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1 Revision Week 2

This week we have covered the linear regression model. Study Chapter 3 of your textbook.
Sections 3.1–3.2 deal with specification, estimation and testing. Sections 3.3.1-3.3.2 deals
with qualitative input variables, polynomial terms and interactions. Subsection 3.3.5
deals with leverage. Subsection 3.3.6 deals with multicollinearity. Subsections 3.6.2–3.6.6
provide illustrations in R.

� Replication of the illustrations of linear regression using the Advertising data pre-
sented in Ch. 3 of the textbook are available in Lab1.

� (This is not an exercise, but a discussion of leverage)
The hat matrix H = X(X′X)−1X′ plays an important role in regression analysis.
The fitted values are a linear combination of the observed values, ŷ = Hy, so that
for the i-th unit

ŷi = hi1y1 + · · ·hiiyi + · · ·+ hiNyN .

The diagonal element, hi = hii, is the weight that the i-th observation receives in
forming the fitted value: hi =

∂ŷi
∂yi

.

In terms of the observations

hi = x′
i(X

′X)−1xi.

It measures the leverage effect of the i-th observation, which depends on the re-
moteness of the i-th observation from the others in the space of the X’s (think of
x′
i(X

′X)−1xi as a distance).

The hi, i = 1, . . . , N have the following properties:

1

N
≤ hi ≤ 1,

N∑
i=1

hi = p+ 1,

so that the mean is 1
N

∑
i hi = p+1

N
. A large leverage implies that a particular

observation is influential for the fit: often, values larger than twice the mean (2(p+
1)/N) are flagged. An index plot can be used to visualise leverage (plot hi vs i).

It can be shown that for p = 1 (simple linear regression), since x′
i = [1, xi] and

X′X =

[
N

∑
i xi∑

i xi

∑
i x

2
i

]
,



it follows that

hi =
1

N
+

(xi − x̄)2∑
j(xj − x̄)2

.

We see from this expression that hi measures how far away is xi from the average
of the xs, relative to the deviance of x. In the script br LinearRegression.R, the
hi’s are retrieved by the function hatvalues(), which applies to the output created
by the function lm().

The hi’s contribute to the variance of the OLS residuals and fitted values as Var(ei|X) =
σ2(1− hi) and Var(ŷi|X) = σ2hi.

2 Exercises

1. For the br.csv dataset, we regress log-price on log-sqft and log-age (with an in-
tercept). There are N = 1080 observations. Try with regr = lm(log(price)̃

log(sqft)+log(Age). This enables to interpret the estimated coefficients as elas-
ticities (logarithmic derivatives). Illustrate the main estimation results.

2. Knowing that

(X′X)−1 =

 0.3591 −0.0455 −0.0038
−0.0455 0.0058 0.0003
−0.0038 0.0003 0.0005

 , β̂ =

 4.6840
0.9524

−0.0824

 ,
∑
i

e2i = e′e = 103.5403,

and that N = 1080, compute the residual standard error σ̂ (see the slides for for-
mula). Is it possible to compute the t-value for the coefficient β1 from the informa-
tion provided above?

The t-value for H0 : β2 = 0 is -11.7 and the corresponding p-value is virtually 0; are
you willing to accept the null hypothesis?

Knowing further that the total sum of squares is TSS = 296.8724, what is the value
of R2? Do you think it is satisfactory?

3. Solve Exercise n. 5, page 122 of the textbook.

4. Solve Exercise n. 13, points (a)-(g) page 126.

5. Let x1 denote a vector of N = 10 temperatures in degrees Celsius, generated as
x1 ∼ N(20, 3) and let y be the corresponding consumption of beer (in cans), that
is linearly related to temperature. Here, N(µ, σ2) denotes the normal distribution
with mean µ and variance σ2.

We create a new variable, x2 = 32+1.8x1, which represents temperatures converted
to degrees Fahrenheit.



We regress Y on X1 and X2. However, as we can see from the code below, something
went wrong. What, in particular?

x1 = rnorm(10, 20, 3)

y = round(20 * x1 + rnorm(10,0,15))

plot(x1,y)

x2 = 32+1.8 * x1

summary(lm(y ~ x1+x2))

cor(x1,x2)

(To execute the above code, open RStudio; from the menu File select New → R
Script. Copy and paste the code, select and Run. Make sure that ∼ is copied
correcly).

6. Exam preparation: This question was worth 10 (2+2+2+2+2) points out of 70 in
the last written exam.
The following table summarizes the results of estimating a linear regression model
for total sales (logarithms) from a training sample of N = 300 observations:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.00315 0.27603 28.993 <2e-16

log(nfull) -0.06970 0.06286 -1.109 0.2684

log(nown) -0.17284 0.08320 -2.077 0.0386

log(npart) 0.12427 0.07764 **** 0.1105

log(hoursw) 1.16220 0.06277 18.515 <2e-16

---

Residual standard error: 0.4514 on 295 degrees of freedom

Multiple R-squared: 0.589,Adjusted R-squared: 0.5834

(a) What is the interpretation of the p-value 0.2684 associated to the explanatory
variable log(nfull) (log of number of full-time workers)?

(b) Is log(nfull) significant at the 10% level?

(c) Why is there a difference between Multiple R-squared and Adjusted R-squared?
Describe the nature of the adjustment.

(d) Obtain the missing t value for log(npart).

(e) Construct an approximate 95% confidence interval for the coefficient β4 of the
variable log(hoursw), assuming β̂4 − β4 ∼ N(0, 0.062772) and recalling that
for Z ∼ N(0, 1), P (−1.96 < Z < 1.96) = 0.95.


