
Soil consumption, organized crime, and WALS

Franco Peracchi
EIEF and UTV

UTV, January 19, 2024



Introduction

I In a sequence of papers with Giuseppe De Luca and Jan Magnus (De Luca,
Peracchi & Magnus, 2018, 2019, 2021, 2022, 2023, 2024), I have addressed
some general issues concerning covariate selection in linear models, inference
after model selection, model averaging, and the combination of Bayesian and
classical (frequentist) ideas.

I In more recent work with Cinzia Di Novi and Alessandro Flamini (Di Novi,
Flamini & Peracchi 2023), I have also investigated the effect of organized crime
on soil consumption, an important (especially for Italy) but understudied
research area. This work has given me the opportunity to think about
econometric practice as currently conducted.

I In this talk, I will try to bring together these two separate lines of research and
to draw some conclusions about empirical work, which I hope you may find of
interest.
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Soil consumption and organized crime

I Soil is a non-renewable natural resource that provides a number of ecosystem
services essential for life (carbon sequestration, water maintenance, food
production, etc.).

I The “consumption” of soil, or “soil consumption”, is the conversion of land with
healthy soil and intact habitats into areas for industrial agriculture, traffic (road
building) and especially urban human settlements (Wikipedia).

I Among the Italian regions, Apulia stands out because its soil consumption per
capita between 2006 and 2021 is about 12.5%, the second largest in the country
and more than three times the Italian average of 4% (SNPA, 2022).

I De Feo & De Luca (2017) provide indirect evidence of the effect of organized
crime on soil consumption at the municipal level in Sicily, where “[p]ublic
authorities may allow wilder urban expansion, overriding existing regulations, or
obscurely award public contracts to mafia-related entrepreneurs to reward the
mafia’s electoral support”.

I Using data from Apulia, I will provide direct evidence of this effect.
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Mafia expansion in Apulia

I Apulia represents a peculiar success story of mafia transplantation.

I The presence of organized crime in Apulia is a phenomenon that only emerged
in recent decades, as the Apulian Sacra Corona Unita–the fourth Italian mafia,
after Cosa Nostra (Sicily), Camorra (Campania) and ’Ndrangheta (Calabria)–
only started operating between the late 1970s and the early 1980s.

I Three reasons help explain this phenomenon:

• Close proximity of Apulia to Campania and Calabria, two regions
characterized by the presence of long-established mafia-type organizations
(Pinotti, 2015).

• Shifting interest of organized crime away from the “Tyrrhenian route” for
drug/tobacco smuggling (from Morocco to Marseille, Naples, and Sicily)
towards the “Adriatic route” (from the Balkans to the Eastern-Adriatic
ports to Apulia).

• Process of mafia diffusion through the forced resettlement program
(soggiorno obbligato) introduced in 1956, which required convicted/
suspected mafia bosses to take up residence in municipalities sufficiently
far from the mafia’s traditional areas of operation.
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Data

I My units of observation are Apulia’s 258 municipalities.

I The data have been constructed by merging several data sources containing the

following variables, all measured at the municipality level:

• soil consumption, 2006–2018 [Source: National System for Environmental
Protection Database], the outcome of interest (Figure 1a);

• number of arsons (incendi dolosi), 2004–2014 [Source: National Fire and
Rescue Service Database], a proxy for the local strength of organized
crime (Figure 1b);

• physical, demographic, and socio-economic variables [Sources: Istat
Population Census Database; Istat Municipal Database; Rete Urbana delle
Rappresentanze, 2003], as exogenous or control variables.

I Excluding municipalities with missing or zero values for soil consumption or the
number of arsons gives a working sample of n = 231 units.
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Figure 1: Soil consumption and number of arsons in Apulia

              

(a) Soil consumption, 2006–2018

                         

(b) Number of arsons, 2004–2014
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Figure 2: Soil consumption vs. number of arsons in Apulia
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The causal relation of interest

I Let Ci denote annual soil consumption in municipality i = 1, . . . , n during
2006–2018, let Ai denote the annual number of arsons during 2004–2014 (our
proxy for the strength of organized crime), and let Si be some scaling variable
(e.g. municipal surface area, population size, or population density).

