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Preliminaries Static logit model for binary and ordinal panel data

Static logit model model for binary panel data

For a sequence of binary responses yit and corresponding vectors of

covariates x it , the static logit (SL) model (see Hsiao, 2022, for a

review) assumes that:

yit = I{y∗it > 0}
y∗it = αi + x ′

itβ + εit , i = 1, . . . , n, t = 1, . . . ,T

I{·}: indicator function
αi : individual-specific intercept (unobserved heterogeneity),

considered as a fixed parameter

β: regression coefficients for the covariates

εit : idiosyncratic error term having standard logistic distribution

Incidental parameters problem (Neyman and Scott, 1948): with fixed

T , the maximum likelihood (ML) estimator of β is not consistent
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Preliminaries Conditional maximum likelihood (CML) estimation

Conditional maximum likelihood (CML) estimation

The joint probability of y i = (yi1, . . . , yiT )
′ is

p(y i |αi ,X i ) =
T∏
t=1

exp[yit(αi + x ′
itβ)]

1 + exp (αi + x ′
itβ)

=
exp (αiyi+) exp

[
(
∑

t yitx it)
′
β
]∏

t [1 + exp (αi + x ′
itβ)]

,

X i : matrix of all covariates for unit i

yi+ =
∑

t yit (total score): sufficient statistic for the intercept αi

The conditional probability of y i , given yi+, does not depend on αi :

p(y i |αi ,X i , yi+) =
exp

[
(
∑

t yitx it)
′ β

]∑
z :z+=yi+

exp
[
(
∑

t ztx it)
′ β

] = p(y i |X i , yi+)

∑
z :z+=yi+

: sum over all vectors of binary variables z = (z1, . . . , zT )
′

such that z+ = yi+, where z+ =
∑

t zt
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Preliminaries Conditional maximum likelihood (CML) estimation

The corresponding conditional log-likelihood has expression

ℓ(β) =
n∑

i=1

I(0 < yi+ < T ) log p(y i |X i , yi+)

I(0 < yi+ < T ) takes into account that observations whose total score

is 0 or T do not contribute to the likelihood

ℓ(β) is maximized with respect to β by the Newton-Raphson (NR)

algorithm obtaining the CML estimator β̂, which is consistent for

fixed T as n → ∞ and with asymptotic normal distribution

Standard errors for β̂ may be obtained from the information matrix

that is of simple computation
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Preliminaries Conditional maximum likelihood (CML) estimation

Case of ordinal variables

With ordinal responses having J > 2 categories (from 0 to J − 1), yit
is tied to y∗it through the observation rule

yit =
J−1∑
j=0

j · I{τj ≤ y∗it < τj+1}

τ0 < τ1 < · · · < τJ−1 < τJ : thresholds (τ0 = −∞, τJ = ∞)

A proportional odds regression model (McCullagh, 1980) based on

global-logits results:

log
p(yit ≥ j |αit , xit)

p(yit < j |αit , xit)
= αi + x′itβ + τ∗j , j = 1, . . . , J − 1

τ∗j : intercepts related to the thresholds τj
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Preliminaries Conditional maximum likelihood (CML) estimation

CML estimation is applied after the outcomes are dichotomized in all

the possible ways (Baetschmann et al., 2015):

y
(j)
it = I{yit ≥ j}, j = 1, . . . , J − 1

The conditional log-likelihood is modified as:

ℓ(β) =
J−1∑
j=1

n∑
i=1

log p(y
(j)
i |Xi , y

(j)
i+ )

y
(j)
i = (y

(j)
i1 , . . . , y

(j)
iT ): vector of dichotomized outcomes at level j

This dichotomization method can be generally used in many contexts,

so as to adapt models for binary data to ordinal data
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Preliminaries Quadratic exponential model

Quadratic exponential model

An extension of the SL model allowing for serial dependence is the

Quadratic Exponential (QE) model defined in Bartolucci and Nigro

(2010) and based on the family of distributions for multivariate binary

data proposed by Cox (1972)

The QE model directly formulates the conditional distribution of y i :

p(y i |δi ,X i , yi0) =
exp [yi+δi +

∑
t yitx

′
itη1 + yiT (ϕ+ x ′

iTη2) + yi∗ψ]∑
z exp[z+δi +

∑
t ztx

′
itη1 + zT

(
ϕ+ x ′

iTη2

)
+ zi∗ψ]

