Facoltà di Economia

Lucia LeonelliProf.ssa Lucia Leonelli
Preside della Facoltà

La Facoltà di Economia dell'Università degli Studi di Roma "Tor Vergata" è un centro di formazione e di ricerca di eccellenza, riconosciuto a livello nazionale ed internazionale, ed è costituito da due dipartimenti: Economia e Finanza e Management e Diritto.

Continua a leggere la presentazione della Facoltà


La Facoltà di Economia è costituita dai dipartimenti:

Dipartimento di Economia e Finanza

Prof. Alberto Iozzi
Direttore

Dipartimento di Management e Diritto

Prof.ssa Martina Conticelli
Direttore

Iscrizioni e Trasferimenti

In questa sezione trovi tutte le informazioni di cui hai bisogno per accedere alla nostra offerta formativa (bandi, test di ammissione, borse di studio, residenze e alloggi...)
Il tuo futuro comicia da qui!

Terza Missione

La Facoltà di Economia, da sempre impegnata a favore della crescita del tessuto socioeconomico italiano e nella cooperazione internazionale, declina la sua Terza missione impegnandosi in una ricerca di eccellenza utile a fini produttivi, capace di contribuire all’avanzamento della conoscenza, dei saperi culturali, scientifici e tecnologici atti a migliorare il benessere della società, attraverso una formazione di qualità, la creazione di partnership istituzionali e progetti con le imprese e per il territorio, il supporto della proprietà intellettuale e dell’imprenditorialità, il placement dei propri laureati, la promozione di iniziative volte a garantire sviluppo sostenibile, innovazione sociale, civic engagement e resilienza.

Scopri di più...

Syllabus

Aggiornato A.A. 2020-2021

Aggiornato A.A. 2020-2021

Program

Set theory. Quantifiers, subsets. Operations among sets (union, intersection, subtraction, complement) and their properties.

Numerical sets. Integer and rational numbers. Minimum and maximum of a set. Lower and upper bounds, inferior and superior of a set. Unbounded sets. Incompleteness of the set of rational numbers. Construction of the set of real numbers. Irrational numbers.

Topology. Distance between points, neighborhoods, limit points, interior points, open and closed sets.

Functions. Domain and image. Injective, surjective and bijective functions. Increasing and decreasing functions. Composition and inverse. Power functions and their inverse functions. Necessary and sufficient condition for invertibility. The exponential function as limit of sequences of rational numbers. Logarithms and their properties. Construction of the graph of the inverse function.

Sequences. Formal definition of limit of a sequence. Necessary conditions for the existence of the limit. Examples of sequences for which the limit does not exist. Absolute value theorem. Notable limits and techniques to compute limits of sequences. Indeterminate forms. Comparison theorem and applications (limit of n*sin(1/n), limit of a^n). Limits of powers, exponentials, factorials and their combinations. Theorem on increasing/decreasing sequences. The Euler sequence and the Euler number. Geometric sums and geometric series.

Limits of functions. Formal definition of limit of functions at a point and at infinite. Left and right limits. Necessary and sufficient conditions for the existence of the limit in terms of left and right limits. Vertical and horizontal asymptotes. Notable limits and techniques to compute limits of functions. Limits of powers, exponentials and logarithms. Indeterminate forms.

Continuity. Formal definition of continuity. Conditions for continuity. Non-continuous functions and their classification. Weierstrass theorem, intermediate zero theorem and applications.

Differentiability and applications. Incremental ratio and formal definition of differentiability. Geometrical interpetation of the derivative. Non-differentiable functions and their classifications. Proof that differentiability implies continuity. Derivative of elementary functions (powers, exponentials, logarithms, trigonometric functions). Differentiation rules. Derivative of composite function and theorem on differentiability of inverse function (derivative of arcsine, arccos, arctan). Monotonicity of differentiable functions. Local maxima, local minima and inflection points with horizontal tangent, Fermat's theorem and critical points. Convexity, concavity and higher order derivatives. The second derivative test for identifying local maxima and local minima. Sufficient conditions for identifying inflection points. De L'Hopital rule. Sketching the graph of a function.  

=============================================================================================

Objectives

Knowing and understanding the basic principles of mathematical analysis, starting from the foundations of topology. Applying those principles to economic modeling with a rigorous approach.

Teaching method

Lectures (ITA: Lezioni frontali) and tutorials (ITA: esercitazioni)

Taching material

The notes of the course

Further readings

Knut Sydsæter and Peter Hammond

Essential mathematics for economic analysis.