Login
Autenticazione studente

Accedi per la prima volta a questo portale?
Utilizza il seguente link per attivare il tuo utente e creare la tua password personale.
»  Crea / Recupera Password

Syllabus

EN IT

Obiettivi Formativi

OBIETTIVI FORMATIVI:
Il corso di Matematica Generale fornisce elementi teorici e pratici essenziali specifici dell'Analisi Matematica. Il corso affronta gli argomenti matematici di base dell'analisi matematica, quali lo studio di funzione, problemi di ottimizzazione e l’ algebra lineare, in modo funzionale alla trattazione di applicazioni di carattere economico e finanziario.

CONOSCENZA E CAPACITÀ DI COMPRENSIONE:
Le principali conoscenze acquisite includono i concetti di insieme, limite, funzione, derivata, integrale, vettore, rango, dipendenza ed indipendenza lineare, i sistemi di equazioni lineari,. Lo/la studente acquisisce le conoscenze di base per lo studio di una funzione e l'analisi di grafici.

CAPACITÀ DI APPLICARE CONOSCENZA E COMPRENSIONE:
Le principali abilità acquisite si realizzano nella messa in pratica delle conoscenze teoriche al fine di risolvere esercizi e problemi pratici, come lo studio di funzione e la risoluzione di sistemi lineari. In particolare, lo studio dei problemi di ottimizzazione e la risoluzione di sistemi lineari potranno essere applicati al fine di risolvere problemi di carattere economico.

AUTONOMIA DI GIUDIZIO:
Lo studio del corso di Matematica Generale consente di acquisire un metodo di studio, competenze logico-formali e capacita' di astrazione, fondamentali sia nell'applicazione degli studi in ambito professionale che per la prosecuzione degli studi in ambito teorico.

ABILITÀ COMUNICATIVE:
Il corso si prefigge di sviluppare competenze comunicative che permettano di esprimere in modo chiaro, esaustivo, eventualmente sintetico senza semplificazioni le conoscenze acquisite.

CAPACITÀ DI APPRENDIMENTO:
L'acquisizione di concetti e metodi matematici elementari aiuta a leggere e comprendere argomentazioni tecniche presenti in testi di divulgazione e articoli in modo autonomo, con particolare attenzione alle discipline economiche.

Prerequisiti

Numeri naturali, interi, razionali e irrazionali. Calcolo algebrico. Trigonometria. Equazioni e diseguaglianze di primo e secondo grado. Logaritmi.

Programma

Parte A)
Elementi di teoria degli insiemi. Operazioni tra insiemi: unione, intersezione, complementare, insieme delle parti e partizioni, prodotto cartesiano. Insiemi numerici: i numeri interi, razionali, reali e loro proprietà generali. Topologia della retta reale: insiemi aperti, chiusi, punti interni, esterni, di accumulazione, di frontiera, isolati, maggioranti, minoranti, estremo superiore, estremo inferiore di un sottoinsieme di R.

Parte B)
Funzioni reali di variabile reale. Funzioni crescenti, decrescenti, monotone, funzione composta, funzione inversa. Successioni di numeri reali: limite di una successione, proprietà ed esempi vari. Il numero "e". Serie numeriche, serie geometrica, serie armonica, criterio del rapporto. Le funzioni esponenziale e logaritmo: principali proprietà. Limiti di funzioni al finito e all'infinito: definizioni, esempi e proprietà.
Cenni sulle funzioni trigonometriche e loro inverse. Funzioni continue. Massimi e minimi locali e globali. Il teorema di Weierstrass, il teorema della permanenza del segno. Il teorema di esistenza degli zeri. Funzioni derivabili: definizione, esempi. Regole di derivazione. Derivate di ordine superiore. Concavità e convessità. Polinomio di Taylor. Teoremi di Rolle e di Lagrange. Forme indeterminate e teorema di de L'Hospital. Studio grafico di funzioni. Cenni di funzioni a più variabili e problemi di ottimizzazione libera.

Parte C)
L'integrale definito: definizione e principali proprietà. Integrale indefinito. Il teorema fondamentale del calcolo integrale. L'integrazione per parti e per sostituzione, integrali impropri.

Parte D)
Algebra Lineare: Spazi vettoriali. Matrici e sistemi lineari. Operazioni su matrici. Determinante e matrici invertibili. Rango di una matrice. I teoremi di Cramer e di Rouche-Capelli.

Testi Adottati

Carl P. Simon, Lawrence E. Blume, Matematica generale. Egea 2007

Bibliografia

L. Peccati, S. Salsa, A. Squellati, Matematica per l'economia e l'azienda, Egea (IV ediz)
A. Guerraggio, Matematica, Pearson (III ediz)
Marcellini, Sbordone. Matematica generale - (Liguori 2007)

Modalità di svolgimento

Lezioni frontali di 2 ore ciascun
Esercitazione settimanale di 2 ore.
Per controllare l'acquisizione delle nozioni "teoriche" e delle tecniche "pratiche" da parte degli studenti, oltre alle esercitazioni settimanali, sono previste simulazioni della prova scritta.

Regolamento Esame

L' esame finale prevede una prova scritta in cui vengono proposti esercizi sugli argomenti più significativi del programma (limiti, studio di funzione, integrali, sistemi lineari, funzioni in due variabili). Con una votazione sufficiente (di 18/30) lo studente può scegliere se verbalizzare il voto dello scritto. La prova orale è prevista, a discrezione dei docenti, solo nei casi in cui venga ritenuta opportuna per accertare la veridicità delle risposte nella prova scritta.

La prova d'’esame valuta più in generale la preparazione complessiva dello studente, la capacità di integrazione delle conoscenze delle diverse parti del programma, la consequenzialità del ragionamento, la capacità analitica e l'autonomia di giudizio. Nelle eventuali risposte aperte presenti nella prova scritta vengono valutate la proprietà di linguaggio, la chiarezza espositiva e il rigore.

La prova di esame sarà valutata in trentesimi (con possibilità di Lode) secondo i seguenti criteri:
• Non idoneo: importanti carenze e/o inaccuratezze nella conoscenza e comprensione degli argomenti; limitate capacità di analisi e sintesi, frequenti generalizzazioni.
• 18-20: conoscenza e comprensione degli argomenti appena sufficiente con possibili imperfezioni; capacità di analisi sintesi e autonomia di giudizio sufficienti.
• 21-23: Conoscenza e comprensione degli argomenti routinaria; Capacità di analisi e sintesi corrette con argomentazione logica coerente.
• 24-26: Discreta conoscenza e comprensione degli argomenti; buone capacità di analisi e sintesi con argomentazioni espresse in modo rigoroso.
• 27-29: Conoscenza e comprensione degli argomenti completa; notevoli capacità di analisi, sintesi. Buona autonomia di giudizio.
• 30-30L: Ottimo livello di conoscenza e comprensione degli argomenti. Notevoli capacità di analisi e di sintesi e di autonomia di giudizio.