δi : individual specific intercept

η1: parameters for the covariates (ϕ and η2 are not of main interest)

ψ: parameter for the serial dependence

yi∗ =
∑

t yi,t−1yit∑
z : sum over all possible binary vectors z = (z1, . . . , zT )
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Preliminaries Quadratic exponential model

The QE model allows for state dependence and unobserved

heterogeneity other that the effect of covariates

An important distinction is between:

true state dependence (Heckman, 1981): due the effect that

experiencing a particular event in the present has on the probability of

the same event occurring in the future (e.g., direct effect of being

employed this year has on the probability of being employed next year)

spurious state dependence: corresponding to the individual

time-invariant unobserved heterogeneity due to unobservable factors

(e.g., motivational factors)

Under the QE model, each yi+ (total score) is a sufficient statistic for

the incidental parameter δi (main advantage with respect to other

extensions of the SL model for state dependence)
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Main extensions of CML in the context of panel data

Main extensions of CML

in the context of panel data
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Main extensions of CML in the context of panel data Estimation of the dynamic logit model

1. Estimation of the dynamic logit model

The dynamic logit (DL) model assumes:

yit = I{y∗it > 0}
y∗it = αi + x ′

itβ + yi ,t−1γ + εit , i = 1, . . . , n, t = 1, . . . ,T

γ: regression coefficient for the lag-response (true state dependence)

Differently from the SL model (γ = 0), the total score yi+ is not a

sufficient statistic for the incidental parameter αi

CML estimation is viable:

in absence of covariates with T = 3 (Chamberlain, 1980)

with covariates on basis of a weighted conditional log-likelihood

(Honoré and Kyriazidou, 2000); the (HK) estimator is consistent only

under certain conditions on the covariates (time dummies cannot be

included), but the rate of convergence is slower than
√
n
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Main extensions of CML in the context of panel data Estimation of the dynamic logit model

Pseudo CML (PCML) estimation of the DL model

Bartolucci and Nigro (2012) proposed an estimation method of the

structural parameters θ = (β′, γ)′ of the DL model based on

approximating it by a modified version of the QE model

The approximating QE model is based on a Taylor series expansion of

the log-probability of y i under the DL model around αi = ᾱi , β = β̄

Probability of y i under the approximating model:

p̃(y i |αi ,X i , yi0) =
exp(yi+αi +

∑
t yitx

′
itβ + yi∗γ −

∑
t>1 q̄ityi ,t−1γ)∑

z exp(z+αi +
∑

t ztx
′
itβ + zi∗γ −

∑
t>1 q̄ityi ,t−1γ)

q̄it =
exp(ᾱi + x ′

itβ̄)

1 + exp(ᾱi + x ′
itβ̄)

: probability of success at occasion t
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Main extensions of CML in the context of panel data Estimation of the dynamic logit model

Features of the approximating model

The model is similar to the initial QE model (Bartolucci and Nigro,

2010): the main difference is the inclusion of the correction term

−
∑

t>1 q̄ityi ,t−1γ

The approximating model coincides with the true DL model when

γ = 0 (absence of state dependence) and in general the two models

share many common properties in terms of dependence between the

response variables

Under the approximating model, each yi+ is a sufficient statistic for

the incidental parameter αi ; then, the incidental parameters may be

removed by conditioning on these statistics
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Main extensions of CML in the context of panel data Estimation of the dynamic logit model

Two-step estimator

The PCML estimator is based on two steps:

1 obtain β̄ as the CML estimate of β under the SL model, by maximizing

ℓ̄(β) =
n∑

i=1

I{0 < yi+ < T}ℓ̄i (β),

ℓ̄i (β) = log
exp(

∑
t yitx

′
itβ)∑

z :z+=yi+
exp(

∑
t ztx

′
itβ)

,

and the corresponding ᾱi by ML estimation, so as to obtain the q̄it

2 estimate θ by maximizing the conditional log-likelihood of the

approximating model

ℓ̃(θ|β̄) =
n∑

i=1

I{0 < yi+ < T}ℓ̃i (θ|β̄),

ℓ̃(θ|β̄) = log p̃θ|β̄(y i |X i , yi0, yi+),

by a simple NR algorithm similar to that used for CML estimation of

the initial QE model
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Main extensions of CML in the context of panel data Estimation of the dynamic logit model