I I assume there exist smooth functions g and h such that

g(Ci/Si ) = β0 + β1h(Ai/Si ) + εi , i = 1, . . . , n,

where εi is an unobservable error term capturing the effect of all other variables
that affect soil consumption.

I Letting g(u) = h(u) = ln u (as suggested by Figure 2) and εi = β′3Xi + ei for
some vector Xi of observable controls gives the “structural equation” (the
causal relation of interest)

ci = β0 + β1ai + β2si + β′3Xi + ei , i = 1, . . . , n,

where ci = lnCi , ai = lnAi , si = ln Si , and the elasticity β1 is the “focus
parameter”. All other parameters are treated as “nuisance parameters” as they
do not generally have a causal interpretation.
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Two approaches to estimating β1

I The “conditional mean independence” approach:

• Assume ai is uncorrelated with ei after conditioning on si and Xi , and
estimate β1 by OLS–a simple method with nice finite-sample properties if
this assumption is correct.

• The typical question with this approach is: What controls should be
included in Xi to avoid omitted variables bias?

I The “instrumental variables” approach:

• Allow ai to be endogenous, i.e. correlated with ei even after conditioning
on si and Xi–either because ai is an imperfect proxy for the presence of
organized crime, or because of the omission of unobservable determinants
of soil consumption that are correlated with ai (e.g. the degree of moral
integrity of municipal administrators/politicians).

• Assume there exists some valid instrument zi (i.e. uncorrelated with ei but
correlated with ai after conditioning on si and Xi ) and estimate β1 by IV
methods.

• With this approach, an additional question arises: What instrument(s)?
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The conditional mean independence approach
I The choice of controls should reflect expert knowledge about the problem.

I The set of controls is clearly not unique, and not all controls are equally useful.

I For a given sample size, the “best” set of controls should provide a “balance”
between bias (if the controls are “not enough”) and sampling variability (if they
are “too many”).

I This “bias-variance trade-off” is not a mechanical relationship: An additional
control cannot decrease sampling variability, but does not guarantee that the
bias goes down if the model remains “underspecified” (De Luca, Magnus &
Peracchi, 2018), a point also made by Clarke (2005, 2009) and Pearl (2011).

I As shown by De Luca, Magnus & Peracchi (2019), unless strong assumptions
are satisfied, this fact invalidates popular procedures, such as those proposed by
Altonji, Elder & Taber (2005) and more recently by Oster (2019).

I In my case, the expert knowledge is quite limited. As a result:

• there is little a priori knowledge of which controls to include in Xi ;

• even the few controls that one might include on a priori ground (e.g.
“municipal income”) are typically only defined in broad terms, so there is
also uncertainty about their precise definition.
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Free and doubtful controls
I Following Leamer (1985), I distinguish between controls that are “free” (always

included in Xi ) and “doubtful” (of which I am less certain).

I The free controls are binary indicators for provincial capital and coastal
municipality.

I The doubtful controls include socio-economic variables:

• indicators for educational attainments (fraction aged 15–19 with a
secondary degree, fraction aged 30–34 with a university degree, fraction
aged 6+ with a high school or bachelor degree, fraction aged 6+ with a
primary degree or less);

• indicators for local labor market conditions (unemployment rate, youth
unemployment rate, youth employment rate);

• composition of employment by industry or occupation (employment share
in construction, in manufacturing, in the services, in non-retail services,
fraction self-employed);

• income (GDP per employee).

I They also include demographic variables: population growth and indicators for
the age structure (aging index, fraction of children aged 0–5).

