TIME SERIES AND ECONOMETRICS
Teaching material
Slides-Econometrics
» 01. Introductory concepts, simple linear regression models and OLS estimators.data inserimento: 2020-04-08 09:28:28
» 02. Simple linear regression: coefficient of determination (properties and interpretation), unbiasedness and conditional variance of OLS estimators.
data inserimento: 2020-03-09 16:09:38
data inserimento: 2020-03-09 16:09:38
» 03. Simple linear regression: unbiased estimator of the error variance, statistical inference and hypothesis testing. A brief introduction to the CAPM.
data inserimento: 2020-03-09 16:09:49
data inserimento: 2020-03-09 16:09:49
» 04. The market beta of a stock. Recap of linear algebra. Multiple linear regression: OLS estimators. Dummy variables.
data inserimento: 2020-04-05 15:27:51
data inserimento: 2020-04-05 15:27:51
» 05. Unbiasedness of OLS, conditional variance-covariance matrix. Error variance unbiased est.
data inserimento: 2020-03-10 14:11:19
data inserimento: 2020-03-10 14:11:19
» 06. Distribution of the OLS estimators for multiple regressions, multicollinearity, multiple hypothesis testing: F-test.
data inserimento: 2020-03-11 13:53:29
data inserimento: 2020-03-11 13:53:29
» 07. Gauss-Markov Theorem. Testing for equal regressors. Maximum likelihood estimator, log-likelihood ratio test.
data inserimento: 2020-03-11 15:51:33
data inserimento: 2020-03-11 15:51:33
» 08. Non-nested models. Measurement errors and omitted variables. OLS asymptotics.
data inserimento: 2020-03-18 12:49:47
data inserimento: 2020-03-18 12:49:47
Slides-Time Series
» 01. Introduction to time series (trends, seasonality, co-integration), log-returns. Convergence to equilibrium of an AR(1) process. Strongly stationary processes: definition and properties.data inserimento: 2020-03-09 16:24:18
» 02. Covariance-stationarity: definition and main properties. Random walk. Gaussian processes. Non-stationary processes. Order of integration. Consequences of non-stationarity on regression models.
data inserimento: 2020-08-06 14:59:13
data inserimento: 2020-08-06 14:59:13
» 03. Mean-ergodic and variance-ergodic processes. Sufficient conditions for ergodicity. Ergodicity of gaussian processes. Memory of a process and the test for the autocorrelation coefficient.
data inserimento: 2020-04-16 11:54:01
data inserimento: 2020-04-16 11:54:01
» 04. Lag operator. Polynomials of the lag operator. Invertibility. ARMA, AR and MA processes: definition. Mean, variance, co-variance and stability condition for AR(1)-processes. Causality and explosiveness.
data inserimento: 2020-04-01 18:00:43
data inserimento: 2020-04-01 18:00:43
» 05. Stability region for AR(2) processes. Variance, Co-variance, autocorrelation and partial autocorrelation of AR(p) processes. Selection of the autoregressive order: ACF vs PACF.
data inserimento: 2020-04-16 11:54:56
data inserimento: 2020-04-16 11:54:56
» 06. Moving Average Processes: stationarity, invertibility, ACF and PACF Comparison: Moving Average vs. Autoregressive. Invertibility and Causality of AMRA(p,q).
data inserimento: 2020-04-16 11:55:55
data inserimento: 2020-04-16 11:55:55
» 09. Vector Auto-Regressive Models: structural, reduced-form and companion representation. Stationarity conditions. Triangularisation and identification of structural VAR. Wold Theorem and the Impulse response function.
data inserimento: 2020-04-28 18:13:43
data inserimento: 2020-04-28 18:13:43
» 10. Co-integration: definition and examples. Vector Error Correction Models: estimation and interpretation.
data inserimento: 2020-04-29 16:29:07
data inserimento: 2020-04-29 16:29:07