Asymptotic properties of the PCML estimator θ̃ = (β̃
′
, γ̃)′ are studied

under the DL model, showing that when γ0 = 0 the estimator is

consistent; otherwise the estimator converges to a point “close” to

the true parameter value

Finite-sample properties are studied by simulation under different
settings; main conclusions:

the PCML estimator has negligible bias when γ0 is close to 0 and a

reduced bias even for values of γ0 rather different from 0

confidence intervals based on the PCML estimator usually attain the

nominal coverage level even for γ0 far from 0

the PCML estimator outperforms the HK estimator, in particular for

short panels and for high values of γ

The PCML estimator is also much simpler to compute than the HK

estimator and can be used with T ≥ 2 instead of T ≥ 3 and with no

limitations on the covariate structure
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Main extensions of CML in the context of panel data Testing for true state dependence

2. Testing for true state dependence

Apart from estimation of the state dependence parameter under the

DL model, an important issue is testing that H0 : γ = 0 (absence of

state dependence)

The nonparametric test proposed by Halliday (2007) is based on the

construction of conditional probability inequalities that depend only

on the sign of the state dependence parameter γ under the DL model,

avoiding distributional assumptions on the unobserved heterogeneity

parameters

The test cannot be directly generalized to T > 2 and there are some

difficulties in the presence of individual covariates
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Main extensions of CML in the context of panel data Testing for true state dependence

In principle, both (initial and modified for PCML) versions of the QE

model (Bartolucci and Nigro, 2010, 2012) could be use to test H0 by

a t-test

The reason why the QE models (initial and modified) may be used to

test for state dependence is that they include the SL model as a

special case and then the DL model under H0

The same happens for a simplified version, named QE1, based on the

assumption

p1(y i |δi ,X i , yi0) =
exp(yi+δi +

∑
t yitx

′
itϕ+ yi∗ψ)∑

z exp(z+δi +
∑

t ztx
′
itϕ+ zi∗ψ)
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Main extensions of CML in the context of panel data Testing for true state dependence

Hypothesis H0 may be tested on the basis of the QE1 model:

1 ϕ and ψ are estimated by the CML method based on the NR algorithm

similar to that available for the initial QE model (the estimator is
√
n

consistent), obtaining ϕ̂1 and ψ̂1

2 the test statistic

W1 =
ψ̂1

se(ψ̂1)

is used (it has asymptotic N(0, 1) distribution under H0)

Though the test is asymptotically unbiased and may be used even

with T > 2 and covariates, Bartolucci et al. (2023) noted that it is

less powerful than that proposed by Halliday (2007) in certain

particular cases
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Main extensions of CML in the context of panel data Testing for true state dependence

A modified version of the QE model: QE2 model

A different version of the QE model (Bartolucci et al., 2023), named

QE2, is defined as

p2(y i |δi ,X i , yi0) =
exp(yi+δi +

∑
t yitx

′
itϕ+ ỹi∗ψ)∑

z exp(z+δi +
∑

t ztx
′
itϕ+ z̃i∗ψ)

ỹi∗ =
∑

t I{yit = yi,t−1}

The difference between QE1 and QE2 is in how the association

between the response variables is accounted for

In QE2, it is based on the statistic ỹi∗ that, differently from yi∗, is

equal to the number of consecutive pairs of outcomes which are equal

each other, regardless if they are 0 or 1
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Main extensions of CML in the context of panel data Testing for true state dependence

The different association modeling allows us to use a larger set of

information with respect to the basic model QE1 in testing for state

dependence

CML estimation of the QE2 model and testing for state dependence is

performed in a very similar way as for the QE1 model

Once the parameters of QE2 are estimated, we use a t-statistic of type

W2 =
ψ̂2

se(ψ̂2)

Under the DL model with strictly exogenous covariates, if H0 : γ = 0

holds, the test statistic W2 has asymptotic distribution N(0, 1) as

n → ∞

If γ ̸= 0, W2 is expected to diverge to +∞ or −∞ according to

whether γ is positive or negative
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Main extensions of CML in the context of panel data Testing for true state dependence

We also proposed an extension of the test to deal with:

ordered response variables (considering all possibly dichotomizations of

the response categories)

predetermined covariates (when x it may depend on yi,t−1)