I I consider 16 doubtful controls in total.
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Standard model selection

I Since my main source of model uncertainty is which of the k = 16 doubtful
controls to include in Xi , my “model space” consists of the set M of all linear
models for ci containing the constant term, the variables ai and si , binary
indicators for provincial capital and coastal municipality as the “free regressors”
(those always present), and any subset of the doubtful controls.

I Thus, M contains J =
∑k

j=0

(k
j

)
= 2k models, including the model with no

doubtful controls (the “null model”, indexed as j = 1) and the model with all of
them (the “full model”, indexed as j = J).

I I henceforth denote by β̂1j the OLS estimate of β1 from the jth model in M.

I The typical approach to model uncertainty (“standard model selection”)

consists of two steps, both using the same data:

• choose a subset M0 ⊆M of models to explore, find the “best” model in
M0, then estimate β1 by the OLS estimate from the best model;

• carry out inference about β1 ignoring the data-driven first step.

I Standard model selection comes in two flavors, depending on whether the
exploration of M is carried out informally or formally.
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Informal explorations

I In this case, M0 typically contains a small number of models from M, often
cherry-picked after looking at the data.

I Table 1 illustrates this approach by presenting the OLS estimates of β1 for the
seven models (LS1–LS7) chosen by De Novi, Flamini & Peracchi (2023) under
the constraint that k ≤ 6.

I The table is an example of the tabular presentation of regression results that is
now standard.

I Ignoring the exceedingly simple first model, the OLS estimates of β1 vary little
in the other six models (ranging between .530 and .545), which essentially
makes it unnecessary to select a“best” model.

I But you should wonder why the table presents results only for this particular
subset of models and not for others . . .

(12/31)



Table 1: OLS estimates of β1 for selected models

Covariate LS1 LS2 LS3 LS4 LS5 LS6 LS7

Log arsons .619 .534 .530 .531 .531 .533 .545
(.041) (.060) (.047) (.048) (.049) (.048) (.049)

[.540, .700] [.416, .651] [.437, .624] [.437, .624] [.435, .628] [.438, .628] [.449, .642]

Aged 15–19 with x
secondary degree

Aging index x x x x x
Children aged 0–5 x x
Empl. in construction x x
GDP per employee x
Log surface area x
Log population density x x x x x
Pop. change 2001–2011 x x x x x
Self-employed x x x
Unemployment x x
Youth empl. 15–29 x x x
Youth unemployment x x

# observations 231 231 231 231 231 231 231
# parameters 4 9 8 9 9 10 11
# doubtful controls 0 4 3 4 4 5 6
Adjusted R2 .595 .648 .618 .616 .616 .615 .628

Notes: All models also include the constant term and binary indicators for municipal capital and coastal municipality.

Robust standard errors in parentheses, 95% confidence intervals in brackets.
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Formal explorations
I Formal explorations of M0 or M follow a well-defined set of rules for finding

the best model according to some selection criterion (e.g. adjusted R2, Mallows’
Cp , or AIC). The estimate of β1 is again the OLS estimate from the best model.

I An example is best-subset selection, which looks for the best model in M that
includes at most h ≤ k doubtful controls after exploring

∑h
j=0

(k
j

)
models.

I If h = k, one needs to explore the entire M. Even for moderate values of k, say
k ≥ 25, this is computationally infeasible. For example, 225 = 33, 554, 432 and
230 = 1, 073, 741, 824. Since 216 = 65, 536, exploring the entire M when
k = 16 is quite feasible (it takes about 2.5 hours on my MacBook).

I The average value of β̂1j over M is avg{β̂1j} = .579. The variance of β̂1j (a

measure of model uncertainty) is .00111, while the average variance of β̂1j (a

measure of sampling uncertainty) is .00216. Hence, overall uncertainty about β1

might be measured by .00111 + .00216 = .00327 or by
√
.00327 = .0572.

I Figure 3: Distribution of the OLS estimates of β1 over M (the “modeling
distribution” in the terminology of Young and Holsteen, 2017).

I Figure 4: Scatterplot of t-ratios and adjusted R2 over M.

