Facoltà di Economia

Lucia LeonelliProf.ssa Lucia Leonelli
Preside della Facoltà

La Facoltà di Economia dell'Università degli Studi di Roma "Tor Vergata" è un centro di formazione e di ricerca di eccellenza, riconosciuto a livello nazionale ed internazionale, ed è costituito da due dipartimenti: Economia e Finanza e Management e Diritto.

Continua a leggere la presentazione della Facoltà


La Facoltà di Economia è costituita dai dipartimenti:

Dipartimento di Economia e Finanza

Prof. Alberto Iozzi
Direttore

Dipartimento di Management e Diritto

Prof.ssa Martina Conticelli
Direttore

Iscrizioni e Trasferimenti

In questa sezione trovi tutte le informazioni di cui hai bisogno per accedere alla nostra offerta formativa (bandi, test di ammissione, borse di studio, residenze e alloggi...)
Il tuo futuro comicia da qui!

Terza Missione

La Facoltà di Economia, da sempre impegnata a favore della crescita del tessuto socioeconomico italiano e nella cooperazione internazionale, declina la sua Terza missione impegnandosi in una ricerca di eccellenza utile a fini produttivi, capace di contribuire all’avanzamento della conoscenza, dei saperi culturali, scientifici e tecnologici atti a migliorare il benessere della società, attraverso una formazione di qualità, la creazione di partnership istituzionali e progetti con le imprese e per il territorio, il supporto della proprietà intellettuale e dell’imprenditorialità, il placement dei propri laureati, la promozione di iniziative volte a garantire sviluppo sostenibile, innovazione sociale, civic engagement e resilienza.

Scopri di più...

Konstantinos Fokianos | University of Cyprus

Spatio-Temporal Count Autorgression

Noemi Pace Seminars PhD EF
When

Wednesday, October 1, 2025 h. 13:00-14:00

Where

Sala del Consiglio

Description

Abstract

We study the problem of modeling and inference for spatio-temporal count processes. Our approach uses parsimonious parameterisations of multivariate autoregressive count time series models, including possible regression on covariates. We control the number of parameters by specifying spatial neighbourhood structures for possibly huge matrices that take into account spatio-temporal dependencies. This work is motivated by real data applications which call for suitable models. Extensive simulation studies show that our approach yields reliable estimators.