
Statistical Learning
RED–Rome Economics Doctorate

Spring 2024

Syllabus

Instructor

Professor Franco Peracchi (peracchi@uniroma2.it)
Website: http://www.eief.it/eief/index.php/people/faculty-az?id=174.
Office hours: Thursday 4:00–5:30 pm, or by appointment.

Lectures

Monday, Tuesday and Wednesday, 11:00 am–1:00 pm, for three weeks, from March 11 to March 27,
2024.

Goal

The goal of this course is to introduce students to a set of tools for prediction, classification,
and causal analysis with complex (long and wide) datasets. This is a recently developed area in
statistics and econometrics which blends with parallel developments in computer science, in partic-
ular machine learning. The course encompasses a variety of supervised learning methods, derived
from both frequentist and Bayesian approaches, including “classical” methods for regression and
classification; asymptotic approximations vs. the bootstrap and other resampling methods; model
uncertainty, pre-testing and post-selection estimators; shrinkage estimators; principal components
and partial least squares; linear smoothers; projection pursuit, generalized additive models, and
neural networks; clustering; tree-based methods; and causal learning.

Software

This course relies on both R (https://www.r-project.org), a free software environment for statistical
computing and graphics, and Stata (https://www.stata.com), a commercial statistical package with
excellent data management and graphics capabilities, plus its own programming language (Mata).
Both run on MacOS, Unix and Windows, and are integrated with Python (https://www.python.
org). You can freely download the most recent version of R, version 4.3.2 (“Eye Holes”), from your
preferred CRAN mirror (http://cran.r-project.org/mirrors.html).

Grades

Homework 33%, Final exam 67%.

Homework

Spending a significant amount of time each week on the assigned homework is essential to learning
the material covered. Homework must be handed in class, on the dates indicated below. There is
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no credit for late homework. Working in group (up to 3 people) is strongly encouraged but each
student needs to hand in her/his own solution.

Homework due dates:

• Problem set 1: March 18.

• Problem set 2: March 25.

• Problem set 3: April 1.

Final exam

Following the exam/grading guidelines of RED–Rome Economics Doctorate, the file exam is a
classroom exam, scheduled for TBD.

Grading is in decimals with a maximum grade of 31. The minimum grade for a Pass is 18.

The exam covers all the material discussed in the course. The questions will resemble those assigned
in the homework.

Course outline

• Lecture 1 (March 11). Introduction. Approaches to statistical learning: Frequentist, Bayesian,
Fisherian and the maximum likelihood method.

• Lecture 2 (March 12). Linear models for prediction and causal analysis.

• Lecture 3 (March 13). Nonlinear models for prediction and classification. Asymptotic ap-
proximations vs. resampling methods.

• Lecture 4 (March 18). Model uncertainty and model selection: Classical pre-test estimators,
model selection criteria, cross-validation, post-selection estimators.

• Lecture 5 (March 19). Shrinkage: James-Stein estimators, ridge regression, LASSO and ex-
tensions, penalized M-estimation. Dimensionality reduction: principal component regression,
partial least squares.

• Lecture 6 (March 20). Linear smoothers: Polynomial regression, splines, kernel and nearest
neighbor methods, local polynomial fitting.

• Lecture 7 (March 25). Flexible learning methods with many covariates: Projection pursuit
regression, additive and generalized additive models, neural networks. Clustering: K-means
and hierarchical clustering (if time permits).

• Lecture 8 (March 26). Tree-based methods: Decision trees, bagging, random forests, boosting.

• Lecture 9 (March 27). Causal learning: Double-selection estimation, post double-selection
inference, causal trees.
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References

The recommended references are:
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hastie.su.domains/CASI files/PDF/casi.pdf.

• Efron B., and Tibshirani R. (1993). An Introduction to the Bootstrap. Chapman and Hall:
New York.

• Hansen B.E. (2022) Econometrics. Princeton University Press: Princeton (NJ).
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The Lasso and Generalizations. Chapman and Hall: New York [SLS]. Available at https:
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• Huber M. (2023). Causal Analysis. Impact Evaluation and Causal Machine Learning with
Applications in R. MIT Press: Cambridge (MA).

• Lancaster T. (2004). An Introduction to Modern Bayesian Econometrics. Blackwell: Malden
(MA).

• Leamer E. E. (1978). Specification Searches. Wiley: New York. Available at https://www.
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Suggestions for further reading will be provided in class.
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