I Table 2: Effect of each doubtful control on the estimates (an example of
“model influence analysis”).
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Figure 3: Distribution of the OLS estimates of β1 over M
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Figure 4: Scatterplot of t-ratios and adjusted R2 over M
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Table 2: Effect of each doubtful control on the estimates

Doubtful control ∆ coeff. ∆ t-ratio ∆ adj. R2

IndVec2001 -.05858 -4.2026 .05574
IncBamb2001 -.03592 -3.4901 .04600
Pop2011M2001 -.03562 -3.3378 .04558
IncGioC -.03617 -3.3417 .04561
LivIstG -.02060 -3.2220 .04585
AltIst -.03694 -3.2761 .04985
BasIst -.04354 -3.5784 .05002
TasDisGio -.02980 -3.4077 .04469
TasOcc1529A -.03310 -3.3122 .04485
CerSuFL -.03354 -3.3493 .04433
OccTerzExtraCom -.03364 -3.3595 .04462
OccManif -.03453 -3.3859 .04555
OccCos -.03182 -3.1283 .04569
OccSer -.03254 -3.3638 .04449
OccAutonom -.03423 -3.3249 .04433
PilxAddMigE -.03091 -3.4876 .04464

Null model .61298 15.8197 .59455

Notes: Each row shows the average difference between the estimate of β1 from all models that include a particular

control and that from the null model. Red and blue respectively denote the largest and smallest absolute differences.
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The problem with standard model selection

I Irrespective of whether the exploration of the model space M is informal or
formal, classical inferences after standard model selection need not have the
properties established by classical statistical theory–which assumes that the
model is fixed before seeing the data.

I The intuition is simple: “The selection of any aspect of a model or hypothesis
using the data introduces sampling variability into the model or hypotheses,
rendering random the specification process itself” (Kuchibhotla, Kolassa &
Kuffner, 2022).

I Post-selection estimators are complex objects to analyze, but typically they are
substantially biased, their distribution is quite far from the classical results
derived under the assumption of a fixed model, and confidence sets based on
classical distribution theory do not have the desired coverage level, not even
asymptotically (see e.g. Leeb & Pötscher, 2005).

I Model averaging can be used to avoid some of these problems.
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Enter WALS
I avg{β̂1j} is an example of model-averaging estimator, one giving equal weight

1/J to the OLS estimators of β1 from all models in M.

I The general form of a model-averaging estimator of β1 is:

β̄1 =
J∑

j=1

λj β̂1j ,

where the λj are non-negative weights that add-up to one and β̂1j is the OLS

(or some other) estimator of β1 in the jth model in M.

I There are many types of model-averaging estimators: Bayesian (with weights
based on Bayesian priors), frequentist (with weights based on model fit or
predictive accuracy), and hybrid. See Steel (2020) for a detailed review.

I An attractive one, for its computational simplicity and good MSE properties, is
the Weighted Average Least Squares (WALS) estimator introduced by Magnus,
Power & Prüfer (2010).

I WALS is simple to compute because it only requires three objects:

• the OLS estimates of the free parameters in the null model;

• the OLS estimates of the k doubtful parameters in the full model;

• a set of k shrinkage factors ω1, . . . , ωk (the “WALS weights”) obtained
from a preliminary “Bayesian step” based on a “neutral” prior.
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WALS estimates and WALS weights

I Using the updated Stata command wals (De Luca & Magnus, 2024) and its
default Pareto prior, the WALS estimate of β1 in my empirical problem is equal
to .562–only slightly below the average value of .576 of the OLS estimates over
M–and its 95% (asymmetric) confidence interval is equal to [.469, .653].

I The WALS weights ωh are bounded between 0 and 1, but do not add up to one.
How can we used them?

I ωh =
∑2k−1

j=1 λj , h = 1, . . . , k, so the WALS weights are akin to the posterior

model inclusion probabilities in a Bayesian analysis and can similarly be used for
model influence analysis.