The finite sample properties of the method are studied by simulation,
showing that:

the test based on QE2 model has more power than the test based on

QE1 model

both tests always attain the nominal significant level under H0

when T = 2 and in absence of covariates, the test of Halliday (2007)

and that based on QE2 model have a very similar behavior

in the other cases the Halliday’s test has an unsatisfactory behavior

and, in particular with covariates, it has a wrong significance level

under H0
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Main extensions of CML in the context of panel data Testing for time-invariant unobserved heterogeneity

3. Testing for time-invariant unobserved heterogeneity

An important element when modeling panel data is the treatment of

unobserved heterogeneity, that is typically assumed to to be time

invariant

A more general version of the SL model is based on assuming that y∗it
follows the linear model

y∗it = αit + x′itβ + εit , i = 1, . . . , n, t = 1, . . . ,T

αit : unobservable unit-specific time-varying effects

yit is related to y∗ij by the same observation rules introduced for the

SL model depending on the binary or ordinal nature of the responses
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Main extensions of CML in the context of panel data Testing for time-invariant unobserved heterogeneity

Hypotheses of interest

Null hypothesis (H0): Unit-specific unobserved heterogeneity is

constant over time

αi1 = αi2 = · · · = αiT = αi , i = 1, . . . , n

Alternative hypothesis (H1): Unit-specific unobserved heterogeneity is

time-varying, with no a priori assumptions on how it evolves over time

Bartolucci et al. (2015) proposed a test of H0 vs H1 based on the

comparison of standard and pairwise CML estimators of β

Bartolucci et al. (UniPG) CML for binary and ordinal responses Rome, January 19th , 2024 24 / 42



Main extensions of CML in the context of panel data Testing for time-invariant unobserved heterogeneity

Standard and pairwise CML estimators

Regarding standard CML estimator β̂1:

under H0, β̂1
p→ β0

under H1, β̂1
p→ β1∗ ̸= β0

When yit is binary, the pairwise conditional log-likelihood has

expression

ℓ2(β) =
n∑

i=1

T∑
t=2

log p(yi ,t−1, yit |xi ,t−1, xit , yi ,t−1 + yit)

Regarding the pairwise CML estimator β̂2:

under H0, β̂2
p→ β0

under H1, β̂2
p→ β2∗ ̸= β0, with β2∗ ̸= β1∗ (in general)
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Main extensions of CML in the context of panel data Testing for time-invariant unobserved heterogeneity

Test implementation

We first consider the difference: δ̂ = β̂1 − β̂2

Under H0, both estimators are consistent: δ̂
p→ 0 and√

nδ̂
d→ N (0,V)

Under H1, the two estimators diverge: δ̂
p→ δ∗ ̸= 0 and

√
nδ̂

d→ N (δ∗,V∗)

The test statistic Hausman (1978) is then

U = nδ̂
′
V̂−δ̂

V̂−: generalized inverse of the estimate of V

Under H0, U
d→ χ2

k∗

k∗ = rank(V) ≤ k
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Main extensions of CML in the context of panel data Testing for time-invariant unobserved heterogeneity

The test may be also used with ordinal responses by using the

dichotomization rule

Being a pure specification test, the test may lack power in some cases

(Holly, 1982)

One such case is when unobserved heterogeneity effects are serially

correlated but the first-order autocorrelation is zero (e.g., some form

of seasonality)

To handle this case, we may generalize the test by considering all

possible pairs of observations for the same unit (in progress)

We analyzed the size and power of the proposed test using a set of

Monte Carlo experiments, confirming the good properties of the

proposed method
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Extension to network data

Extension to network data
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Extension to network data Model assumptions

Model assumptions

Network models are able to represent links between agents and have

application in trade and other fields (see De Paula, 2020, for a

review)

In the network, n nodes (agents) are observed and each pair of nodes

(i , j) can form a link without self-ties

A single link is represented as

yij =

{
1 if i is connected to j

0 otherwise

and the whole network is represented by the n × n adjacency matrix

Y with elements yij

Directed or undirected (yij = yji ) networks can be considered
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Extension to network data Model assumptions

The model of the link formation assumes that:

yij = I{y∗ij > 0}
y∗ij = x ′

ijβ + αi + γj + εij , i = 1, . . . , n, t = 1, . . . ,T

x ij : a vector of k dyad-specific covariates

β: homophily parameters

αi , γj : sender and receiver fixed-effects

εij : idiosyncratic shock following a standard logistic distribution
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Extension to network data Model assumptions

