5 Letv,,..., v, be acollection of vectors in R". Form the n X k
matrix A whose columns are these v;’s, as in (11). Then, vy,..., v; span R" if
and only if the system of equations Ax = b has a solution x for every right-hand
side b,

In Example 11.5, we found 1 vectors that span R™. In Example 11.6, we listed
various collections of two or three vectors that span R2. Clearly, it takes at least
two vectors to span R2. The next theorem, which follows easily from Theorem

11.5, states that one needs at least n vectors to span R".

Theorem 11.6 A set of vectors that spans R™ must contain at least n vectors.

Proof By Theorem 11.5, vy,..., v, span R" if and only if system (12) has a
solution ¢ for every right-hand side b € R". Fact 7.7 tells us that if system (12)
has a solution for each right-hand side, then the rank of the coefficient matrix
equals the number of rows, n. Fact 7.1 states that the rank of the coefficient
matrix is always less than or equal to the number of columns, k. Therefore, if k
vectors span R", then n < k. B

EXERCISES

11.9 a) Write (2, 2) as a linear combination of (1, 2) and (1, 4). '
b) Write (1, 2, 3) as a linear combination of (1, 1, 0), (1,0, 1), and (0, 1, 1).
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1 4 0
1110 Do (2), ( 5 ),and (8) span R*? Explain.
3 12 0

11.11 Prove Theorem 11.5.

11.3 BASIS AND DIMENSION IN R"

If we have a spanning set of vectors, we can always throw in 0 or any linear
combination of the vectors in the spanning set to create a larger spanning set.
But what we would really like to do is to go the other way and find an efficient

spanning set.

Example 11.7 Let W be the set of all linear combinations of v, = (1,1, 1),
va = (I, —1,—1), and v3 = (2,0,0) in R*: W = L[vy, v, v3]. Note that
v3 = v, + v,. Thus, any vector which is a linear combination of v,, ¥, and v3
can be written as a linear combination of just v, and v,, because if w € W, then
there are scalars a, b, and c such that

w = av, + bv, + cv;
=av, + bvy + ¢(v; + v,)

= (u + C)V| + (b + C)Vg.

The set {v|, v,} is a more “efficient” spanning sef than is the set {v,, va, v3}.

For the sake of efficiency, if v, ..., v, span V, we would like to find the smallest
possible subset of vy, ..., v4 that spans V. However, this is precisely the role of the
concept of linear independence that we considered in Section 11.1. If vy,..., v
are linearly independent, no one of these vectors is a linear combination of the
others and therefore no proper subset of vy,..., v spans L[v,,..., vt]. The set
Vi,..., Vg spans L[vy,..., v,] most efficiently. In this case, we call v,..., v, a
basis of L[v,,..., v4]. Since L[v,,..., v] can be spanned by different sets of
vectors, as illustrated in Example 11.6, we define a basis more generally as any
set of linearly independent vectors that span L]vy,..., v;].

Definition Let vy,..., v, be a fixed set of k vectors in R™. Let V be the set
L]v),..., v,] spanned by vy, ..., v,. Then, if v,,..., v, are linearly independent,
Vi, ..., Vg is called a basis of V. More generally, let w, ..., w,, be a collection of
vectors in V. Then, wy, ..., w,, forms a basis of V if:

(a) wy, ..., w, span V, and
(b) wy,..., Wy, are linearly independent.
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Example 11.8 We conclude from Examples 11.1 and 11.5 that the unit vectors

1 0
0 0
e = . A .
0 1

form a basis of R". Since this is such a natural basis, it is called the canonical
basis of R".

Example 11.9 Example 11.6 presents five collections of vectors that span R,
By Theorem 11.3, collections ¢ and e are not linearly independent since each
contains ‘more than two vectors. However, the collections in a, b and d are
linearly independent (exercise), and therefore, each forms a basis of R2.

Notice that each basis in R? singled out in Example 11.9 is composed of two
vectors. This is natural since R? is a plane and two linearly independent vectors
span a plane. The following theorem generalizes this result to R".

Theorem 11.7 Every basis of R" contains n vectors.

Proof By Theorem 11.3, a basis of R" cannot contain more than » elements;
otherwise, the set under consideration would not be linearly independent. By
Theorem 11.6, a basis of R" cannot contain fewer than n elements; otherwise,
the set under consideration would not span R". It follov's that a basis of R"
must have exactly n elements. B

We can combine Theorems 11.1, 11.2, and 11.5 and the fact that a square matrix
is nonsingular if and only if its determinant is nonzero to achieve the following
equivalence of the notions of linear independence, spanning, and basis for n vectors
in R™.

Theorem 11.8 Letv,,...,v, be a collection of n vectors in R". Form the
n X n matrix A whose columns are these vj’s: A = (v; v, -+ v,).
Then, the following statements are equivalent:

(a) vy,...,v, are linearly independent,
(b) vy,...,v,span R",
(¢) vy,...,v, form a basis of R", and

(d) the determinant of A is nonzero.
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Dimension

The fact that every basis of R™ contains exactly n vectors tells us that there
are n independent directions in R". We express this when we say that R" is
n-dimensional. We can use the idea of basis to extend the concept of dimension to
other subsets of R". In particular, let V be the set L[vy, ..., v;] generated by the
set of vectors vy, ..., v,. If vi. ..., v, are linearly independent, they form a basis
of V. In Chapter 27, we prove that every basis of V has exactly k vectors — the
analogue of Theorem 11.7 for proper subsets of R". This number k of vectors in
every basis of V is called the dimension of V.

EXERCISES

11.12  Which of the following are bakes of R??

o (1)(3) o ()(3) o ()(3) () (o)

11.13  Show that the collections in a, b and d in Example 11.6 form a basis of R2.
11.14 Which of the following are bases in R3?

(6 GG 2 M)
o (CHE) o ()G

11.15 Prove Theorem 11.8:

11.4 EPILOGUE

This completes our introduction to linear independence, spanning, and dimension.
You may want to delve more deeply into these topics before going on to the study
of nonlinear functions in Part 3. If so, the following chapters of more advanced
material would fit in naturally here:

Chapter 27: Subspaces Attached to a Matrix  As the coritinuation of Chapter
11, this chapter defines an abstract vector space and its subspaces and carries the
notion of dimension to such spaces. As important examples, it studies three sub-
spaces attached to any matrix: the row.space, the column space, and the nullspace.
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It concludes with a complete characterization of the size, that is, dimension, of the
set of solutions to a system of linear equation Ax = b.

Chapter 28: Applications of Linear Independence This chapter presents
applications of the material in Chapters 11 and 27 to portfolio analysis, activity
analysis, and voting paradoxes.