I If the WALS weights are all equal to zero we obtain the OLS estimate β̂11 in the

null model, and if they are all equal to one we obtain the OLS estimate β̂1J in
the full model.

I Figure 5: The WALS weights in my empirical problem.
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Figure 5: The WALS weights in my empirical problem
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The instrumental variables approach

I If ai is endogenous, let zi be a valid instrument for estimating β1.

I In addition to the structural equation, now I can also consider the “first-stage
equation”

ai = γ0 + γ1zi + γ2si + γ′3Xi + ui , i = 1, . . . , n,

and the “reduced-form equation”

ci = δ0 + δ1zi + δ2si + δ′3Xi + vi , i = 1, . . . , n,

where ui and vi are unobservable mean-zero prediction errors, by construction
uncorrelated with zi , si , and Xi .

I If the structural equation is correctly specified, then

δ0 = β0 + β1γ0, δ1 = β1γ1, δj = β1γj + βj (j = 1, 2), vi = ei + β1ui .
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Just-identified IV estimators of β1
I Since δ1 = β1γ1 if the structural equation is correctly specified, and γ1 6= 0 if

the instrument is valid, solving out for β1 gives

β1 =
δ1

γ1

,

so the focus parameter is “just-identified”.

I Clearly β1 = 0 whenever δ1 = 0, a hypothesis that is easily tested using the
reduced-form equation (Chernozhukov & Hansen, 2008).

I Although just-identified IV models are quite special, they are very common in
empirical work.

I Because of the uncertainty about which of the k doubtful controls to include,
the first-stage and the reduced-form equations may each be specified in J = 2k

alternative ways, and so there are J alternative IV estimates of β1.

I Given OLS estimates γ̂1j of γ1 and δ̂1j of δ1 in the jth model, the resulting IV
estimate of β1 is

β̌1j =
δ̂1j

γ̂1j

, j = 1, . . . , J,

which coincides with the 2SLS estimate of β1 in the jth model.
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What instrument(s)?

I The forced resettlement program, 1956–1995.

I Figure 6: Number of forced resettlement in Apulia [Source: Questura di Bari].

I Validity of the proposed instrument when M consists of the J = 216 models

with population density as the scaling variable:

• Relevance: The value of the “first-stage F -statistic” (the square of the
t-statistic on γ1) is in most cases high enough to satisfy the conditions in
Angrist & Kolesár (2023).

• Assignment rule: The assignment of municipalities that are not provincial
capitals to the forced resettlement program cannot be predicted based on
available pre-1956 covariates and may be regarded as approximately
random.

• Balancing: Comparing means and standard deviations of the available
pre-1956 covariates across “treated” and “untreated” municipalities shows
no systematic differences between the two groups (provincial capitals are
excluded from the test because “ineligible”).

I Other possible instruments?
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Figure 6: Forced resettlements in Apulia, 1956–1995

                   

(25/31)



Table 3: OLS estimates of γ1 and δ1 and IV estimates of β1
(1) (2) (3) (4) (5) (6) (7)

OLS estimate of γ1 .457 .201 .506 .492 .486 .507 .494
(.173) (.140) (.142) (.141) (.138) (.139) (.137)

[.116, .799] [-.076, .478] [.226, .786] [.215, .769] [.215, .757] [.233, .781] [.224, .764]

OLS estimate of δ1 .567 .230 .592 .586 .583 .591 .583
(.144) (.130) (.126) (.127) (.124) (.128) (.125)

[.284, .849] [-.026, .487] [.391, .888] [.390, .889] [.392, .881] [.391, .895] [.386, .878]

IV estimate of β1 1.239 1.145 1.169 1.190 1.199 1.166 1.179
(.326) (.660) (.267) (.277) (.280) (.264) (.267)

[.597, 1.880] [-.155, 2.445] [.642, 1.696] [.645, 1.735] [.646, 1.751] [.645, 1.686] [.654, 1.705]