Likelihood function

The likelihood for an observed adjacency matrix Y has expression

L(β) = p(Y |X ,α,γ) =
n∏

i=1

n∏
j=1

p(yij |x ij , αi , γj) =

exp
(∑n

i=1

∑n
j=1 yijx

′
ijβ +

∑n
i=1 yi+αi +

∑n
j=1 y+jγj

)
∏n

i=1

∏n
j=1[1 + exp(x ′

ijβ + αi + γj)]

X collects x ij , i , j = 1, . . . , n, i ̸= j

α = (α1, ..., αn)
′, γ = (γ1, ..., γn)

′

yi+ =
∑n

j=1 yij : number of outgoing links from i

y+j =
∑n

i=1 yij : number of incoming links to j

As usual the ML estimation is affected by the incidental parameters

problem
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Extension to network data Model assumptions

Conditional Likelihood function

Sufficient statistics for α and γ:

y+ = (y1+, . . . , yn+)
′ : outdegree sequence of the nodes

y (+) = (y+1, . . . , y+n)
′: indegree sequence of the nodes

The conditional likelihood has expression

p(Y |X , y+, y (+)) =
p(Y |X ,α,γ)

p(y+, y (+)|X ,α,γ)
=

exp
(∑n

i=1

∑n
j=1 yijx

′
ijβ

)
∑

Z exp
(∑n

i=1

∑n
j=1 zijx

′
ijβ

)
∑

Z : sum over all possible adjacency matrices Z with the same degree

sequences as Y ; this sum makes the conditional likelihood

computationally intractable
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Extension to network data Model assumptions

The available solution (Charbonneau, 2017) consists in:

scanning all possible 2x2 submatrices in Y and picking those having a

two different values (0,1) in each row and column

building a composite conditional likelihood referred to all these

submatrices ℓC (β)

maximizing ℓC (β) with respect to β by a NR algorithm

The procedure may be seen as an extension for networks of the

method proposed by Bartolucci et al. (2015)
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Extension to network data MCMC-CML estimation procedure

MCMC-CML estimation procedure

Bartolucci et al. (2024) proposed a Markov Chain Monte Carlo

(MCMC) approximation (Geyer, 1991) of the conditional likelihood

function, getting rid of the intractable normalizing constant

Starting from a fixed parameter vector β̄, chosen as the ML estimate
of β, the proposed method consists in:

sampling n × n binary matrices having the same values of the sufficient

statistics as Y : this is performed by a Metropolis algorithm

(Metropolis et al., 1953) based on switching the values of certain

randomly selected rectangles (Diaconis and Gangolli, 1995) and

hexagons (Rao et al., 1996) in Y

maximizing a likelihood ratio between the conditional likelihood at β

and that at β̄: this is performed by a simple NR algorithm
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Extension to network data MCMC-CML estimation procedure

The estimator is consistent and has asymptotically normal distribution

under standard assumptions and given that the number of MCMC

iterations goes to ∞

Good finite sample properties are established by simulation in

comparison to the ML and the composite likelihood estimator, and

also in comparison to the bias corrected estimator of Fernández-Val

and Weidner (2016)

Overall the proposal overcomes computational intractability of CML,

although there is a computational burden of the Metropolis Algorithm
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Main conclusions and further developments

Main conclusions and further developments
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Main conclusions and further developments

Main features the CML method:

+ straightforward solution to the incidental parameters problem with

repeated observations for the same units (panel, network)

+ the estimator is of simple implementation (cquad package in R and

Stata, Bartolucci and Pigini, 2017; Bartolucci et al., 2020)

– the method crucially depends on the assumption of logistic distribution

for the error terms

– as for any other fixed-effects method, regression coefficients of the

covariates constant within the same unit are not estimable

Nowadays a competitive alternative is represented by bias corrected

estimators (Fernández-Val, 2009; Fernández-Val and Weidner, 2016), which

are more flexible in terms of assumptions, although of more complex

implementation and less efficient for specific models (Bartolucci et al., 2016;

Valentini et al., 2023, for a recent review)

There is still room for application of CML models for complex data

structures (e.g., dynamic network models for repeated adjacency matrices

across time)
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