Aged 15–19 with x
secondary degree

Aging index x x x x x
Children aged 0–5 x x
Empl. in construction x x
GDP per employee x
Log surface area x
Log population density x x x x x
Pop. change 2001–2011 x x x x x
Self-employed x x x
Unemployment x x
Youth empl. 15–29 x x x
Youth unemployment x x

# observations 231 231 231 231 231 231 231
# parameters 4 9 8 9 9 10 11
# doubtful controls 0 4 3 4 4 5 6
First-stage F -statistic 7.09 2.05 12.70 12.27 12.51 13.33 13.03

Notes: See Table 1.
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Figure 7: Scatterplot of the OLS and IV estimates of β1
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Remarks
I The average value of the IV estimates of β1 over M is avg{β̌1j} = 1.038, much

larger than avg{β̂1j} = .579 for OLS.

I In fact, the IV estimates are always larger than the OLS estimates. This may be

explained by:

• Downward bias of the OLS estimates because the number of arsons is a
noisy measure of the local strength of organized crime.

• Downward bias of the OLS estimates because Xi omits variables that are
correlated with both soil consumption and the number of arsons, the two
correlations having opposite sign. One example is the degree of moral
integrity of municipal administrators/politicians.

• Variation in β1 across municipalities, in which case IV methods estimate a
“local average treatment effect” (LATE) that can be larger than the
average value of β1 across municipalities (the “average treatment effect”).

I The standard deviation of the IV estimates of β1 over M (a measure of model

uncertainty) is sd{β̌1j} = .062, much larger than sd{β̂1j} = .033 for OLS, while

the average standard error of β̌1j (a measure of sampling uncertainty) is .256.

I You may say: This is all very interesting, but what if one needs a single estimate
of β1 and is worried by the lack of transparency of dimensionality reduction or
regularization methods?
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Re-enter WALS
I Given WALS (or some other model-averaging) estimates γ̄1 of γ1 and δ̄1 of δ1, I

propose to estimate β1 by

β̃1 =
δ̄1

γ̄1

.

I I instead ignore another estimate of β1, namely the model-averaging estimate

β̄∗1 =
J∑

j=1

wj β̌1j ,

since (at least for now) I am not sure how to weigh the IV estimates β̌1j .

I In my empirical problem, using wals with its default Pareto prior gives:

• γ̄1 = .532 against avg{γ̂1j} = .498,

• δ̄1 = .495 against avg{δ̂1j} = .480,

• β̃1 = .495/.532 = .930 against avg{β̌1j} = 1.038.

I Issues to be addressed:

• Although
√
n-consistent, δ̄1 and γ̄1 are biased in finite samples.

I Consequently, β̃1 is also biased.

• Sampling distribution of β̃1.
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Conclusions about soil consumption and organized crime

I No matter what estimation method is employed, an increased strength of
organized crime–proxied by the number of arsons–appears to increase soil
consumption.

I The estimated elasticity of soil consumption to the number of arsons is less than
one if OLS or WALS are used, but greater than one when the binary indicator
for forced resettlement is used as instrument in a just-identified IV framework.
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Some general conclusions about empirical work

I Practitioners recognize the importance of model uncertainty but address it in a
haphazard and idiosyncratic way, and mostly ignore that standard model
selection may create problems for classical inference.

I “Regression tables” are useful tools for communicating results and for local
sensitivity analysis, but can only explore a small portion of the relevant model
space.

I When the model space is huge, e.g. because of a large number of covariates or
controls, you may question the choice of the necessarily small number of models
included in these tables.

I This choice is usually not aimed at assessing sensitivity over the model space, or
portions of it, but rather at convincing the audience (and, perhaps most
importantly, the referees) that the “reference model” is sufficiently “robust”.

I Whenever feasible, exploring the entire model space ensures transparency and
can provide useful insights.

I If you need a single estimate of the effect of interest, model averaging is more
intuitive than methods based on dimensionality reduction or regularization, and
likely more efficient than those based on sample splitting.
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